Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (15): 2939-2951.doi: 10.3864/j.issn.0578-1752.2015.15.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of Nitrogen Application Rate on Agronomic, Photosynthetic Characteristics and Yield of Spring Foxtail Millet

ZHANG Ai-ying, GUO Er-hu, WANG Jun, FAN Hui-ping, LI Yu-hui, WANG Li-xia, WANG Xiu-qing, CHENG Li-ping   

  1. Millet Research Institute, Shanxi Academy of Agricultural Sciences/Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi 046011, Shanxi
  • Received:2014-12-04 Online:2015-08-01 Published:2015-08-01

Abstract: 【Objective】The aim of the study is to determine the optimal amount of nitrogen application and to investigate the correlation between photosynthetic characteristics and yield of spring foxtail millet varieties through analyzing the performance of agronomic traits, photosynthetic characteristics and yield under different nitrogen levels.【Method】The experiment was carried out in a field-split plot design with three replicates with varieties as main plot and nitrogen fertilizer as secondary plot. Cultivars Changnong 35 and Jingu 21 were selected as the experimental materials, and the area of each plot was 15.0 m2(5 m×3 m) and the seedling density was 3×105 plants/hm2. The designed 6 levels of nitrogen were 0 kg·hm-2 (N1), 45 kg·hm-2 (N2), 90 kg·hm-2 (N3), 135 kg·hm-2 (N4), 180 kg·hm-2 (N5) and 225 kg·hm-2 (N6), respectively. Forty percent of the nitrogen was applied as base fertilizer, and 60% applied at jointing stage to booting stage. After plants heading, the SPAD (Soil and Plant Analyzer Development, SPAD) value of the top-three leaves was measured through SPAD-502 (Konica Minolta), and the Ci (intercellular CO2 concentration, Ci), Pn (net photosynthesis rate, Pn) and E (transpiration rates, E) of the top-three leaves were measured using CIRAS-2 (PPSYSTEMS). 【Result】As the nitrogen levels increased, plant height, stem diameter and panicle length of spring foxtail millet exhibited a rising trend, and weight per panicle, grains weight per panicle and SPAD, E and Pn values of the flag leaf and the top-three leaves increased first and then decreased, however, 1000-grain weight had no significant difference in various nitrogen treatments. All of the above traits excepting 1000-grain weight reached to or tended to the highest value, meanwhile the yield tended to be stable at N level of 90 kg·hm-2 for spring foxtail millet, which suggested that the N level of 90 kg·hm-2 may be as the optimal amount of nitrogen application for spring foxtail millet. Furthermore, a regression equation between yield and various N levels was established and the maximum theoretical yield of spring millet was calculated. The results showed that there was no significant difference between the maximum theoretical yield and the observed one at N level of 90 kg·hm-2 (PChangnong 35 = 0.5571, PJingu 21= 0.6632). Therefore, the N level of 90 kg·hm-2 was confirmed as the optimal amount of nitrogen application for spring foxtail millet. The correlation analysis showed that the correlation coefficients between E, Pn of the flag leaf and yield and E, Pn of the top-three leaves and yield were 0.87, 0.86, 0.82, 0.83, respectively, and all reached a significant level.【Conclusion】 The optimal amount of nitrogen application was 90 kg·hm-2 in South Central Shanxi ecological region and soil conditions, and E and Pn of the flag leaf and the top-three leaves were significantly positively correlated with the yield of spring foxtail millet.

Key words: spring foxtail millet, nitrogen application rate, photosynthetic characteristics, yield, correlation analysis

[1]    刁现民. 中国谷子产业与未来发展//刁现民. 中国谷子产业与产业技术体系. 北京: 中国农业科学技术出版社, 2011: 20-30.
Diao X M. Industry and developmental perspectives of Chinese foxtail millet//Diao X M. Chinese Industry and Technical System of Foxtail Millet. Beijing: China Agricultural Sciences and Technology Press, 2011: 20-30. (in Chinese)
[2]    郝代成, 高国华, 朱云集, 郭天财, 叶优良, 王晨阳, 谢迎新. 施氮量对超高产冬小麦花后光合速率特性及产量的影响. 麦类作物学报, 2010(2): 346-352.
Hao D C, Gao G H, Zhu Y J, Guo T C, Ye Y L, Wang C Y, Xie Y X. Effects of nitrogen application rate on photosynthesis characteristics after anthesis and high grain yield of winter wheat. Journal of Triticeae Crops, 2010(2): 346-352. (in Chinese)
[3]    马冬云, 郭天财, 王晨阳, 朱云集, 宋晓, 王永华, 岳艳军. 施氮量对冬小麦灌浆期光合速率产物积累、转运及分配的影响. 作物学报, 2008, 34(6): 1027-1033.
Ma D Y, Guo T C, Wang C Y, Zhu Y J, Song X, Wang Y H, Yue Y J. Effects of nitrogen application rates on accumulation, translocation, and partitioning of photosynthetic in winter wheat at grain filling stage. Acta Ageonomica Sinica, 2008, 34(6): 1027-1033. (in Chinese)
[4]    李国强, 汤亮, 张文宇, 曹卫星, 朱艳. 施氮量对不同株型小麦品种叶型垂直分布特征的影响. 作物学报, 2011, 37(1): 127-137.
Li G Q, Tang L, Zhang W Y, Cao W X, Zhu Y. Effect of nitrogen rate on vertical distribution characteristics of leaf-type in wheat with different plant types. Acta Ageonomica Sinica, 2011, 37(1): 127-137. (in Chinese)
[5]    李廷亮, 谢英荷, 洪坚平, 冯倩, 孙丞鸿, 王志伟. 施氮量对晋南旱地冬小麦光合速率特性、产量及氮素利用的影响. 作物学报, 2013, 39(4): 704-711.
Li T L, Xie Y H, Hong J P, Feng Q, Sun C H, Wang Z W. Effects of nitrogen application rate on photosynthetic characteristics, yield, and nitrogen utilization in rained winter wheat in southern Shanxi. Acta Agronomica Sinica, 2013, 39(4): 704-711. (in Chinese)
[6]    张雷明, 上官周平, 毛明策, 于贵端. 长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响. 应用生态学报, 2003, (5): 695-698.
Zhang L M, Shang-Guan Z P, Mao M C, Yu G D. Effects of long term application of nitrogen fertilizer on leaf chlorophyll fluorescence of upland winter wheat. Chinese Journal of Applied Ecology, 2003(5): 695-698. (in Chinese)
[7]    蒋会利, 温晓霞, 廖允成. 施氮量对冬小麦产量的影响及土壤硝态氮运转特性. 植物营养与肥料学报, 2010, 16(1): 237-241.
Jiang H L, Wen X X, Liao Y C. Effects of nitrogen application on winter wheat yield and translation of soil NO3-N. Journal of Plant Nutrition and Fertilizer,2010, 16(1): 237-241. (in Chinese)
[8]    段文学, 于振文, 张永丽, 王东, 石玉. 施氮量对旱地小麦氮素吸收转运和土壤硝态氮含量的影响. 中国农业科学, 2012, 45(15): 3040-3048.
Duan W X, Yu Z W, Zhang Y L, Wang D, Shi Y. Effects of nitrogen fertilizer application rate on nitrogen absorption, translocation and nitrate nitrogen content in soil of dry land wheat. Scientia Agricultura Sinica, 2012, 45(15): 3040-3048. (in Chinese)
[9]    Elvira G L, Rafael J L B, Luis L B. Effect of N rate, timing and splitting and N type on bread making quality in hard red spring wheat under rained Mediterranean conditions. Field Crops Research, 2004, 85: 213-236.
[10]   李勇. 氮素营养对水稻光合速率作用与光合速率氮素利用率的影响机制研究[D]. 南京: 南京农业大学, 2011.
Li Y. Studies on mechanisms of different nitrogen supplies on photosynthesis and photosynthetic nitrogen use efficiency of rice plants [D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[11]   Anzoua K G, Junichi K, Toshihiro H, Kazuto I, Yutaka J. Genetic improvements for high yield and low soil nitrogen tolerance in rice (Oryza sativa L.) under a cold environment. Field Crops Research, 2010, 116: 38-45.
[12]   赵越.  施氮量对水稻产量的影响. 安徽农业科学, 2009, 37(19): 8937-8938.
Zhao Y. Effect of amount of N-fertilizer on yield of rice. Journal of Anhui Agricultural Sciences, 2009, 37(19): 8937-8938. (in Chinese)
[13]   Ohnishi M, Horie T, Homma K, Supapoj N, Takano H, Yamamoto S. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand. Field Crops Research, 1999, 64: 109-120.
[14]   Liang X Q, Chen Y X, Li H, Tian G M, Zhang Z J, Ni W Z, He M M. Nitrogen interception in flood water of rice field in Taihu region of China. Journal Environmental Sciences, 2007, 19: 1474-1481.
[15]   张喜文, 宋殿珍, 刘源湘, 姚克明. 氮肥和氮磷配合对谷子籽粒营养品质和食味品质的影响. 土壤通报, 1992, 23(3): 122-123.
Zhang X W, Song D Z, Liu Y X, Yao K M. Study on the effect of nitrogen fertilizer and nitrogen-phosphorus fertilization on the quality and eating quality of millet. Chinese Journal of Soil Science, 1992, 23(3): 122-123. (in Chinese)
[16]   王艳玲, 奚广生. 氮肥对谷子产量的影响研究. 安徽农业科学. 2008, 36(34): 15070, 15091.
Wang Y L, Xi G S. Study on the effect of nitrogen fertilizer on the quality of millet. Journal of Anhui Agricultural Sciences, 2008, 36(34) : 15070, 15091. (in Chinese)
[17]   李向文, 王红, 张爱军, 张瑞芳, 周大迈. 供氮水平和有机无机配施对片麻岩土壤谷子生长及土壤硝态氮的影响. 河北农业大学学报, 2012(4): 13-18.
Li X W, Wang H, Zhang A J, Zhang R F, Zhou D M. Effect of nitrogen application rate and its combination with organic manure on millet growth and nitrate distribution in gneiss soil. Journal of Agricultural University of Hebei, 2012(4): 13-18. (in Chinese)
[18]   杨艳君, 郭平毅, 曹玉凤, 王宏富, 王玉国, 原向阳. 施肥水平和种植密度对张杂谷5 号产量及其构成要素的影响. 作物学报, 2012, 38(12): 2278-2285.
Yang Y J, Guo P Y, Cao Y F, Wang H F, Wang Y G, Yuan X Y. Effects of fertilizer and planting density on yield and yield components in foxtail millet hybrid Zhangzagu 5. Acta Agronomica Sinica,2012, 38(12): 2278-2285. (in Chinese)
[19]   张亚琦, 李淑文, 付魏, 文宏达. 施氮对杂交谷子产量与光合特性及水分利用效率的影响. 植物营养与肥料学报, 2014, 20(5): 1119-1126.
Zhang Y Q, Li S W, Fu W, Wen H D. Effects of nitrogen application on yield, photosynthetic characteristics and water use efficiency of hybrid millet. Journal of Plant Nutrition and Fertilizer,2014, 20(5): 1119-1126. (in Chinese)
[20]   唐启义, 冯明光. 实用统计分析及其DPS处理系统. 北京: 科学出版社, 2002: 280-311.
Tang Q Y, Feng M G. DPS Data Processing System for Practical Statistic. Beijing: Science Press, 2002: 280-311. (in Chinese)
[21]   曾蓉. 氮肥运筹对谷子产量及品质的影响[D]. 太谷: 山西农业大学. 2013.
Zeng R. Effects of nitrogen application on yield and quality of millet[D]. Taigu: Shanxi Agricultural University. 2013. (in Chinese)
[22]   曹玲, 王强, 邓振镛, 郭小芹, 马兴祥, 宁惠芳.  气候暖干化对甘肃省谷子产量的影响及对策. 应用生态学报, 2010, 21(11): 2931-2937.
Cao L, Wang Q, Deng Z Y, Guo X Q, Ma X X, Ning H F. Effects of climate warming and drying on millet yield in Gansu Province and related counter-measures. Chinese Journal of Applied Ecology, 2010, 21(11): 2931-2937. (in Chinese)
[23]   赵斌, 张瑞芳, 李向文, 周大迈, 王红. 不同施肥处理对新成片麻岩土壤谷子生长及土层硝态氮的影响. 中国农学通报, 2012, 28(24): 142-147.
Zhao B, Zhang R F, Li X W, Zhou D M, Wang H. Effect of different fertilizer rate on the growth of millet and nitrate nitrogen in the Gneiss Entisols. Chinese Agricultural Science Bulletin, 2012, 28(24): 142-147. (in Chinese)
[24]   肖成海, 李仁崑.  不同降水量对谷子产量影响的初探. 北京农业, 2009(18): 8-10.
Xiao C H, Li R K. Influence of different precipitation on foxtail millet yield. Beijing Agriculture, 2009(18): 8-10. (in Chinese)
[25]   Cheng L, Fuehigami L H. Rubisco activation state decreases with increasing nitrogen content in apple leaves. Journal of Experimental Botany, 2000, 51: 1687-1694.
[26]   艾天成, 李方敏, 周治安, 张敏, 吴海荣. 作物叶片叶绿素含量与SPAD 值相关性研究. 湖北农学院学报, 2000, 20(1): 6-8.
Ai T C, Li F M, Zhou Z A, Zhang M, Wu H R. Relationship between chlorophy II meter readings (SPAD readings) and chlorophy II content of crop leaves. Journal of Hubei Agricultural College, 2000, 20(1): 6-8.(in Chinese)
[27]   王娟, 韩登武, 任岗, 郭金强, 张永帅, 危常州, 宋亚明. SPAD 值与棉花叶绿素和含氮量关系的研究. 新疆农业科学, 2006, 43(3): 167-170.
Wang J, Han D W, Ren G, Guo J Q, Zhang Y S, Wei C Z, Song Y M. A study on relation between SPAD value, chlorophy II and nitrogen content in cotton. Xinjiang Agricultural Sciences, 2006, 43(3): 167-170. (in Chinese)
[28]   卢晓萍, 杨丙贤, 徐婵娟, 田景奎, 张琳.  3种小檗科植物叶片SPAD值与叶绿素的相关性及通径分析. 浙江大学学报: 农业与生命科学版, 2013, 39(3): 261-262.
Lu X P, Yang B X, Xu C J, Tian J K, Zhang L. Study on correlation and path analysis between SPAD values and chlorophy II concentrations in three species of Berberidaceae leave. Journal of Zhejiang University: Agriculture Life Science, 2013, 39(3): 261-262. (in Chinese)
[29]   Wood C W, Reeves D W, Duffield R R, Edmisten K L. Field chlorophyll measurements for evaluation of corn nitrogen status. Journal of Plant Nutrition and Soil Science, 1992, 15: 487-500.
[30]   Arregui L M, Lasa B, Lafarga A, Iranneta I, Baroja E, Quemada M. Evaluation of chlorophyll meters as tools for N fertilization in winter wheat under humid Mediterranean conditions. European Journal of Agronomy, 2006, 24: 140-148.
[31]   Turner F T, Jund M F. Chlorophyll meter to predict nitrogen top-dress requirement for semidwarf rice. Agronomy Journal, 1991, 83: 926-928.
[32]   Varvel G E, Schepers J S, Francis D D. Ability for in-season correction of nitrogen deficiency in corn using chlorophy II meters. Soil Science Society of America Journal, 1997, 6: 1233-1239.
[33]   Blackmer T M, Schepers J S. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. Journal of Production Agriculture, 1995, 8: 56-60.
[34]   Schepers J S, Francis D D, Vigil M, Below F E. Comparison of corn leaf nitrogen concentration and chlorophyll meter readings. Communication of Soil Science Plant Analysis, 1992, 23: 2173-2187.
[35]   Hussain F, Bronson K F, Yadvinder S, Bijay S, Peng S. Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia. Agronomy Journal, 2000, 92: 875-879.
[36]   王余龙, 山本由德, 姚友礼, 徐家宽, 卞悦, 蒋军民, 新田洋司, 李昙云, 蔡建中. 栽培条件对水稻粒重的影响及其原因分析. 作物学报, 1998, 24(3): 280-290
Wang Y L, Yamamoto Y S, Yao Y L, Xu J K, Bian Y, Jiang J M, NittaY J, Li T Y, Cai J Z. Effect of cultural conditions on grain weight and its causes in rice. Acta Agronomica Sinica, 1998, 24(3): 280-290. (in Chinese)
[37]   王余龙, 蔡建中, 何杰升, 陈林, 徐家宽, 卞悦. 水稻颖花根活量与籽粒灌浆结实的关系. 作物学报, 1992, 18(2) : 81- 89.
Wang Y L, Cai J Z, He J S, Chen L, Xu J K, Bian Y. The relationship between spike let-root-activity and grain filling and ripening in rice (Oryza sativa). Acta Agronomica Sinica, 1992, 18(2): 81-89. (in Chinese)
[38]   叶全宝, 张洪程, 夏科, 魏海燕, 汪本福, 张瑛, 霍中洋, 戴其根, 许轲. 水稻粒重对氮素反应的基因型差异及其类型. 作物学报, 2005(8): 1021-1028.
Ye Q B, Zhang H C, Xia K, Wei H Y, Wang B F, Zhang Y, Huo Z Y, Dai Q G, Xu K. Genotypic difference and the classification in response of grain weight to nitrogen in rice. Acta Agronomica Sinica, 2005(8): 1021-1028. ( in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!