Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (21): 3713-3732.doi: 10.3864/j.issn.0578-1752.2019.21.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and Characterization of the Expansin Gene Family in Upland Cotton (Gossypium hirsutum)

ZHANG QiYan1,LEI ZhongPing2,SONG Yin1,HAI JiangBo1,HE DaoHua1()   

  1. 1 College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi;
    2 College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2019-04-29 Accepted:2019-06-18 Online:2019-11-01 Published:2019-11-12
  • Contact: DaoHua HE E-mail:daohuahe@nwafu.edu.cn

Abstract:

【Objective】 Expansins are a group of non-enzymatic proteins found in the plant cell wall, with important roles in plant growth, development, biotic and abiotic stress responses. To date, no systematic study on the molecular characterization, phylogeny and expression profiling of the upland cotton Expansin gene family has yet been conducted. In this study, a genome-wide identification, characterization and expression analysis of the Expansin gene family in upland cotton was performed. 【Method】 The members of the Expansin gene family in the upland cotton genome were identified by using the bioinformatics tools BLAST and HMMER, and were further analysed by using a combination of the bioinformatics softwares, such as ClustalW, MEGA, MCScanX, Prot Param, MEME, SignalP, Euk-mPLoc, Fancy Gene and DnaSP. The spatiotemporal expression patterns of the upland cotton Expansin gene family, and the differential expression of some Expansin homoeologs during the different stages of growth were determined by publicly available RNA-seq data. The expression patterns of some candidate Expansin genes were further validated by qRT-PCR. 【Result】 In the allotetraploid upland cotton, 72 expainsin-coding genes are identified, which is approximately twice as many as in the two diploid cotton species (Gossypium arboretum and G. raimondii), and these Expansin-coding genes are grouped into four subfamilies: 46 α-expansins (EXPAs), 8 β-expansins (EXPBs), 6 Expansin-like As (EXLAs), and 12 Expansin-like Bs (EXLBs). Except the two chromosomes GhA02 and GhD06, Expansin-coding genes are unevenly distributed across the other chromosomes ranging from 2 to 4, while the chromosomes GhA08 and GhD08 harbors 5 genes and 8 genes, respectively. Phylogenetic tree reveals that the members of the same subfamily are clustered together. In most cases, four Expansin members from the four (sub-)genomes of three cotton species (G. hirsutum, G. arboretum and G. raimondii) tends to cluster together within a given clade, for example, EXPA subfamily members Cotton_A_28454/Gh_A03G0885/Gh_D02G1269/Gorai.005G142200 which are located on collinear blocks are clustered into a clade. The computational prediction tool shows that all the Expansin proteins are predicted to be extracellular. The exon-intron structure analysis reveals that the upland cotton Expansin-coding genes typically consist of 3-5 exons interrupted by multiple introns, share an evolutionarily conserved exon-intron structure (consistent with the diversity of amino acid sequences), and have codon usage bias. RNA-seq data shows that different Expansin-coding genes are expressed in a stage- and tissue-specific manner during the developmental stages. For example, transcripts for GhEXPA19A and GhEXPA19D are highly abundant in the fire 10 days post anthesis (DPA) and 20 DPA when compared with other Expansin-coding genes. GhEXPA24D is highly expressed in few tissues, including cotyledons, new leaves, old leaves and bracts. Homoeologous genes exhibits different expression profiles, indicating the functional divergence and complementation. The qRT-PCR results are consistent with the RNA-seq data with the same trends for the expression of each Expansin-coding gene. For instance, GhEXLA3A and GhEXLA3D are highly expressed during the fiber elongation stage. GhEXPA19D and GhEXLA2D are highly expressed in the ovule at 3 DPA.【Conclusion】 The upland cotton genome contains 72 Expansin-coding genes which encode protein exhibiting the same structural diversity and evolutionary conservation as the coding DNA sequences of expansins, and which display diverse and dynamic expression patterns, implying functional conservation and divergence among the members of cotton Expansin genes.

Key words: G. hirsutum, Expansin, gene family, bioinformatics, gene expression

Table 1

A list of primers used for qRT-PCR analyses"

基因名称Gene name 正向引物Forward primers (5′-3′) 反向引物Reverse primers (5′-3′)
GhEXLA1A TCACTGACATTGCAAAAGAAGG GAACACCATTGATTGTGTAGCA
GhEXLA3A GTGATTACAGCCATTGGTGATG CCAAAACAAAAGCTCTCAAAGACTC
GhEXLA2D TAACATGCAAAGAAAGTGAGGC AATCCATGGTTTTCCGGAAATG
GhEXLA3D CTTTCGGGTCACTCAAAAATGT AATGCTTCTCAACATCCCAAAC
GhEXPA06A CTTTCGGGTCACTCAAAAATGT AATGCTTCTCAACATCCCAAAC
GhEXPA16A GAATCGTCCCCATTTCATTCAG CACCACCAACATTTGTAGTGAG
GhEXPA25A CACCATCATTGTAACTGCTACG ATTTTGAACTTAACACCACCGG
GhEXPA06D GCACTGCTTTGTTTAACAATGG ATTAGGGAGAGCATTGTTTGGA
GhEXPA17D TTGTTGGGTTTTCTAGCAATGG CTGCAGTATTTGTTCCATAGCC
GhEXPA19D GGAAACCTGTACAGTCAAGGTA GTTATGGTTCGACTAATGCACC
GhEXPA20D CCTAACTTAGCATTGTCCAACG TTTCTTCATGCAGGGTACTCTT
GhEXPA23D CGGCCACTCATACTTTAACTTG CTTCGTATGTTTGTCCGAACTG
GhEXPA24D GAACGAAGAAAACACCCATCTT CTCTTCAGCCAAAGCATCTTAC
UBQ7 GAAGGCATTCCACCTGACCAAC CTTGACCTTCTTCTTCTTGTGCTTG

Table 2

Genome-wide identification of Expansin gene family in G. hirsutum"

基因
Gene
序列号
Phytozome ID
染色体位置
Location
基因长度Length of gene (bp) 外显子个数Number of exon 氨基酸个数 Number of amino acids 信号
肽长度Signal peptide (aa)
分子量Molecular weight (kD) 理论等电点Theoretical pI 蛋白不稳定指数Instability index 脂溶指数Aliphatic index 总平均
疏水性GRAVY
GhEXPA03A Gh_A01G0477 GhA01: 7603263..7604881(+) 1619 3 256 27 28.40 9.90 43.09 67.85 -0.118
GhEXPA06A Gh_A03G0885 GhA03: 56794871..56796095(-) 1225 3 248 20 26.59 9.30 32.13 62.94 -0.140
GhEXPA16A Gh_A05G2385 GhA05: 29485491..29486507(-) 1017 3 253 25 26.94 7.53 30.72 59.8 -0.166
GhEXPA22-1A Gh_A05G3210 GhA05: 83889906..83890791(+) 886 2 262 22 29.18 9.25 20.09 68.47 -0.167
GhEXPA22-2A Gh_A05G3211 GhA05: 83905450..83906383(+) 934 2 278 23 30.96 9.24 18.98 74.64 0.008
GhEXPA21A Gh_A05G3493 GhA05: 90545166..90546162(+) 997 3 253 25 27.07 6.78 31.44 65.57 -0.066
GhEXPA14A Gh_A06G0018 GhA06: 82222..83190(+) 969 3 255 23 27.38 9.15 26.88 67.76 -0.015
GhEXPA01A Gh_A07G1208 GhA07: 26997118..26998121(-) 1004 3 258 NO 27.92 9.70 38.52 65.81 -0.140
GhEXPA02A Gh_A07G1881 GhA07: 74202971..74204340(-) 1370 3 253 21 27.52 9.40 38.41 77.79 -0.025
GhEXPA05A Gh_A08G1595 GhA08: 94460350..94461323(+) 974 3 267 NO 29.21 8.38 30.56 65.43 0.045
GhEXPA07A Gh_A09G0135 GhA09: 3242057..3243766(+) 1710 3 256 21 28.16 9.22 41.30 68.52 -0.160
GhEXPA08A Gh_A09G1727 GhA09: 70679591..70680590(-) 1000 3 265 28 28.73 8.59 32.02 60.79 -0.005
GhEXPA20A Gh_A10G1606 GhA10: 86603436..86604481(-) 1046 3 253 25 27.00 7.55 33.15 62.89 -0.118
GhEXPA19A Gh_A10G2323 scaffold2672_A10: 149124..150059(-) 936 3 258 30 27.94 8.36 29.01 62.83 -0.090
GhEXPA09A Gh_A11G0187 GhA11: 1736060..1737333(+) 1274 4 265 NO 29.26 9.42 29.16 66.26 -0.040
GhEXPA10A Gh_A11G0964 GhA11: 10482352..10483322(-) 971 3 258 NO 28.42 9.43 33.85 66.98 -0.229
GhEXPA11A Gh_A11G2155 GhA11: 71713430..71714457(-) 1028 3 247 20 26.39 9.32 38.00 69.55 -0.027
GhEXPA13A Gh_A12G1619 GhA12: 77299134..77300408(-) 1275 3 248 20 26.62 9.19 31.75 69.6 -0.030
GhEXPA23A Gh_A13G0050 GhA13: 540164..541646(+) 1483 3 254 26 27.28 8.41 33.34 63.39 -0.134
GhEXPA24A Gh_A13G0672 GhA13: 20543406..20544365(-) 960 3 248 17 26.26 9.28 32.55 67.3 -0.111
GhEXPA25A Gh_A13G0719 GhA13: 23714615..23715449(+) 835 2 254 27 28.23 8.33 27.99 75.24 -0.061
GhEXPA26A Gh_A13G2059 GhA13: 79891203..79892227(+) 1025 3 249 23 26.93 8.36 29.07 68.59 -0.064
GhEXPA03D Gh_D01G0492 GhD01: 5972132..5973758(+) 1627 3 252 NO 27.98 9.90 39.24 70.48 -0.078
GhEXPA06D Gh_D02G1269 GhD02: 41719506..41720746(-) 1241 3 267 NO 28.95 9.78 35.24 68.31 -0.104
基因
Gene
序列号
Phytozome ID
染色体位置
Location
基因长度Length of gene (bp) 外显子个数Number of exon 氨基酸个数 Number of amino acids 信号
肽长度Signal peptide (aa)
分子量Molecular weight (kD) 理论等电点Theoretical pI 蛋白不稳定指数Instability index 脂溶指数Aliphatic index 总平均
疏水性GRAVY
GhEXPA22D Gh_D04G0396 GhD04: 6280383..6281268(-) 886 2 262 23 29.21 9.18 20.03 68.47 -0.143
GhEXPA21D Gh_D04G1924 scaffold3943_D04: 15458..16477(-) 1020 3 253 25 27.08 8.02 32.54 65.57 -0.065
GhEXPA15D Gh_D05G2433 GhD05: 24370173..24371133(+) 961 3 255 23 27.45 8.88 29.40 67.02 -0.077
GhEXPA16D Gh_D05G2650 GhD05: 27568523..27569536(-) 1014 3 252 24 26.92 7.53 30.80 60.79 -0.130
GhEXPA17D Gh_D05G2934 GhD05: 34837918..34838746(-) 829 2 253 29 27.21 9.04 31.30 64.78 -0.122
GhEXPA01D Gh_D07G1309 GhD07: 20886446..20887308(-) 863 3 207 NO 22.54 9.90 35.72 67.83 -0.247
GhEXPA02D Gh_D07G2095 GhD07: 51074809..51076181(-) 1373 3 253 21 27.49 9.30 38.37 76.25 -0.044
GhEXPA04D Gh_D08G1362 GhD08: 44540800..44541775(-) 976 254 23 28.01 9.31 35.94 67.68 -0.187
GhEXPA05D Gh_D08G1905 GhD08: 56979061..56980034(+) 974 3 267 NO 29.32 8.08 29.33 66.14 0.037
GhEXPA07D Gh_D09G0128 GhD09: 3266295..3268335(+) 2041 4 303 NO 33.80 9.57 43.94 72.38 -0.164
GhEXPA08D Gh_D09G1840 GhD09: 45961349..45962346(-) 998 3 265 28 28.74 8.38 34.27 59.32 -0.006
GhEXPA19D Gh_D10G1145 GhD10: 18608318..18609246(+) 929 3 258 30 27.95 8.05 29.69 62.44 -0.106
GhEXPA20D Gh_D10G1861 GhD10: 52037144..52038189(-) 1046 3 253 25 27.07 7.55 33.33 65.97 -0.085
GhEXPA09D Gh_D11G0198 GhD11: 1728429..1729700(+) 1272 4 265 NO 29.17 9.41 28.62 64.83 -0.051
GhEXPA10D Gh_D11G1115 GhD11: 10243558..10244528(-) 971 3 258 NO 28.42 9.43 33.85 66.98 -0.229
GhEXPA11D Gh_D11G2459 GhD11: 49988580..49989605(-) 1026 3 247 20 26.35 9.30 36.98 69.15 -0.039
GhEXPA13D Gh_D12G1759 GhD12: 49966434..49967705(-) 1272 3 248 20 26.77 9.19 34.40 69.19 -0.016
GhEXPA23D Gh_D13G0060 GhD13: 622156..623599(+) 1444 3 254 26 27.36 8.61 29.33 58.78 -0.198
GhEXPA24D Gh_D13G0786 GhD13: 13599569..13600499(-) 931 3 248 17 26.33 9.30 31.82 65.69 -0.111
GhEXPA25D Gh_D13G0843 GhD13: 15386343..15387204(+) 862 2 254 27 28.19 8.53 28.55 73.7 -0.042
GhEXPA26D Gh_D13G2460 GhD13: 60483670..60484694(+) 1025 3 249 23 26.86 8.36 29.68 68.59 -0.067
GhEXPA17A Gh_Sca005793G01 scaffold5793: 5707..6535(+) 829 2 253 29 27.17 8.88 29.73 68.62 -0.076
GhEXPB2A Gh_A03G2139 scaffold729_A03: 85394..86864(+) 1471 4 267 26 29.31 8.63 35.29 75.96 -0.247
GhEXPB1A Gh_A08G1231 GhA08: 82800735..82801892(-) 1158 4 273 NO 28.60 5.19 37.99 70.07 0.000
GhEXPB3A Gh_A12G0861 GhA12: 57318819..57321212(-) 2394 5 256 NO 26.80 4.88 35.29 74.69 -0.083
基因
Gene
序列号
Phytozome ID
染色体位置
Location
基因长度Length of gene (bp) 外显子个数Number of exon 氨基酸个数 Number of amino acids 信号
肽长度Signal peptide (aa)
分子量Molecular weight (kD) 理论等电点Theoretical pI 蛋白不稳定指数Instability index 脂溶指数Aliphatic index 总平均
疏水性GRAVY
GhEXPB4A Gh_A12G1270 GhA12: 67653347..67655408(-) 2062 4 267 27 29.12 8.71 31.28 77.75 -0.137
GhEXPB2D Gh_D02G1839 GhD02: 61451593..61453105(+) 1513 4 275 34 30.25 8.98 34.08 76.22 -0.242
GhEXPB1D Gh_D08G1516 GhD08: 48665574..48666719(-) 1146 4 273 NO 28.61 5.03 33.99 69.71 -0.015
GhEXPB3D Gh_D12G0941 GhD12: 34578510..34580023(-) 1514 3 180 NO 18.92 5.03 30.62 83.44 0.032
GhEXPB4D Gh_D12G1393 GhD12: 43009111..43011170(-) 2060 4 267 27 29.09 8.71 31.74 76.29 -0.155
GhEXLA1A Gh_A01G1439 GhA01: 89104034..89105296(+) 1263 5 259 17 28.02 8.26 34.36 83.28 0.000
GhEXLA2A Gh_A03G2186 scaffold739_A03: 13564..15228(-) 1665 4 260 20 28.26 8.24 35.24 82.92 -0.029
GhEXLA3A Gh_A04G1065 GhA04: 60713119..60715274(+) 2156 5 259 18 28.10 8.59 29.34 81.39 -0.019
GhEXLA1D Gh_D01G1679 GhD01: 52783404..52784664(+) 1261 5 259 17 28.01 8.26 33.65 81.78 0.001
GhEXLA2D Gh_D02G2280 GhD02: 66566105..66567707(+) 1603 4 260 20 28.21 8.24 33.56 81.42 -0.050
GhEXLA3D Gh_D04G1670 GhD04: 48878933..48881117(+) 2185 5 259 18 28.13 8.59 29.82 80.27 -0.027
GhEXLB1A Gh_A03G0046 GhA03: 643878..645995(+) 2118 4 250 24 27.75 6.09 28.76 74.12 -0.153
GhEXLB2A Gh_A08G1444 GhA08: 90327706..90329016(-) 1311 5 256 24 27.85 4.81 31.94 82.62 -0.099
GhEXLB3A Gh_A08G1477 GhA08: 90994259..90995358(+) 1100 4 249 25 27.51 6.40 29.96 77.87 -0.139
GhEXLB4A Gh_A08G1478 GhA08: 91000911..91001970(+) 1060 4 248 NO 27.67 9.00 23.00 80.52 -0.158
GhEXLB6A Gh_A12G1923 GhA12: 81945320..81946466(-) 1147 5 249 21 27.08 4.65 35.69 84.98 -0.109
GhEXLB1D Gh_D03G1609 GhD03: 46020990..46023128(-) 2139 4 250 24 27.69 5.64 26.36 71.76 -0.174
GhEXLB2D Gh_D08G1739 GhD08: 53651905..53653218(-) 1314 5 256 24 27.90 4.66 32.35 82.62 -0.099
GhEXLB3D Gh_D08G1774 GhD08: 54163295..54164384(+) 1090 4 249 25 27.36 6.06 31.21 79.08 -0.113
GhEXLB4-1D Gh_D08G1775 GhD08: 54170354..54171413(+) 1060 4 248 NO 27.67 9.00 23.00 80.52 -0.158
GhEXLB4-2D Gh_D08G1776 GhD08: 54175086..54176147(+) 1062 4 248 25 27.55 8.96 25.58 80.52 -0.147
GhEXLB5D Gh_D08G1777 GhD08: 54180358..54181440(+) 1083 4 250 24 27.57 6.12 28.08 77.96 -0.104
GhEXLB6D Gh_D12G2103 GhD12: 54022894..54024050(-) 1157 5 249 21 27.12 4.65 36.35 85.38 -0.098

Table 3

Number of Expansin family members identified in various organisms"

物种Species EXPA EXPB EXLA EXLB 总计Total 参考文献Reference
陆地棉G. hirsutum 46 8 6 12 72 本研究This study
亚洲棉G. arboreum 26 4 3 6 39 本研究This study
雷蒙德氏棉G. raimondii 26 4 3 6 39 [46]
黄瓜Cucumis sativus 21 3 9 2 35 [48]
拟南芥Arabidopsis thaliana 26 6 3 1 36 [6]
水稻Oryza sativa 34 19 4 1 58 [6]
玉米Zea mays 36 48 4 0 88 [7]
大白菜B. rapa (Pekinensis) 39 9 2 3 53 [50]
杨树Populus trichocarpa 27 3 2 4 36 [51]
葡萄Vitis vinifera 20 4 1 4 29 [10]
大豆Glycine max 49 9 2 5 75 [8]
苹果Malus×Domestica (Borkh) 34 1 2 4 41 [52]
菜豆Phaseolus vulgaris 25 6 0 5 36 [53]
苜蓿Medicago truncatula 16 1 0 1 18 [53]
小粒碗藓Physcomitrella patens 27 7 0 0 34 [54]
共同祖先Last common ancestor 10—12 2 1 2 15—17 [6]

Fig. 1

Phylogenetic tree (left), exon-intron gene structures of the Expansin genes (middle), and schematic diagram of conserved motif (right) for the Expansin protein in Gossypium"

Fig. 2

Chromosome location and collinearity between subgenome of G. hirsutum Expansin genes"

Fig. 3

Sequence logo of conserved motifs in the family of Expansin proteins from Gossypium."

Table 4

Relative Frequency of Synonymous Codon (RFSC) value of Expansin genes in G. hirsutum"

aa Cod Freq aa Cod Freq aa Cod Freq aa Cod Freq
F UUU 0.95 S UCU 1.35 Y UAU 1.06 C UGU 0.99
UUC 1.05 UCC 0.94 UAC 0.94 UGC 1.01
L UUA 0.77 UCA 1.06 * UAA 1.13 * UGA 0.75
UUG 1.54 UCG 0.49 UAG 1.13 W UGG 1
CUU 1.22 P CCU 1.69 H CAU 1.26 R CGU 0.54
CUC 1.05 CCC 0.73 CAC 0.74 CGC 0.5
CUA 0.64 CCA 1.24 Q CAA 1.2 CGA 0.63
CUG 0.78 CCG 0.34 CAG 0.8 CGG 0.29
I AUU 1.3 T ACU 1.28 N AAU 1.02 S AGU 0.86
AUC 1.05 ACC 1.14 AAC 0.98 AGC 1.31
AUA 0.64 ACA 1.33 K AAA 1.11 R AGA 1.8
M AUG 1 ACG 0.26 AAG 0.89 AGG 2.24
V GUU 1.42 A GCU 1.6 D GAU 1.18 G GGU 1.23
GUC 0.8 GCC 0.91 GAC 0.82 GGC 0.84
GUA 0.62 GCA 1.19 E GAA 1.18 GGA 1.2
GUG 1.16 GCG 0.3 GAG 0.82 GGG 0.73

Fig. 4

Expression analysis of Expansin genes in diverse tissues and different stages of G. hirsutum"

Fig. 5

Validation of the expression patterns of thirteen selected GhExpansin gene by qRT-PCR"

[1] SMART L B, VOJDANI F, MAESHIMA M, WILKINS T A . Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated. Plant Physiology, 1998,116(4):1539-1549.
[2] MCQUEEN-MASON S, DURACHKO D M, COSGROVE D J . Two endogenous proteins that induce cell wall extension in plants. The Plant Cell, 1992,4(4):1425-1433.
[3] COSGROVE D J, LI Z C . Role of expansin in cell enlargement of oat coleoptiles (analysis of developmental gradients and photocontrol). Plant Physiology, 1993,103(4):1321-1328.
[4] COSGROVE D J . Loosening of plant cell walls by expansions. Nature, 2000,407(6802):321-326.
[5] COSGROVE D J . Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 2005,6(11):850-861.
[6] SAMPEDRO J, COSGROVE D J . The expansin superfamily. Genome Biology, 2005,6(12):242.
[7] ZHANG W, YAN H W, CHEN W J, LIU J Y, JIANG C P, JIANG H Y, ZHU S W, CHENG B J . Genome-wide identification and characterization of maize expansin genes expressed in endosperm. Molecular Genetics Genomics, 2014,289(6):1061-1074.
[8] ZHU Y, WU N, SONG W, YIN G, QIN Y, YAN Y, HU Y . Soybean ( Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biology, 2014,14(1):1-19.
[9] LU Y E, LIU L F, WANG X, HAN Z H, OUYANG B, ZHANG J H, LI H X . Genome-wide identification and expression analysis of the expansin gene family in tomato. Molecular Genetics and Genomics, 2016,291(2):597-608.
[10] DAL SANTO S, VANNOZZI A, TORNIELLI G B, FASOLI M, VENTURINI L, PEZZOTTI M, ZENONI S . Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics. PLoS ONE, 2013,8(4):e62206.
[11] CHOI D, LEE Y, CHO H T, KENDE H . Regulation of expansin gene expression affects growth and development in transgenic rice plants. The Plant Cell, 2003,5(6):1386-1398.
[12] YAN A, WU M J, YAN L M, HU R, ALI I, GAN Y B . AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. PLoS ONE, 2014,9(1):e85208.
[13] CHO H T, COSGROVE D J . Regulation of root hair initiation and expansin gene expression in Arabidopsis. The Plant Cell, 2002,14(12):3237-3253.
[14] LEE D K, AHN J H, SONG S K, CHOI Y D . Expression of an expansin gene is correlated with root elongation in soybean. Plant Physiology, 2003,131(3):985-997.
[15] SHIN J H, JEONG D H, PARK M C, AN G . Characterization and transcriptional expression of the α-expansin gene family in rice. Molecules and Cells, 2005,20(2):210-218.
[16] CHO H T, COSGROVE D J . Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2000,97(17):9783-9788.
[17] KELLER E, COSGROVE D J . Expansins in growing tomato leaves. The Plant Journal, 1995,8(6):795-802.
[18] MADOKA G M, MELLEROWICZ E J, ABE H, SCHRADER J, WINZÉLL A, STERKY F, BLOMQVIST K, MCQUEEN-MASON S, TEERI T T, SUNDBERG B.Expansins abundant in secondary xylem belong to subgroup a of the α-expansin gene family. Plant Physiology, 2004,135(3):1552-1564.
[19] 王桂凤, 施季森 . 杉木木材形成过程中差异表达基因的鉴定与功能分析[D]. 南京: 南京林业大学, 2008.
WANG G F, SHI J S , Identification and functional analysis of differentially expressed genes in differentiating xylem of Chinese fir(Cunninghamia lanceolata) by suppression subtractive hybridization[D]. Nanjing: Nanjing Forestry University.
[20] COSGROVE D J . New genes and new biological roles for expansins. Current Opinion in Plant Biology, 2000,3(1):73-78.
[21] COSGROVE D J, BEDINGER P, DURACHKO D M . Group I allergens of grass pollen as cell wall-loosening agents. Proceedings of the National Academy of Sciences of the United States of America, 1997,94(12):6559-6564.
[22] ROSE J K, BENNETT A B . Cooperative disassembly of the cellulose-xyoglucan network of plant cell wall: Parallels between cell expansion and fruit ripening. Trends in Plant Science, 1999,4(5):176-183.
[23] FIGUEROA C R, PIMENTEL P, DOTTO M C, CIVELLO P M ,MARTÍNEZ G A,HERRERA R,MOYA-LEÓN M A. Expression of five expansin genes during softening of Fragaria chiloensis fruit: Effect of auxin treatment. Postharvest Biology and Technology, 2009,53(1):51-57.
[24] JIANG F L, LOPEZ A, JEON S, DE FREITAS, SERGIO TONETTO, YU Q H, WU Z, JOHN M. LABAVITCH J M, TIAN S K, POWELL, MITCHAM E . Disassembly of the fruit cell wall by the ripening- associated polygalacturonase and expansin influences tomato cracking. Horticulture Research, 2019,6(17).
[25] WU Y J, THORNE E T, SHARP R E, COSGROVE D J . Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiology, 2001,126(4):1471-1479.
[26] YANG L, ZHENG B, MAO C, QI X, LIU F, WU P . Analysis of transcripts that are differentially expressed in three sectors of the rice root system under water deficit. Molecular Genetic and Genomics, 2004,272(4):433-442.
[27] VESELOV D S, SABIRZHANOVA I B, SABIRZHANOV B E, CHEMERIS A V . Changes in expansin gene expression, IAA content, and extension growth of leaf cells in maize plants subjected to salinity. Russian Journal of Plant Physiology, 2008,55(1):101-106.
doi: 10.1134/S1021443708010123
[28] PITANN B , ZÖRB C, MÜHLING K H. Comparative proteome analysis of maize ( Zea mays L.) expansins under salinity. Journal of Plant Nutrition and Soil Science, 2009,172(1):75-77.
[29] XU J C, TIAN J, BELANGER F C, HUANG B . Identification and characterization of an expansin gene AsEXP1 associated with heat tolerance in C3 Agrostis grass species. Journal of Experimental Botany, 2007,58(13):3789-3796.
[30] DING X H, CAO Y L, HUANG L L, ZHAO J, XU C G, LI X H, WANG S P . Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independentbasal immunity in rice. The Plant Cell, 2008,20(1):228-240.
[31] HAIGLER C H, BETANCUR L, STIFF M R, TUTTLE J R . Cotton fiber: A powerful single-cell model for cell wall and cellulose research. Front Plant Science, 2012,3(104):1-7.
[32] HARMER S, ORFORD S, TIMMIS J . Characterisation of six a-expansin genes in Gossypium hirsutum(upland cotton). Molecular Genetics and Genomics, 2002,268(1):1-9.
[33] 琚铭, 王海棠, 王立科, 李飞飞, 吴慎杰, 朱华玉, 张天真, 郭旺珍 . 棉纤维发育相关基因时空表达与纤维品质的关联分析. 作物学报, 2009,35(7):1217-1228.
JU M, WANG H T, WANG L K, LI F F, WU S J, ZHU H Y, ZHANG T Z, GUO W Z . Associated analysis between temporal and spatial expression of fiber development genes and fiber quality. Acta Agronomica Sinica, 2009,35(7):1217-1228. (in Chinese)
[34] ORFORD S J, TIMMIS J N . Specific expression of an expansin gene during elongation of cotton fibers. Biochimica et Biophysica Acta, 1998,1398(3):342-346.
[35] HARMER S E, ORFORD S J, TIMMIS J N . Characterization of six alpha-expansin genes in Gossypium hirsutum( upland cotton). Molecular Genetics and Genomics, 2002,268(1):1-9.
[36] XU B, GOU J Y, LI F G, SHANGGUAN X X, ZHAO B, YANG C Q, WANG L J . A cotton BURP domain protein interacts with alpha- expansin and their co-expression promotes plant growth and fruit production. Molecular Plant, 2013,6(3):945-958.
doi: 10.1093/mp/sss112
[37] LI Y, TU L L, PETTOLINO F A, JI S M, HAO J, YUAN D J, DENG F L, WANG Q, LLEWWLLYN D J, ZHANG X L . GbEXPATR, a species-specific expansin, enhances cotton fiber elongation through cell wall restructuring. Plant Biotechnology Journal, 2016,14(3):951-963.
[38] BAJWA K S, SHAHID A A, RAO A Q, BASHIR A, AFTAB A, HUSNAIN T . Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micron aire value in cotton. Frontiers in Plant Science, 2015,10(3389):838.
[39] WANG K B, WANG Z W, LI F G, YE W W, WANG J Y, SONG G L, YUE Z, CONG L, SHANG H H, SHILIN ZHU, ZOU C S, LI Q, YUAN Y L, LU C R, WEI H L, GOU C Y, ZHENG Z Q, YIN Y, ZHANG X Y, LIU K, WANG B, SONG C, SHI N, KOHEL R J, PERCY R G, YU J Z, ZHU Y X, WANG J, YU S X . The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics, 2012,44(10):1098-1103.
[40] PATERSON A H, WENDEL J F, GUNDLACH H, GUO H, JENKINS J, JIN D, LLEWELLYN D, SHOWMAKER K C, SHU S, UDALL J, YOO M J, BYERS R, CHEN W, DORON-FAIGENBOIM A, DUKE M V, GONG L, GRIMWOOD J, GROVER C, GRUPP K, HU G, LEE T H, LI J, LIN L, LIU T, MARLER B S, PAGE J T, ROBERTS A W, ROMANEL E, SANDERS W S, SZADKOWSKI E, TAN X, TANG H, XU C, WANG J, WANG Z, ZHANG D, ZHANG L, ASHRAFI H, BEDON F, BOWERS J E, BRUBAKER C L, CHEE P W, DAS S, GINGLE A R, HAIGLER C H, HARKER D, HOFFMANN L V, HOVAV R, JONES D C, LEMKE C, MANSOOR S, RAHMAN M U, RAINVILLE L N, RAMBANI A, REDDY U K, RONG J K, SARANGA Y, SCHEFFLER B E, SCHEFFLER J A, STELLY D M, TRIPLETT B A, VAN DEYNZE A, VASLIN M F, WAGHMARE V N, WALFORD S A, WRIGHT R J, ZAKI E A, ZHANG T, DENNIS E S, MAYER K F, PETERSON D G, ROKHSAR D S, WANG X, SCHMUTZ J . Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibers. Nature, 2012,492(7429):423-427.
[41] LI F G, FAN G Y, WANG K B, SUN F M, YUAN Y L, SONG G L, LI Q, MA Z Y, LU C R, ZOU C S, CHEN W B, LIANG X M, SHANG H H, LIU W Q, SHI C C, XIAO G H, GOU C Y, YE W W, XU X, ZHANG X Y, WEI H L, LI Z F, ZHANG G Y, WANG J Y, LIU K, KOHEL R J, PERCY R G, YU J Z, ZHU Y X, WANG J ,YU S X.Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 2014, 3( 6):567-572.
[42] LI F G, FAN G Y, LU C R, XIAO G H, ZOU C S, KOHEL R J, MA Z, SHANG H H, MA X F, WU J Y, LIANG X M, HUANG G, PERCY R G, LIU K, YANG W H, CHEN W B, DU X M, SHI C C, YUAN Y Y, YE W W, LIU X, ZHANG X Y, LIU W Q, WEI H L, WEI S J, HUANG G D, ZHANG X L, ZHU S J, ZHANG H, SUN F M, WANG X F, LIANG J, WANG J H, HE Q, HUANG L H, WANG J, CUI J J, SONG G L, WANG K B, XU X, YU J Z, ZHU Y X, YU S X . Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 2015,33(5):524-530.
[43] ZHANG T Z, HU Y, JIANG W K, FANG L, GUAN X Y, CHEN J D, ZHANG J B, SASKI C A, SCHEFFLER B E, STELLY D M ,HULSE-KEMP A M, WAN Q, LIU B L, LIU C X, WANG S, PAN M Q, WANG Y K, WANG A W, YE W X, CHANG L J, ZHANG W P, SONG Q X, KIRKBRIDE R C, CHEN X Y, DENNIS E, LLEWELLYN D J, PETERSON D G, THAXTON P, JONES D C, WANG Q, XU X Y, ZHANG H, WU H T, ZHOU L, MEI G F, CHEN S Q, TIAN Y, XIANG D, LI X H, DING J, ZUO Q Y, TAO L N, LIU Y C, LI J, LIN Y, HUI Y Y, CAO Z S, CAI C P, ZHU X F, JIANG Z, ZHOU B L, GUO W Z, LI R Q, CHEN Z J. equencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015,33(5):531-537.
[44] WANG M J, TU L L, YUAN D J, ZHU D, SHEN C, LI J Y, LIU F Y, PEI L L, WANG P C, ZHAO G N, YE Z X, HUANG H, YAN F L, MA Y Z, ZHANG L, LIU M, YOU J Q, YANG Y C, LIU Z P, HUANG F, LI B Q, QIU P, ZHANG Q H, ZHU L F, JIN S X, YANG X Y, MIN L, LI G L, CHEN L L, ZHENG H K, LINDSEY K, LIN Z X, UDALL J A, ZHANG X L . Reference genome sequences of two cultivated allotetraploid cottons,Gossypium hirsutum and Gossypium barbadense. Nature Genetics, 2019,51(2):224-229.
[45] HU Y, CHEN J D, FANG L, ZHANG Z Y, MA W, NIU Y C, JU L Z, DENG J Q, ZHAO T, LIAN J M, BARUCH K, FANG D, LIU X, RUAN Y L, RAHMAN M, HAN J L, WANG K, WANG Q, WU H T, MEI G F, ZANG Y H, HAN Z G, XU C Y, SHEN W J, YANG D F, SI Z F, DAI F, ZOU L F, HUANG F, BAI Y L, ZHANG Y G, BRODT A, BEN-HAMO H, ZHU X F, ZHOU B L, GUAN X Y, ZHU S J, CHEN X Y, ZHANG T Z . Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics, 2019,51:739-748.
[46] 雷忠萍, 贺道华, 海江波, 邢宏宜, 赵俊兴, 程雪妮 . 雷蒙德氏棉扩展蛋白基因家族的鉴定和特征分析. 华北农学报, 2016,31(6):44-55.
LEI Z P, HE D H, HAI J B, XING H X, ZHAO J X, CHENG X N . Genome-wide identification and characterization of expansin gene family inGossypium raimondii. Acta Agriculturae Boreall-Sinica, 2016,31(6):44-55. (in Chinese)
[47] HE D H, LEI Z P, TANG B S, XING H Y, ZHAO J X, JING Y L . Identification and analysis of the TIFY gene family in Gossypium raimondii. Genetics and Molecular Research, 2015,14(3):10119-10138.
[48] 郝西, 理向阳, 腊贵晓, 代丹丹, 杨铁钢 . 黄瓜扩展蛋白基因家族的鉴定与生物信息学分析. 分子植物育种, 2015,13(10):2280-2289.
HAO X, LI X Y, LA G X, DAI D D, YANG T G . Identification and bioinformatic analysis of the expansin gene family in cucumber. Molecular Plant Breeding, 2015,13(10):2280-2289. (in Chinese)
[49] 付海辉, 辛培尧, 许玉兰, 刘岩, 韦援教, 董娇, 曹有龙, 周军 . 几种经济植物UFGT基因的生物信息学分析. 基因组学与应用生物学, 2010,30(1):92-102.
FU H H, XIN P R, XU Y L, LIU Y, WEI Y J, DONG J, CAO Y L, ZHOU J . Bioinformatics analysis of UFGT gene from several economic plants. Genomics and Applied Biology, 2010,30(1):92-102. (in Chinese)
[50] KRISHNAMURTHY P, HONG J K, KIM J A, JEONG M J, LEE Y H, LEE S I . Genome-wide analysis of the expansin gene superfamily reveals Brassica rapa-specific evolutionary dynamics upon whole genome triplication. Molecular Genetics and Genomics, 2015,290(2):521-530.
[51] 李昊阳, 施杨, 丁亚娜, 徐吉臣 . 杨树扩展蛋白基因家族的生物信息学分析. 北京林业大学学报, 2014,36(2):59-67.
LI H Y, SHI Y, DING Y N, XU J C . Bioinformatics analysis of expansin gene family in poplar genome. Journal of Beijing Forestry University, 2014,36(2):59-67. (in Chinese)
[52] ZHANG S Z, XU R R, GAO Z, CHEN C T, JIANG Z S, SHU H R . A genome-wide analysis of the expansin genes in Malus × Domestica. Molecular Genetics and Genomics, 2014,289(2):225-236.
[53] ZHU Y, WU N N, SONG W L, YIN G J, QIN Y J, YAN Y M, HU Y K . Soybean(Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies.BMC Plant Biology, 2014,14(1):1-19.
[54] CAREY R E, COSGROVE D J . Portrait of the expansin superfamily in Physcomitrella patens: Comparisons with angiosperm expansins. Annals of Botany, 2007,99(6):1131-1141.
[55] CHOTHIA C, GOUGH J, VOGEL C, TEICHMANN S A . Evolution of the protein repertoire. Science, 2003,300(5626):1701-1703.
[56] RUAN Y L, LLEWELLYN D J, FURBANK R T . The control of single-celled cotton fiber elongation by developmental lyreversible gating of plasmodesmata and coordinated expression of sucrose and K + transporters and expansin . The Plant Cell, 2001,13(1):47-60.
[57] INDRAIS E , CHEEMA H M N, SAMAD A, BASHIR A. Temporal expression analysis and cloning of cotton (Gossypium hirsutum) fiber genes. International Journal of Agriculture and Biology, 2011,13(1):89-94.
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[4] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[5] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[6] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[7] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[8] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[9] CHEN FengQiong, CHEN QiuSen, LIN JiaXin, WANG YaTing, LIU HanLin, LIANG BingRuoShi, DENG YiRu, REN ChunYuan, ZHANG YuXian, YANG FengJun, YU GaoBo, WEI JinPeng, WANG MengXue. Genome-Wide Identification of DIR Family Genes in Tomato and Response to Abiotic Stress [J]. Scientia Agricultura Sinica, 2022, 55(19): 3807-3821.
[10] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[11] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[12] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[13] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[14] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[15] ZHAO Le,YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu. Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats [J]. Scientia Agricultura Sinica, 2021, 54(4): 845-854.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!