Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (3): 662-674.doi: 10.3864/j.issn.0578-1752.2021.03.019

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes

WANG Yong(),LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui()   

  1. College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, Heilongjiang
  • Received:2020-02-23 Accepted:2020-07-29 Online:2021-02-01 Published:2021-02-01
  • Contact: Rui WU E-mail:bywy0209@126.com;fuhewu@126.com

Abstract:

【Objective】To assess risk of regulation of human-derived genes by miRNAs derived from bovine leukemia virus (BLV), the prospective research on the possible food safety problems and the possible impact on human health caused by BLV-miRNA were carried out, which would lay the foundation for the necessary research on the implementation of Enzootic Bovine Leukosis (EBL) prevention and control measures in actual production in the future, and provide theoretical guidance for the study of the relationship between BLV and human diseases.【Method】 In this study, the mature sequence of BLV miRNAs was first queried using mirbase website, and the miRanda software was used to predict target genes. The predictive 10 miRNAs (BLV-miR-B1-3P,5P, BLV-miR-B2-3P, 5P, BLV-miR-B3-3P,5P, BLV-miR-B4-3P,5P, and BLV-miR-B5-3P,5P) were encoded by BLV. The top 10 candidate target genes of each BLV-miRNA score were selected for functional analysis, including a total of 88 duplicated genes. The candidate target genes co-regulated by multiple BLV miRNAs were verified by secondary prediction using RNAhybrid software, and their functions were analyzed. 【Result】The ten miRNAs encoded by BLV were predicted to obtain 1 630-16 383 target genes, respectively. After functional analysis of eighty-eight candidate target genes in the top ten, it was found that eighteen of them had no relevant functional reports. Thirty-six candidate target genes were related to the occurrence and development of neoplastic diseases. Two candidate target genes could regulate cell cycle. Sixteen candidate target genes were involved in the regulation of cell signal transduction. Fourteen candidate target genes played a role in the formation of structure/cytoskeleton proteins. The function of cell proliferation and apoptosis showed an antagonistic relationship and the genes that often promoting proliferation could also suppress apoptosis. A total of thirteen genes played a regulatory role in cell proliferation and apoptosis. Interestingly, the regulation of the thirteen candidate target genes on cell proliferation and apoptosis was bidirectional. However, it was not clear whether the regulation of BLV miRNA towards cells was more prone to proliferation or apoptosis, so further studies were still needed to discuss in depth. Two candidate target genes could regulate cell differentiation. The sixteen candidate target genes played a role in regulating cell migration/invasion function, again suggesting that BLV miRNA might have a more important correlation with neoplastic diseases. The seven candidate target genes might play an important role in the differentiation, migration and invasion of breast cells, suggesting that the study on the correlation between BLV and human breast cancer could be further discussed from the perspective of BLV miRNA. Two candidate target genotypes of BLV-B4-3P, Collagen 1 chain gene (COL1A1), had a regulatory effect on human acute lymphoblastic leukemia (ALL). In addition, candidate target genes that could be co-targeted by multiple BLV miRNAs belong to the mucin family (MUC5B, MUC12 and MUC16), and be expressed in the colon, influencing the formation of colon mucosa.【Conclusion】Exogenous BLV miRNA might transboundary regulate cell cycle signal transduction structure/cytoskeleton proliferation apoptosis differentiation migration/invasion related cell function related genes and destroy cell structure. The correlation between BLV miRNA and human breast cancer might be shown in the process of differentiation, migration and invasion of human breast cancer cells. BLV-miR-B4-3p shared a seed sequence with miR 29a, which might affect the occurrence and development of human acute lymphoblastic leukemia. Exogenous BLV miRNA had the target of inhibiting the expression of mucin genes, such as MUC5B, MUC12, and MUC16, through the destruction of intestinal mucosa formation to achieve transboundary regulation of human gene risk.

Key words: bioinformatics, bovine leukemia virus, transboundary regulation, human-derived genes, miRNA

Table 1

BLV miRNAs mature sequence"

miRNA名称
miRNA name
成熟序列
Mature sequence
BLV-miR-B1-3P UCAGUGUACCAUCACAAGCCUCU
BLV-miR-B1-5P AGGCUGUGGUGGUGCACUGGCUU
BLV-miR-B2-3P UGCGUGUCGCUCAGUCAUUUU
BLV-miR-B2-5P AUGACUGAGUGUAGCGCAGAGA
BLV-miR-B3-3P UAACGCUGACGGGGGCGAUUUCU
BLV-miR-B3-5P AUCCCCCUGCCAGCGUUGGUC
BLV-miR-B4-3P UAGCACCACAGUCUCUGCGCCUUU
BLV-miR-B4-5P GCGGGAGGCUCUGGUGCUGG
BLV-miR-B5-3P CUCGAGCCGCAACCUCCCUUUCU
BLV-miR-B5-5P AGGAAGGUUGUGGCUCAGAGGU

Fig. 1

BLV miRNAs target gene prediction results"

Table 2

Candidate target genes involved in cell cycle regulation"

序号 Number 基因名称 Gene name miRNA 评分 Score 与细胞周期关系 Relationship with cell cycle
1 MGRN1 BLV-miR-B2-3p 308 MGRN1介导的α-微管蛋白在细胞间期起泛素化作用[19]
MGRN1-mediated α-tubulin ubiquitination in the intercellular phase
2 CDC42 BLV-miR-B4-5p 925 调控细胞周期[20] Regulating of cell cycle

Table 3

Candidate target genes involved in cell signal transduction"

序号
Number
基因名称
Gene name
miRNA
miRNA
评分
Score
与信号转导关系
Relationship with signal transduction
1 NOTCH3 BLV-miR-B1-3p 600 编码果蝇I型膜蛋白缺口的人类同源物,建立细胞间信号传导途径,其在神经发育中起关键作用
The human homologues encoding gaps in Drosophila type I membrane proteins, establishing intercellular signal transduction pathways, which play a key role in neural development
2 MUC12 BLV-miR-B1-5p 4260 编码膜糖蛋白,在细胞内信号传导中发挥作用/黏液素在上皮表面形成的保护性黏液屏障中起重要作用
It encodes membrane glycoproteins and plays a role in intracellular signaling, and mucin plays an important role in the protective mucus barrier formed by the epithelial surface
3 MUC21 BLV-miR-B1-5p 3738 膜结合糖蛋白,在上皮表面形成保护性黏膜屏障中起重要作用,也在细胞内信号传导中起作用
Membrane-bound glycoproteins play an important role in the formation of a protective mucosal barrier on the epithelial surface and in intracellular signaling
4 ATF3 BLV-miR-B2-5p 180 编码哺乳动物激活转录因子;参与细胞应激反应
Encode mammalian activation transcription factors and participate in cellular stress response
5 NR2C2 BLV-miR-B2-5p 179 该基因编码属于核激素受体家族的蛋白质,该家族的成员充当配体激活的转录因子
The gene encodes proteins belonging to the nuclear hormone receptor family, members of which act as ligand-activated transcription factors
6 OR14I1 BLV-miR-B2-5p 187 负责识别和G蛋白介导的气味信号转导
Responsible for recognition and G protein-mediated odor signal transduction
7 POU3F3 BLV-miR-B2-3p 444 该基因编码含有POU结构域的蛋白质,该蛋白质起着转录因子的作用
The gene encodes a protein containing a POU domain, which acts as a transcription factor
8 TIAL1-201 BLV-miR-B2-5p 180 该基因编码的蛋白质是RNA结合蛋白家族的成员,调节各种活动,包括翻译控制,剪接和凋亡
The gene encodes proteins that are members of the RNA-binding protein family and regulate various activities including translation control, splicing, and apoptosis
9 TXNL1-204 BLV-miR-B2-5p 175 TXNL1- XRCC1是一种新型的调控途径,氧化还原传感器TXNL1在液相内吞中起调节作用[21]
TXNL1- XRCC1 is a new regulatory approach, and the redox sensor TXNL1 plays a regulatory role in liquid phase endocytosis
10 MUC12 BLV-miR-B3-3p 1893 编码膜糖蛋白,在细胞内信号传导中发挥作用/黏液素在上皮表面形成的保护性黏液屏障中起重要作用
It encodes membrane glycoproteins and plays a role in intracellular signaling, and mucin plays an important role in the protective mucus barrier formed by the epithelial surface
11 AHNAK2 BLV-miR-B3-5p 6265 编码的蛋白质可通过与钙通道蛋白结合而在钙信号传导中起作用
The encoded protein can play a role in calcium signaling by binding to calcium channel proteins
12 EPN1 BLV-miR-B4-5p 1506 促进囊泡的内吞作用[22] Promoting endocytosis of vesicles
13 TSPAN14 BLV-miR-B4-5p 1052 作为跨膜蛋白,可调节内质网出口[23]
As a transmembrane protein, it can regulate the export of endoplasmic reticulum
14 MUC12 BLV-miR-B4-5p 1045 编码膜糖蛋白,在细胞内信号传导中发挥作用/黏液素在上皮表面形成的保护性黏液屏障中起重要作用
It encodes membrane glycoproteins and plays a role in intracellular signaling, and mucin plays an important role in the protective mucus barrier formed by the epithelial surface
15 MUC12 BLV-miR-B5-3p 506 编码膜糖蛋白,在细胞内信号传导中发挥作用/黏液素在上皮表面形成的保护性黏液屏障中起重要作用
It encodes membrane glycoproteins and plays a role in intracellular signaling, and mucin plays an important role in the protective mucus barrier formed by the epithelial surface
16 MUC12 BLV-miR-B5-5p 3373 编码膜糖蛋白,在细胞内信号传导中发挥作用/黏液素在上皮表面形成的保护性黏液屏障中起重要作用
It encodes membrane glycoproteins and plays a role in intracellular signaling, and mucin plays an important role in the protective mucus barrier formed by the epithelial surface

Table 4

Candidate target genes involved in the synthesis of cell structure / skeleton protein"

序号
Number
基因名称
Gene name
miRNA
miRNA
评分
Score
与结构/骨架关系
Relationship with structure / skeleton
1 MYO19 BLV-miR-B1-3p 596 肌球蛋白,为肌肉收缩,胞质分裂和细胞器运输等过程提供动力[24]
It is myosin that powers muscle contraction, cytokinesis and organelle transport
2 BSN BLV-miR-B1-5p 2197 编码的tau蛋白是神经细胞的骨架成分
The encoded tau protein is a skeleton component of nerve cells
3 KLC1 BLV-miR-B1-5p 2308 与肌动蛋白重链结合、参与了囊泡、线粒体和高尔基体等物质的结合
It binds to actin heavy chains and is involved in the binding of vesicles, mitochondria and golgi bodies
4 OBSCN BLV-miR-B1-5p 2921 该基因编码的Obscurins蛋白可作为巨噬细胞的骨架蛋白[25]
Obscurins encoded by this gene can be regarded as the cytoskeleton protein of macrophages
5 EPPK1 BLV-miR-B3-5p 920 在细胞骨架结构中起作用[26]
It plays a role in the cytoskeletal structure
6 CDC42 BLV-miR-B4-5p 925 细胞骨架结构中发挥作用[20]
It plays a role in the cytoskeletal structure
7 LTBP3 BLV-miR-B4-5p 1074 编码的蛋白质与转化生长因子β(TGF-β)形成复合物,在细胞外基质中发挥结构作用
The encoded protein forms a complex with transforming growth factor β (TGF-β) and plays a structural role in the extracellular matrix
8 DNAJC14 BLV-miR-B5-3p 316 是一种热休克蛋白,有助于Hsp70介导的蛋白质折叠[27]
Is a heat shock protein that helps Hsp70-mediated protein folding
9 OBSCN BLV-miR-B5-5p 1061 该基因编码的Obscurins蛋白可作为巨噬细胞的骨架蛋白[25]
Obscurins encoded by this gene can be regarded as the cytoskeleton protein of macrophages
10 FNBP1L BLV-miR-B2-5p 1469 该基因编码的蛋白质与CDC42和N-WASP结合,通过激活N-WASP-WIP复合物来促进CDC42诱导的肌动蛋白聚合
The protein encoded by this gene binds to CDC42 and N-WASP, and promotes CDC42-induced actin polymerization by activating the N-WASP-WIP complex
11 GAS2L1-208 BLV-miR-B2-5p 178 该蛋白结合细胞骨架的成分,并可能参与介导微管和微丝之间的相互作用;GAS2L1,一种微管和肌动蛋白结合蛋白,参与中心粒动力学和中心体分离[28];Gas2是一种生长停滞特异性蛋白,是微丝网络系统的组成部分[29]
The protein binds to cytoskeletal components and is involved in mediating the interaction between microtubules and microfilaments. GAS2L1, a microtubule and actin binding protein, involved in centrosome dynamics and centrosome separation. Gas2 is a growth stagnation specific protein and a component of the microfilament network system
12 CLEC16A BLV-miR-B2-3p 439 该基因编码包含C型凝集素结构域的家族的成员
The gene encodes a member of a family that contains the type C lectin domain
13 HERC5-201 BLV-miR-B2-5p 175 该基因是泛素连接酶HERC家族的成员,编码具有HECT结构域和5个RCC1重复序列的蛋白质
The gene is a member of the ubiquitin ligase HERC family that encodes proteins with HECT domains and five RCC1 repeats
14 MAST1 BLV-miR-B2-3p 304 该基因是微管相关丝氨酸/苏氨酸激酶(MAST)家族的成员。由该基因编码的蛋白质具有N端丝氨酸/苏氨酸激酶结构域
This gene is a member of the microtubule-associated serine/threonine kinase (MAST) family, and the protein encoded by this gene has an N-terminal serine/threonine kinase domain

Table 5

Candidate target genes involved in cell proliferation"

序号
Number
基因名称
Gene name
miRNA
miRNA
评分
Score
与增殖关系
Relationship with proliferation
1 RPS6KA5 BLV-miR-B1-3p 618 抑制细胞增殖[30] Inhibiting of cell proliferation
2 SHPRH BLV-miR-B1-3p 590 抑制细胞增殖[31] Inhibiting of cell proliferation
3 EVC BLV-miR-B1-5p 2266 该基因发生突变可能通过下调Hh途径活性导致心肌细胞的增殖能力降低[32]。心肌细胞的抗细胞凋亡能力降低[32]
Mutation of this gene may reduce the proliferation of cardiomyocytes by down-regulating Hh pathway activity. The anti-apoptotic ability of cardiomyocytes was decreased
4 BIRC6 BLV-miR-B2-3p 908 诱导细胞增殖[33]。抑制凋亡[34] Inducing cell proliferation and inhibiting apoptosis
5 EGFR BLV-miR-B2-3p 1049 诱导细胞增殖 Inducing cell proliferation
6 COL16A1 BLV-miR-B3-5p 1031 通过上调内皮受体VEGFR1,VEGFR2和uPAR触发血管生成[35]
Angiogenesis is triggered by upregulation of endothelial receptors VEGFR1, VEGFR2, and uPAR
7 KMT2D BLV-miR-B3-5p 1203 下调抑制胃癌的增殖[36]。诱导其凋亡[36]
Down-regulating gastric cancer proliferation and inducing apoptosis
8 TET3 BLV-miR-B4-3p 1691 细胞增殖[37] Cell proliferation
9 CDC42 BLV-miR-B4-5p 925 促进肿瘤生长[20] Promoting tumor growth
4 TRO BLV-miR-B4-3p 1374 通过PKC-δ诱导人子宫内膜上皮细胞的凋亡
Apoptosis of human endometrial epithelial cells was induced by PKC-δ
5 COL1A2 BLV-miR-B4-3p 2543 通过PI3K-Akt信号通路抑制胃癌细胞凋亡[38]
The apoptosis of gastric cancer cells was inhibited by pi3K-Akt signaling pathway
6 COL3A1 BLV-miR-B4-3p 2098 拮抗细胞凋亡功能[19] Antagonizing apoptosis
7 TIAL1-201 BLV-miR-B2-5p 180 该基因编码的蛋白质是RNA结合蛋白家族的成员,调节各种活动,包括翻译控制,剪接和凋亡
The gene encodes proteins that are members of the RNA-binding protein family and regulate various activities, including translation control, splicing, and apoptosis

Table 6

Candidate target genes involved in cell differentiation"

序号
Number
基因名称
Gene name
miRNA
miRNA
评分
Score
与分化关系
Relationship with differentiation
1 MYO19 BLV-miR-B1-3p 596 确保细胞在分裂期间的彻底隔离[39] Ensure complete isolation of cells during division
2 RPS6KA5 BLV-miR-B1-3p 618 控制分化[40] Control of differentiation

Table 7

Candidate target genes involved in cell migration / invasion"

序号
Score
基因名称
Gene name
miRNA
miRNA
评分
Score
与迁移关系
Relationship with migration
1 NOTCH3 BLV-miR-B1-3p 600 促进转移[41] Promoting metastasis
2 RICTOR BLV-miR-B1-3p 592 促癌细胞转移[42] Promoting metastasis of cancer cells
3 TNXB BLV-miR-B1-3p 747 具有抗黏附作用
4 RPS6KA5 BLV-miR-B1-3p 618 肿瘤侵袭有关[30] Relating to tumor invasion
5 FOCAD BLV-miR-B3-3p 446 FOCAD编码一种在胶质瘤中具有肿瘤抑制功能的粘着斑蛋白[43]
FOCAD encodes a focal adhesion proteins of an tumor inhibitory function in glioma
6 PLEKHG3 BLV-miR-B3-3p 444 激活细胞前端的肌动蛋白丝来增强极化细胞迁移[44]
Activating the actin filaments at the cell front for enhancing the polarized migration of cells
7 EPPK1 BLV-miR-B3-5p 920 在伤口愈合期间加速角质形成细胞迁移
Promoting keratinocyte migration during wound healing
8 COL16A1 BLV-miR-B3-5p 1031 COL16A1在炎症晚期时在肠上皮下肌成纤维细胞(ISEMF)表面表达增加,导致细胞扩散[45]
COL16A1 expression increasing in cell surface which led to cell diffusion
9 COL1A2 BLV-miR-B4-3p 2543 促进胃癌细胞迁移和侵袭[38] Promoting cell migration and invasion in gastric cancer cells
10 TRO BLV-miR-B4-3p 1374 介导滋养细胞和子宫内膜上皮细胞之间的细胞黏附
It mediates cell adhesion between endometrial epithelial cells and trophoblast
11 CDC42 BLV-miR-B4-5p 925 影响细胞间黏附、肿瘤细胞形成过程的细胞迁移和侵袭[20]
Affecting cell adhesion and cell migration and invasion during the tumor cell formation
12 EPN1 BLV-miR-B4-5p 1506 可能降低癌细胞稳定性 It may have decreased cancer cells stability
13 LTBP3 BLV-miR-B4-5p 1074 促进癌细胞传播过程中的早期转移[46] Promoting metastasis in cancer cells of early phase
14 DNAH17 BLV-miR-B5-3p 320 DNAH17编码动力蛋白轴索重链,参与细胞运动[47]
DNAH17 encodes a dynein heavy chain motor protein and participates in cell motility
15 ATP11A BLV-miR-B2-3p 563 编码的蛋白质是完整的膜,是结直肠癌异时转移的独立预测因子[48]
The protein encoded was an independent predictor of colorectal cancer metastasis
16 ENPP7 BLV-miR-B2-3p 580 编码的蛋白质锚定在细胞膜中,它可能起到保护肠黏膜免受炎症和肿瘤发生的作用
It protects the intestinal mucosa against injuries inflammation and tumorigenesis to encoding protein which is anchored to the inner face of cellular membrane

Table 8

Candidate target genes involved in the regulation of human acute lymphoblastic leukemia"

序号
Score
基因名称
Gene name
miRNA
miRNA
评分
Score
与白血病关系
Relationship with leukemia
1 COL1A1 BLV-miR-B4-3p 2603 ALL患者的骨骼发育异常与Col1A1 Sp1结合位点基因多态性存在相关性[49]
There is a correlation between ALL patients have dysfunctional bone development and Col1A1 Sp1 binding site gene polymorphism
2 BCR BLV-miR-B4-3p 320 ALL的融合转录本[50] The fusion transcripts of ALL

Table 9

Candidate target genes involved in the regulation of human breast cancer"

序号
Score
基因名称
Gene name
miRNA
miRNA
评分
Score
与乳腺癌关系
Relationship with breast cancer
1 NOTCH3 BLV-miR-B1-3p 600 在癌症转移过程中起作用[41] Playing a vital role in cancer metastasis
2 RICTOR BLV-miR-B1-3p 592 在癌症转移过程中起作用[42, 51] Playing a vital role in cancer metastasis
3 RPS6KA5 BLV-miR-B1-3p 618 调节乳腺癌中腔细胞分化和转移性休眠,增加骨归巢和生长能力,与肿瘤侵袭有关[40]
It regulates the differentiation of luminal cells and metastatic dormancy in breast cancer, increases bone homing and growth capacity and is related to tumor invasion
4 OBSCN BLV-miR-B1-5p 2921 OBSCN缺失会导致细胞间接触被破坏,在体内外均会导致肿瘤的发生,迁移和侵袭[25]
These cells contacts are disrupted by OBSCN defecting and leaded to cancer cell migration and invasion in vivo and in vitro
5 COL1A1 BLV-miR-B4-3p 2603 癌症来源的miR-218通过调控COL1A1在血液水平上乳腺癌向骨的转移过程起作用[49]
MiR-218 of cancer work in transfer process with breast cancer metastasis to bone at the blood level by regulatory COL1A1
6 OBSCN BLV-miR-B5-5p 1061 OBSCN缺失会导致细胞间接触被破坏,在体内外均会导致肿瘤的发生,迁移和侵袭[25]
These cells contacts are disrupted by OBSCN defecting and leaded to cancer cell migration and invasion in vivo and in vitro
7 ATF3 BLV-miR-B2-5p 180 乳腺癌期间的病理状况下,已经观察到ATF3的持续和延长表达[52]
ATF3 will prolonge and sustaine expression under pathological situations in breast cancer

Fig. 2

Minimum free energy and secondary structure of target MUC5B Red nucleic acid sequence: Nucleic acid sequence of candidate target gene; Green nucleic acid sequence: Nucleic acid sequence of miRNA; mfe: minimum free energy"

Fig. 3

Minimum free energy and two stage structure of MUC16 Red nucleic acid sequence: Nucleic acid sequence of candidate target gene; Green nucleic acid sequence: Nucleic acid sequence of miRNA; mfe: Minimum free energy"

Fig. 4

Minimum free energy and secondary structure of target MUC12 Red nucleic acid sequence: Nucleic acid sequence of candidate target gene; Green nucleic acid sequence: Nucleic acid sequence of miRNA; mfe: Minimum free energy"

[1] GILLET N, FLORINS A, BURTEAU C, NIGRO A, VANDERMEERS F, BALON H, BOUZAR A, DEFOICHE J, BURNY A, REICHERT M, KETTMANN R, WILLEMS L. Mechanisms of leukemogenesis induced by bovine leukemia virus: Prospects for novel anti-retroviral therapies in human. Retrovirology, 2007,4:18.
[2] 杨奕. 牛白血病病毒分子流行病学调查及其致病性的研究[D]. 扬州:扬州大学, 2018.
YANG Y. Molecular epidemiological investigation and pathogenicity of bovine leukemia virus[D]. Yangzhou: Yangzhou University, 2018. (in Chinese)
[3] OTT S, JOHNSON R, WELLS S. Association between Bovine- Leukosis virus seroprevalence and herd-level productivity on US dairy farms. Preventive Veterinary Medicine, 2003,61(4):249-262.
[4] ERSKINE R, BARLETT P C, BYREM T M, RENDER C L, FEBVAY C, HOUSEMAN J T. Association between bovine leukemia virus, production, and population age in Michigan dairy herds. Journal of Dairy Science, 2012,95:727-734.
[5] FRIE M, SPORER K, WALLACE J, MAES R, SORDILLO L, BARTLETT P, COUSSENS P. Reduced humoral immunity and atypical cell-mediated immunity in response to vaccination in cows naturally infected with bovine leukemia virus. Veterinary Immunology and Immunopathology, 2016,182:125-135.
[6] MCCLURE H M, KEELING M E, CUSTER R P, MARSHAK R R, ABT D A, FERRER J F. Erythroleukemia in two infant chimpanzees fed milk from cows naturally infected with the bovine C-type virus. Cancer Research, 1974,34(10):2745-2757.
[7] MARTINEZ C L, PAMELA L, NIETO F M, DOLCINI G L, CERIANI C. Can bovine leukemia virus be related to human breast cancer? A review of the evidence. Journal of Mammary Gland Biology and Neoplasia, 2018,23(3):101-107.
[8] BUEHRING G C, DELANEY A, SHEN H, et al. Bovine leukemia virus discovered in human blood. BMC Infectious Diseases, 2019,19(1):297.
[9] KINCAID R P, BURKE J M, SULLIVAN C S, CHU D L C, RAZAVIAN N, SCHWARTZ D A, DEMKOVICH Z R, BATES M N. RNA virus microRNA that mimics a B-cell oncomiR. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(8):3077-3082.
[10] NICOLAS R, MÉLANIE M, KEITH D, HARUKO T, FLORIAN C, YVETTE C, CÉLINE V, FRANCK M, ERIC W, ARSÈNE B, MICHEL G, ANNE V. Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(6):2306-2311.
[11] MOULES V, POMIER C, SIBON D, GABET A S, REICHERT M, KERKHOFS P, WILLEMS L, MORTREUX F, WATTEL E. Fate of premalignant clones during the asymptomatic phase preceding lymphoid malignancy. Cancer Research, 2005,65(4):1234-1243.
[12] MERIMI M, KLENER P, SZYNAL M, CLEUTER Y, KERKHOFS P, BURNY A, MARTIAT P, VAN DEN BROEKE A. Suppression of viral gene expression in bovine leukemia virus-associated B-cell malignancy: interplay of epigenetic modifications leading to chromatin with a repressive histone code. Journal of Virology, 2007,81(11):5929-5939.
[13] SAFARI R, HAMAIDIA M, DE BROGNIEZ A, GILLET N, WILLEMS L. Cis-drivers and trans-drivers of bovine leukemia virus oncogenesis. Current Opinion in Virology, 2017,26:15-19.
[14] GILLET N A, HAMAIDIA M, DE BROGNIEZ A, GUTIÉRREZ G, RENOTTE N, REICHERT M, TRONO K, WILLEMS L. Bovine leukemia virus small noncoding rnas are functional elements that regulate replication and contribute to oncogenesis in vivo. PLoS Pathogens, 2016,12(4):e1005588.
[15] ROSEWICK N, DURKIN K, ARTESI M, MARÇAIS A, HAHAUT V, GRIEBEL P, ARSIC N, AVETTAND-FENOEL V, BURNY A, CHARLIER C, HERMINE O, GEORGES M, VAN DEN BROEKE A. Cis-perturbation of cancer drivers by the HTLV-1/BLV proviruses is an early determinant of leukemogenesis. Nature Communications, 2017,8(1):15264.
[16] ZHANG L, HOU D, LI D, ZHU L Y, ZHANG Y J, LI J, BIAN Z, LIANG X Y, CAI X, YIN Y, WANG C, ZHANG T F, ZHU D H, ZHANG D M, XU J, CHEN Q, BA Y, LIU J, ZHANG C Y. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Research, 2011,22:107-126.
[17] IZUMI H, TSUDA M, SATO Y, KOSAKA N, OCHIYA T, IWAMOTO H, NAMBA K, TAKEDA Y. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. Journal of Dairy Science, 2015,98(5):2920-2933.
[18] REHMSMEIER M, STEFFEN P, HOCHSMANN M, GIEGERICH R. Fast and effective prediction of microRNA/target duplexes. RNA -A Publication of The RNA Society, 2004,10(10):1507-1517.
[19] MUKHERJEE R, MAJUMDER P, CHAKRABARTI O. MGRN1- mediated ubiquitination of alpha-tubulin regulates microtubule dynamics and intracellular transport. Traffic, 2017,18(12):791-807.
doi: 10.1111/tra.12527 pmid: 28902452
[20] XIAO X H, LV L C, DUAN J, WU Y M, HE S J, HU Z Z, XIONG L X. Regulating Cdc42 and its signaling pathways in cancer: Small molecules and microrna as new treatment candidates. Molecules, 2018,23(4):787.
[21] FeLBERBAUM-CORTI M, MOREL E, CAVALLI V, VILBOIS F, GRUENBERG J. The redox sensor TXNL1 plays a regulatory role in fluid phase endocytosis. PLoS ONE, 2007,2(11):e1144.
doi: 10.1371/journal.pone.0001144 pmid: 17987124
[22] LIU Z, ZHENG Y. A requirement for epsin in mitotic membrane and spindle organization. Journal of Cell Biology, 2009,186(4):473-480.
[23] DORNIER E, COUMAILLEAU F, OTTAVI J F, et al. TspanC8 tetraspanins regulate ADAM10 / Kuzbanian trafficking and promote Notch activation in flies and mammals. Journal of Cell Biology, 2012,199(3):481-496.
[24] QUINTERO O A, DIVITO M M, ADIKES R C, KORTAN M B, CASE L B, LIER A J, PANARETOS N S, SLATER S Q, RENGARAJAN M, FELIU M, CHENEY R E. Human Myo19 is a novel myosin that associates with mitochondria. Current Biology, 2009,19(23):2008-2013.
[25] SHRIVER M, STROKA K M, VITOLO M I, MARTIN S, HUSO D L, KONSTANTOPOULOS K, KONTROGIANNI-KONSTANTOPOULOS A. Loss of giant obscurins from breast epithelium promotes epithelial- to-mesenchymal transition, tumorigenicity and metastasis. Oncogene, 2015,34(32):4248-4259.
pmid: 25381817
[26] JANG S I, KALININ A, TAKAHASHI K, MAREKOV L N, STEINERT P M. Characterization of human epiplakin: RNAi-mediated epiplakin depletion leads to the disruption of keratin and vimentin IF networks. Journal of Cell Science, 2005,118(Pt 4):781-793.
[27] JUNG J, KIM J, ROH S H, JUN I, SAMPSON R D, GEE H Y, CHOI J Y, LEE M G. The HSP70 co-chaperone DNAJC14 targets misfolded pendrin for unconventional protein secretion. Nature Communications, 2016,7:11386.
pmid: 27109633
[28] AU F K, JIA Y, JIANG K, GRIGORIEV I, HAU B K, SHEN Y, DU S, AKHMANOVA A, QI R Z. GAS2L1 Is a centriole-associated protein required for centrosome dynamics and disjunction. Developmental Cell, 2017,40(1):81-94.
pmid: 28017616
[29] BRANCOLINI C, BOTTEGA S, SCHNEIDER C. Gas2, a growth arrest-specific protein, is a component of the microfilament network system. Journal of Cell Biology, 1992,117(6):1251-1261.
[30] FU X, FAN X, HU J, ZOU H, CHEN Z, LIU Q, NI B, TAN X, SU Q, WANG J, WANG L, WANG J. Overexpression of MSK1 is associated with tumor aggressiveness and poor prognosis in colorectal cancer. Digestive and Liver Disease, 2017,49(6):683-691.
doi: 10.1016/j.dld.2017.02.009 pmid: 28314603
[31] ZHANG M, HUANG N, YANG X, LUO J, YAN S, XIAO F, CHEN W, GAO X, ZHAO K, ZHOU H, LI Z, MING L, XIE B, ZHANG N. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene, 2018,37(13):1805-1814.
pmid: 29343848
[32] LIU F, LIU X, XU Z, YUAN P, ZHOU Q, JIN J, YAN X, XU Z, CAO Q, YU J, CHENG Y, WAN R, HONG K. Molecular mechanisms of Ellisvan Creveld gene variations in ventricular septal defect. Molecular Medicine Reports, 2018,17(1):1527-1536.
doi: 10.3892/mmr.2017.8088 pmid: 29257216
[33] WANG Z, LUO H, FANG Z, FAN Y, LIU X, ZHANG Y, RUI S, CHEN Y, HONG L, GAO J, ZHANG M. MiR-204 acts as a potential therapeutic target in acute myeloid leukemia by increasing BIRC6-mediated apoptosis. BMB Reports, 2018,51(9):444-449.
pmid: 29764561
[34] MCCLURE H M, KEELING M E, CUSTER R P, MARSHAK R R, ABT D A, FERRER J F. Erythroleukemia in two infant chimpanzees fed milk from cows naturally infected with the bovine C-type virus. Cancer Research, 1974,34(10):2745-2757.
[35] BEDAL K B, GRASSEL S, SPANIER G, REICHERT T E, BAUER R J. The NC11 domain of human collagen XVI induces vasculogenic mimicry in oral squamous cell carcinoma cells. Carcinogenesis, 2015,36(11):1429-1439.
doi: 10.1093/carcin/bgv141 pmid: 26424749
[36] XIONG W, DENG Z, TANG Y, DENG Z, LI M. Downregulation of KMT2D suppresses proliferation and induces apoptosis of gastric cancer. Biochemical and Biophysical Research Communications, 2018,504(1):129-136.
[37] FB U B, CAU L, TAFAZZOLI A, MECHIN M C, WOLF S, ROMANO M T, VALENTIN F, WIEGMANN H, HUCHENQ A, KANDIL R, et al. Mutations in three genes encoding proteins involved in hair shaft formation cause uncombable hair syndrome. American Journal of Human Genetics, 2016,99(6):1292-1304.
pmid: 27866708
[38] AO R, GUAN L, WANG Y, WANG J N. Silencing of COL1A2, COL6A3, and THBS2 inhibits gastric cancer cell proliferation, migration, and invasion while promoting apoptosis through the PI3k-Akt signaling pathway. Journal of Cellular Biochemistry, 2018,119(6):4420-4434.
pmid: 29143985
[39] ROHN J L, PATEL J V, NEUMANN B, BULKESCHER J, MCHEDLISHVILI N, MCMULLAN R C, QUINTERO O A, ELLENBERG J, BAUM B. Myo19 ensures symmetric partitioning of mitochondria and coupling of mitochondrial segregation to cell division. Current Biology, 2014,24(21):2598-2605.
doi: 10.1016/j.cub.2014.09.045 pmid: 25447992
[40] GAWRZAK S, RINALDI L, GREGORIO S, ARENAS E J, SALVADOR F, UROSEVIC J, FIGUERAS-PUIG C, ROJO F, DEL BARCO BARRANTES I, CEJALVO J M, et al. MSK1 regulates luminal cell differentiation and metastatic dormancy in ER(+) breast cancer. Nature Cell Biology, 2018,20(2):211-221.
[41] LEONTOVICH A A, JALALIRAD M, SALISBURY J L, MILLS L, HADDOX C, SCHROEDER M, TUMA A, GUICCIARDI M E, ZAMMATARO L, GAMBINO M W, et al. NOTCH3 expression is linked to breast cancer seeding and distant metastasis. Breast Cancer Reserach, 2018,20(1):105.
[42] EL SHAMIEH S, SALEH F, MOUSSA S, KATTAN J, FARHAT F. RICTOR gene amplification is correlated with metastasis and therapeutic resistance in triple-negative breast cancer. Pharmacogenomics, 2018,19(9):757-760.
doi: 10.2217/pgs-2018-0019 pmid: 29790419
[43] BROCKSCHMIDT A, TROST D, PETERZIEL H, ZIMMERMANN K, EHRLER M, GRASSMANN H, PFENNING P N, WAHA A, WOHLLEBER D, BROCKSCHMIDT F F, et al. KIAA1797/FOCAD encodes a novel focal adhesion protein with tumour suppressor function in gliomas. Brain, 2012,135(Pt 4):1027-1041.
doi: 10.1093/brain/aws045 pmid: 22427331
[44] NGUYEN T T, PARK W S, PARK B O, KIM C Y, OH Y, KIM J M, CHOI H, KYUNG T, KIM C H, LEE G, et al. PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(36):10091-10096.
[45] RATZINGER S, EBLE J A, PASOLDT A, OPOLKA A, ROGLER G, GRIFKA J, GRASSEL S. Collagen XVI induces formation of focal contacts on intestinal myofibroblasts isolated from the normal and inflamed intestinal tract. Matrix Biology, 2010,29(3):177-193.
doi: 10.1016/j.matbio.2009.11.004 pmid: 19931388
[46] DERYUGINA E I, ZAJAC E, ZILBERBERG L, MURAMATSU T, JOSHI G, DABOVIC B, RIFKIN D, QUIGLEY J P. LTBP3 promotes early metastatic events during cancer cell dissemination. Oncogene, 2018,37(14):1815-1829.
doi: 10.1038/s41388-017-0075-1 pmid: 29348457
[47] ZHU C, YANG Q, XU J, ZHAO W, ZHANG Z, XU D, ZHANG Y, ZHAO E, ZHAO G. Somatic mutation of DNAH genes implicated higher chemotherapy response rate in gastric adenocarcinoma patients. Journal of Translational Medicine, 2019,17(1):109.
doi: 10.1186/s12967-019-1867-6 pmid: 30944005
[48] MIYOSHI N, ISHII H, MIMORI K, TANAKA F, NAGAI K, UEMURA M, SEKIMOTO M, DOKI Y, MORI M. ATP11A is a novel predictive marker for metachronous metastasis of colorectal cancer. Oncology Reports, 2010,23(2):505-510.
pmid: 20043114
[49] ZHANG Z, FANG C, WANG Y, ZHANG J, YU J, ZHANG Y, WANG X, ZHONG J. COL1A1: A potential therapeutic target for colorectal cancer expressing wild-type or mutant KRAS. International Journal of Oncology, 2018,53(5):1869-1880.
doi: 10.3892/ijo.2018.4536 pmid: 30132520
[50] CHOPRA A, SONI S, VERMA D, KUMAR D, DWIVEDI R, VISHWANATHAN A, VISHWAKAMA G, BAKHSHI S, SETH R, GOGIA A, KUMAR L, KUMAR R. Prevalence of common fusion transcripts in acute lymphoblastic leukemia: A report of 304 cases. Asia-Pacific Journal of Clinical Oncology, 2015,11(4):293-298.
doi: 10.1111/ajco.12400 pmid: 26264145
[51] SCHMIDT K M, DIETRICH P, HACKL C, GUENZLE J, BRONSERT P, WAGNER C, FICHTNER-FEIGL S, SCHLITT H J, GEISSLER E K, HELLERBRAND C, LANG S A. Inhibition of mTORC2/RICTOR impairs melanoma hepatic metastasis. Neoplasia, 2018,20(12):1198-1208.
doi: 10.1016/j.neo.2018.10.001 pmid: 30404068
[52] ROHINI M, HARITHA MENON A, SELVAMURUGAN N. Role of activating transcription factor 3 and its interacting proteins under physiological and pathological conditions. International Journal of Biological Macromolecules, 2018,120(Pt A):310-317.
doi: 10.1016/j.ijbiomac.2018.08.107 pmid: 30144543
[53] URSIN G, BJELKE E, HEUCH I, VOLLSET S E. Milk consumption and cancer incidence: a Norwegian prospective study. British Journal of Cancer, 1990,61(3):454-459.
doi: 10.1038/bjc.1990.100 pmid: 2328215
[54] SANTANAM U, ZANESI N, EFANOV A, COSTINEAN S, PALAMARCHUK A, HAGAN J P, VOLINIA S, ALDER H, RASSENTI L, KIPPS T, CROCE C M, PEKARSKY Y. Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(27):12210-12215.
[55] BJORKMAN K, MUSTONEN H, KAPRIO T, HAGLUND C, BOCKELMAN C. Mucin 16 and kallikrein 13 as potential prognostic factors in colon cancer: Results of an oncological 92-multiplex immunoassay. Tumour Biology, 2019,41(7):1010428319860728.
[1] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[2] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[3] CHEN FengQiong, CHEN QiuSen, LIN JiaXin, WANG YaTing, LIU HanLin, LIANG BingRuoShi, DENG YiRu, REN ChunYuan, ZHANG YuXian, YANG FengJun, YU GaoBo, WEI JinPeng, WANG MengXue. Genome-Wide Identification of DIR Family Genes in Tomato and Response to Abiotic Stress [J]. Scientia Agricultura Sinica, 2022, 55(19): 3807-3821.
[4] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[5] CHEN HuiFang,HUANG QiLiang,HU ZhiChao,PAN XiaoTing,WU ZhiSheng,BAI YinShan. Expression Differences and Functional Analysis of Exosomes microRNA in Porcine Mature and Atretic Follicles [J]. Scientia Agricultura Sinica, 2021, 54(21): 4664-4676.
[6] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
[7] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[8] TAN ZhaoGuo,LI YanMei,BAI JianFang,GUO HaoYu,LI TingTing,DUAN WenJing,LIU ZiHan,YUAN ShaoHua,ZHANG TianBao,ZHANG FengTing,CHEN ZhaoBo,ZHAO FuYong,ZHAO ChangPing,ZHANG LiPing. Cloning of TaBG and Analysis of Its Function in Anther Dehiscence in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(13): 2710-2723.
[9] CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687.
[10] ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING,JiHua TANG. Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots [J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682.
[11] XING QiKai,LI LingXian,CAO Yang,ZHANG Wei,PENG JunBo,YAN JiYe,LI XingHong. Prediction and Analysis of Candidate Secreted Proteins from the Genome of Lasiodiplodia theobromae [J]. Scientia Agricultura Sinica, 2020, 53(24): 5027-5038.
[12] CHEN HuaZhi,ZHU ZhiWei,JIANG HaiBin,WANG Jie,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Comparative Analysis of MicroRNAs and Corresponding Target mRNAs in Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2020, 53(17): 3606-3619.
[13] ZHU JingJing,ZHOU XiaoLong,WANG Han,LI XiangChen,ZHAO AYong,YANG SongBai. Prediction and Verification of MicroRNAs Targeting Porcine Endoplasmic Reticulum Stress Pathway [J]. Scientia Agricultura Sinica, 2020, 53(15): 3169-3179.
[14] GENG SiHai,SHI CaiYun,FAN XiaoXue,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,CHEN HuaZhi,DU Yu,WANG XinRui,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. The Mechanism Underlying MicroRNAs-Mediated Nosema ceranae Infection to Apis mellifera ligustica Worker [J]. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204.
[15] WANG XinYue,SHI TianPei,ZHAO ZhiDa,HU WenPing,SHANG MingYu,ZHANG Li. The Analysis of PI3K-AKT Signal Pathway Based on the Proteomic Results of Sheep Embryonic Skeletal Muscle [J]. Scientia Agricultura Sinica, 2020, 53(14): 2956-5963.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!