Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (20): 4128-4138.doi: 10.3864/j.issn.0578-1752.2014.20.021

• RESEARCH NOTES • Previous Articles    

Impact of Biochar Application on Soil Nutrients and Microbial Diversities in Continuous Cultivated Cotton Fields in Xinjiang

GU Mei-ying1, LIU Hong-liang2, LI Zhi-qiang2, LIU Xiao-wei2, TANG Guang-mu3, XU Wan-li3   

  1. 1Institute of Microbiology,Xinjiang Academy of Agricultural Sciences/Xinjiang Laboratory of Special Enviromental Microbiology/ Key Laboratory of Nutrient and Water Resources Efficient Utilization of Oasis, Urumqi 830091
    2 Shihezi Academy of Agricultural Sciences, Shihezi 832000, Xinjiang
    3Institute of Soil and Fertilizer and Agricultural Sparing Water, Xinjiang Academy of Agricultural Sciences, Urumqi 830091
  • Received:2014-04-14 Revised:2014-06-22 Online:2014-10-16 Published:2014-10-16

Abstract: 【Objective】 The objective of this experiment is to explore the effects of biochar application treatment on soil nutrients and microbial diversities in continuous cultivated cotton fields in Xinjiang. The results might provide a scientific basis and practical guidance for optimal utilization of agricultural wastes and prevention of the continuous cultivation problems in cotton fields.【Method】Under the field cultivation conditions, nutrient contents were determined,and traditional microbial cultivation method and Biolog microplate technique were used to study soil microbial communities, the number of physiological bacterial groups and microbial carbon utilization in rhizosphere and non-rhizosphere. Soil nutrients, microbial community characteristics and functional diversities of different biochar treatments were analyzed in grey desert soil and aeolian sandy soil in Shihezi irrigation zone. The experiment designs in grey desert soil were, respectively, biochar+conventional fertilizer (BC+CK) and CK treatments, and biochar application amounts were 22.5 t·hm-2. The experiment designs in aeolian sandy soil were BC1+CK, BC2+CK and CK treatments, biochar application amounts of 22.5 (BC1) and 45.0 (BC2) t·hm-2, respectively. 【Result】 Biochar application had influence on pH and nutrients in rhizosphere and non-rhizosphere soils in continuous cultivated cotton fields. Compared with CK, pH of grey desert soils decreased or had no significant difference, that in aeolian sandy soilsincreasedsignificantly. OM of two groups ofgray desert rhizosphere soilsincreased by 36.1% and7.9%, that in non-rhizosphere soilsincreased by 32.8% and15.4%, respectively. OM of aeolian sandy rhizosphere soilswith low and high biochar application increased by 63.6% and295.1%, that in non-rhizosphere soilsincreased by 93.5% and108.8%, respectively.There was no obvious regularity in nutrient contents ofgrey desert soils, available P and available K increased, but available N decreased in aeolian sandy soils. Biochar application increased, the numbers bacteria and fungi in rhizosphere soils in continuous cultivated cotton fields, and the effect in aeolian sandy soil was better than that in grey desert soil. The numbers of soil bacteria in rhizosphere of grey desert soils with biochar application rates increased by 2.2% and 72.1%, respectively, and the numbers of soil fungi increased by 80.0% and 83.3%, respectively. In contrast, the numbers of soil bacteria in rhizosphere in aeolian sandy soils with low and high biochar application rates increased by 16.1% and 35.7%, respectively, and the numbers of soil fungi increased by 300.0% and 300.0%, respectively. Furthermore, the amounts of Cytophaga and Azotobacter were enhanced by biochar application in rhizosphereand non-rhizosphere of grey desert soil, while the amounts of Nitrifier showed a decreasing trend. The amounts of physiological soil bacterial groups were significantly improved in rhizosphereand non-rhizosphere of aeolian sandy soil. Carbon source utilization of soil microbial community showed that soil microbial activities for treatment with biochar application had no significant difference or significantly improved, comparing with the control treatment. However, the effect on soil microbes in rhizosphere of aeolian sandy soil was better than that in non-rhizosphere soil, since theShannon richness index of rhizosphere soilhad a rising trend. 【Conclusion】 Biochar application could improve soil nutrients and microbial diversities in rhizosphere of continuous cultivated cotton fields in Xinjiang, while the soil improvement effect on aeolian sandy soil was better than that on grey desert soil.

Key words: biochar, nutrient, soil microbial diversity, biolog microplate technique, continuous cultivated cotton field, Xinjiang

[1]    刘军, 唐志敏, 刘建国, 张东升, 刘萍, 蒋桂英. 长期连作及秸秆还田对棉田土壤微生物量及种群结构的影响. 生态环境学报, 2012, 21(8): 1418-1422.
Liu J, Tang Z M, Liu J G, Zhang D S, Liu P, Jiang G Y. Effects of cotton continuous cropping and returning stalks to soil on the quantities and community structure of soil microbes. Ecology and Environmental Sciences, 2012, 21(8): 1418-1422. (in Chinese)
[2]    顾美英, 徐万里, 茆军, 张志东, 唐光木, 葛春辉. 新疆绿洲农田不同连作年限棉花根际土壤微生物群落多样性. 生态学报, 2012, 32(10): 3031-3040.
Gu M Y, Xu W L, Mao J, Zhang Z D, Tang G M, Ge C H. Microbial community diversity of rhizosphere soil in continuous cotton cropping system in Xinjiang. Acta Ecologica Sinica, 2012, 32(10): 3031-3040. (in Chinese)
[3]    吴杰. 新疆棉花秸秆利用现状分析和探讨. 中国棉花, 2005, 33(2): 9-11.
Wu J. The current situation analysis and discussion of Xinjiang cotton straw utilization. China Cotton, 2005, 33(2): 9-11. (in Chinese)
[4]    李彦斌, 刘建国, 程相儒, 张伟, 孙艳艳. 秸秆还田对棉花生长的化感效应. 生态学报, 2009, 29(9): 4942-4948.
Li Y B, Liu J G, Cheng X R, Zhang W, Sun Y Y. The allelopathic effects of returning cotton stalk to soil on the growth of succeeding cotton. Acta Ecologica Sinica, 2009, 29(9): 4942-4948. (in Chinese)
[5]    Antal M J, Gronli M. The art, science and technology of charcoal production. Industrial and Engineering Chemistry, 2003, 42: 1619-1640.
[6]    陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景. 中国农业科学, 2013, 46(16): 3324-3333.
Chen W F, Zhang W M, Meng J. Advances and prospects in research of biochar utilization in agriculture. Scientia Agricultura Sinica, 2013, 46(16): 3324-3333. (in Chinese)
[7]    戴静, 刘阳生. 生物炭的性质及其在土壤环境中应用的研究进展. 土壤通报, 2013, 44(6): 1520-1525.
Dai J, Liu Y S. Review of research on the properties of biochar and its applications in soil. Chinese Journal of Soil Science, 2013, 44(6): 1520-1525. (in Chinese)
[8]    张鹏. 生物炭的稳定性及其对土壤温室气体排放影响的研究进展. 安徽农业科学, 2013, 41(19): 8418-8420, 8423.
Zhang P. Research progress of biochar stability and effects on soil greenhouse gas emission. Journal of Anhui Agricultural. Sciences, 2013, 41(19): 8418-8420, 8423. (in Chinese)
[9]    刘玉学, 王耀锋, 吕豪豪, 陈庆飞, 陈义, 钟哲科, 杨生茂. 不同稻秆炭和竹炭施用水平对小青菜产量、品质以及土壤理化性质的影响. 植物营养与肥料学报, 2013, 19(6): 1438-1444.
Liu Y X, Wang Y F, Lü H H, Chen Q F,Chen Y, Zhong Z K, Yang S M. Effects of different application rates of rice straw biochar and bamboo biochar on yield and quality of greengrocery (Brassica chinensis) and soil properties. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1438-1444. (in Chinese)
[10]   陈心想, 何绪生, 耿增超, 张雯, 高海英. 生物炭对不同土壤化学性质、小麦和糜子产量的影响. 生态学报, 2013, 33(20): 6534-6542.
Chen X X, He X S, Geng Z C, Zhang W, Gao H Y. Effects of biochar on selected soil chemical properties and on wheat and millet yield. Acta Ecologica Sinica, 2013, 33(20): 6534-6542. (in Chinese)
[11]   Tammeorg P, Simojoki A, Mäkelä P, Stoddard F L, Alakukku L, Helenius J. Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean.Plant and Soil, 2014, 374(1/2): 89-107.
[12]   Schulz H, Dunst G, Glaser B. Positive effects of composted biochar on plant growth and soil fertility. Agronomy for Sustainable Development. 2013, 33(4): 817-827.
[13]   丁艳丽, 刘杰, 王莹莹. 生物炭对农田土壤微生物生态的影响研究进展. 应用生态学报, 2013, 24(11): 3311-3317.
Ding Y L, Liu J, Wang Y Y. Effects of biochar on microbial ecology in agriculture soil: A review. Chinese Journal of Applied Ecology, 2013, 24(11): 3311-3317. (in Chinese)
[14]   Prayogo C, Jones J E, Baeyens J, Bending G D. Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure.Biology and Fertility of Soils, 2014, 50(4): 695-702.
[15]   陈伟, 周波, 束怀瑞. 生物炭和有机肥处理对平邑甜茶根系和土壤微生物群落功能多样性的影响. 中国农业科学, 2013, 46(18): 3850-3856.
Chen W, Zhou B, Shu H R. Effects of organic fertilizer and biochar on root system and microbial functional diversity of Malus hupehensis Rehd. Scientia Agricultura Sinica, 2013, 46(18): 3850-3856. (in Chinese)
[16]   Dempster D N, Gleeson D B, Solaiman Z M, Jones D L, Murphy D V. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil.Plant and Soil, 2012, 354(1/2): 311-324.
[17]   Khodadad C L M, Zimmermanb A R, Green S J, Uthandi S, Foster J  S. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biology and Biochemistry, 2011, 43(2): 385-392.
[18]   Lehmann J, Rillig M C, Thies J, Masiello C A, Hockaday W C, Crowley D. Biochar effects on soil biota-a review. Soil Biology & Biochemistry, 2011, 43: 1812-1836.
[19]   Hu L, Cao L X, Zhang R D. Bacterial and fungal taxon changes in soil microbial community composition induced by short-term biochar amendment in red oxidized loam soil. World Journal of Microbiology and Biotechnology, 2014, 30(3): 1085-1092.
[20]   Kolton M, Meller H Y, Pasternak Z, Graber E R, Elad Y, Cytryn E. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Applied and Environmental Microbiology, 2011, 77(14): 4924-4930.
[21]   王晓辉, 郭光霞, 郑瑞伦, 钟敏, 朱永官. 生物炭对设施退化土壤氮相关功能微生物群落丰度的影响. 土壤学报, 2013, 50(3): 624-631.
Wang X H, Guo G X, Zheng R L, Zhong M, Zhu Y G. Effect of biochar on abundance of n-related functional microbial communities in degraded greenhouse soil. Acta Pedologica Sinica, 2013, 50(3): 624-631. (in Chinese)
[22]   Novak J M, Busscher W J. Selection and use of designer biochars to improve characteristics of southeastern USA coastal plain degraded soils. Advanced Biofuels and Bioproducts, 2013: 69-96.
[23]   勾芒芒, 屈忠义, 杨晓, 张栋梁. 生物炭对砂壤土节水保肥及番茄产量的影响研究. 农业机械学报, 2014, 45(1): 137-142.
Gou M M, Qu Z Y, Yang X, Zhang D L. Study on the effects of biochar on saving water, preserving fertility and tomato yield. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 137-142. (in Chinese)
[24]   刘鸿骄, 侯亚红, 王磊. 秸秆生物炭还田对围垦盐碱土壤的低碳化改良. 环境科学与技术, 2014, 37(1): 75-80.
Liu H J, Hou Y H, Wang L. Amelioration effect of Reed straw biochar returning to salty soil in the view of low carbon point. Environmental Science & Technology, 2014, 37(1): 75-80. (in Chinese)
[25]   孙大荃, 孟军, 张伟明, 黄玉威, 管学超, 陈温福. 生物炭对棕壤大豆根际微生物的影响. 沈阳农业大学报, 2011-10, 42(5): 521-526.
Sun D Q, Meng J, Zhang W M, Huang Y W, Guan X C, Chen W F. Effect of biochar on soybean rhizosphere microbes from brown earth soil. Journal of Shenyang Agricultural University, 2011-10, 42(5): 521-526. (in Chinese)
[26]   石春红, 郑有飞, 吴芳芳, 刘宏举, 赵泽, 胡程达. 大气中臭氧浓度增加对根际和非根际土壤微生物的影响. 土壤学报, 2009, 46(5): 894-898.
Shi C H, Zheng Y F, Wu F F, Liu H J, Zhao Z, Hu C D. Effects of simulated elevated atmospheric O3 concentration on the quantity of microorganisms in winterwheat rhizospheric and non-rhizospheric soils. Acta Pedologica Sinica,2009, 46(5): 894-898. (in Chinese)
[27]   如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
Lu R K. Analytical Methods for Soil and Agricultural Chemistry. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[28]   姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术. 北京: 科学出版社, 2006.
Yao H Y, Huang C Y. Edaphon Ecology and Experimental Technology. Beijing: Science Press, 2006. (in Chinese)
[29]   孙薇, 钱勋, 付青霞, 胡婷, 谷洁, 王小娟, 高华. 生物有机肥对秦巴山区核桃园土壤微生物群落和酶活性的影响. 植物营养与肥料学报, 2013, 19(5) : 1224-1233.
Sun W, Qian X, Fu Q X, Hu T, Gu J, Wang X J, Gao H. Effects of bio-organic fertilizer on soil microbial community and enzymes activities in walnut orchards of the Qinling-Bashan Region. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1224-1233. (in Chinese)
[30]   凌琪, 包金梅, 李瑞, 陶勇, 鲍立宁, 毛钦焱. Biolog-Eco解析黄山风景区空气微生物碳代谢多样性特征. 应用基础与工程科学学报, 2012, 20(1): 56-63.
Ling Q, Bao J M, Li R, Tao Y, Bao L N, Mao Q Y. Analysis of carbon metabolism diversity characters of air microbes in Huangshan scenic spot using biolog-eco method. Journal of Basic Science and Engineering, 2012, 20(1): 56-63. (in Chinese)
[31]   赵瑞林, 蔡立群. 紫花苜蓿根系分泌物的鉴定及羟基苯甲酸的化感效应研究. 中国农学通报, 2013, 29(35): 34-41.
Zhao R L, Cai L Q. The determination of root exudates of medicago sativa and the study on allelopathic effect of typical exudation 3,5-di-tert-Butyl-4-hydroxybenzaldehyde. Chinese Agricultural Science Bulletin, 2013, 29(35): 34-41. (in Chinese)
[32]   张祥, 王典, 姜存仓, 朱盼, 雷晶, 彭抒昂. 生物炭对我国南方红壤和黄棕壤理化性质的影响. 中国生态农业学报, 2013, 21(8): 979-984.
Zhang X, Wang D, Jiang C C, Zhu P, Lei J, Peng S A. Effect of biochar on physicochemical properties of red and yellow brown soils in the South China Region. Chinese Journal of Eco-Agriculture, 2013, 21(8): 979-984. (in Chinese)
[33]   张雯, 耿增超, 陈心想, 高海英. 生物质炭对盐土改良效应研究. 干旱地区农业研究, 2013, 31(2): 73-77, 105.
Zhang W, Geng Z C, Chen X X, Gao H Y. Effects of biochar on saline soil improvement. Agricultural Research in the Arid Areas, 2013, 31(2): 73-77, 105. (in Chinese)
[34]   Yu O Y, Raichle B, Sink S. Impact of biochar on the water holding capacity of loamy sand soil. International Journal of Energy and Environmental Engineering, 2013, 4: 44.
[35]   Farrell M, Macdonald L M, Butler G, Chirino-Valle I, Condron L M. Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biology and Fertility of Soils, 2014, 50(1): 169-178.
[36]   姜玉萍, 杨晓峰, 张兆辉, 陈春宏, 王良军. 生物炭对土壤环境及作物生长影响的研究进展. 浙江农业学报, 2013, 25(2): 410-415.
Jiang Y P, Yang X F, Zhang Z H, Chen C H, Wang L J. Progress of the effect of biomass charcoal on soil environment and crop growth. Acta Agriculturae Zhejiangensis, 2013, 25(2): 410-415.(in Chinese)
[37]   唐光木, 葛春辉, 徐万里, 王西和, 郑金伟, 李恋卿, 潘根兴. 施用生物黑炭对新疆灰漠土肥力与玉米生长的影响. 农业环境科学学报, 2011, 30(9): 1797-1802.
Tang G M, Ge C H, Xu W L, Wang X H, Zheng J W, Li L Q, Pan G X. Effect of applying biochar on the quality of grey desert soil and maize cropping in Xinjiang, China. Journal of Agro-Environment Science, 2011, 30(9): 1797-1802. (in Chinese)
[38]   葛春辉, 唐光木, 徐万里. 生物质炭对沙质土壤理化性质及作物产量的影响. 新疆农业科学, 2013, 50(6): 1108-1114.
Ge C H, Tang G M, Xu W L. Influence of application of bio-carbon on characters of soil and crop yield. Xinjiang Agricultural Science, 2013, 50(6): 1108-1114. (in Chinese)
[39]   Rondon M A, Lehmann J, Ramírez J, Hurtado M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils, 2007, 43: 699-708.
[40]   谢国雄, 王道泽, 吴耀, 邱志腾, 章明奎, 吴崇书. 生物质炭对退化蔬菜地土壤的改良效果. 南方农业学报, 2014, 45(1): 67-71.
Xie G X, Wang D Z, Wu Y, Qiu Z T, Zhang M K, Wu C S. Ameliorating effects of biochar application on degraded vegetable soil. Journal of Southern Agriculture, 2014, 45(1): 67-71. (in Chinese)
[41]   王艳芳, 沈向, 陈学森, 吴树敬, 毛志泉. 生物炭对缓解对羟基苯甲酸伤害平邑甜茶幼苗的作用. 中国农业科学, 2014, 47(5): 968-976.
Wang Y F, Shen X, Chen X S, Wu S J, Mao Z Q. Effects of biochar on alleviation of the influence of p-hydroxybenzoic acid on physiological characteristics in Malus Hupehensis Rehd. seedlings. Scientia Agricultura Sinica, 2014, 47(5): 968-976. (in Chinese)
[1] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[2] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[3] MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224.
[4] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[5] CHEN ChunYu,CHEN SongLing,HAN YanYu,REN LiJun,ZOU HongTao,ZHANG YunLong. Preparation and Properties of Bionic Modified Water-Based Polymer Coated Urea [J]. Scientia Agricultura Sinica, 2022, 55(20): 3970-3982.
[6] MA YuFeng,ZHOU ZhongXiong,LI YuTong,GAO XueQin,QIAO YaLi,ZHANG WenBin,XIE JianMing,HU LinLi,YU JiHua. Effects of Nitrogen Level and Form on Root Morphology of Mini Chinese Cabbage and Its Physiological Index [J]. Scientia Agricultura Sinica, 2022, 55(2): 378-389.
[7] ZHANG XinYao,ZHANG Min,ZHU YuanPeng,HUI XiaoLi,CHAI RuShan,GAO HongJian,LUO LaiChao. Effects of Reduced Phosphorus Application on Crop Yield and Grain Nutritional Quality in the Rice-Wheat Rotation System in Chaohu Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(19): 3791-3806.
[8] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[9] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[10] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[11] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[12] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[13] BAI Fei,BAI GuiPing,WANG ChunYun,LI Zhen,GONG DePing,HUANG Wei,CHENG YuGui,WANG Bo,WANG Jing,XU ZhengHua,KUAI Jie,ZHOU GuangSheng. Effects of Tillage Depth and Shading on Root Growth and Nutrient Utilization of Rapeseed [J]. Scientia Agricultura Sinica, 2022, 55(14): 2726-2739.
[14] LIU Yuan,YUAN Liang,ZHANG ShuiQin,ZHAO BingQiang,LI YanTing. Effects of Polyaspartic Acid with Different Molecular Weights on Root Growth and Nutrient Uptake of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(13): 2526-2537.
[15] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!