Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (16): 3242-3255.doi: 10.3864/j.issn.0578-1752.2022.16.014
• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles Next Articles
DENG FuLi1(),SHEN Dan1(
),ZHONG RuQing1,ZHANG ShunFen1,LI Tao2,SUN ShuDong2,CHEN Liang1(
),ZHANG HongFu1
[1] | 张宏福, 高理想, 陈亮, 钟儒清. 饲粮非淀粉多糖特性及猪饲粮非淀粉多糖酶谱优化方法研究进展[C]// 中国畜牧兽医学会动物营养学分会第十届全国代表大会暨十二届学术研讨会. 武汉: 2016: 43-54. |
ZHANG H F, GAO L X, CHEN L, ZHONG R Q. Research progress on characteristics and optimization methods of dietary non-starch polysaccharides enzymes spectrum for pigs[C]// The 10th National Congress of Animal Nutrition Branch of Chinese Society of Animal Science and Veterinary Medicine and the 12th Academic Conference. Wuhan: 2016: 43-54. (in Chinese) | |
[2] | 向兴, 唐行模, 刘艺. 非淀粉多糖酶在猪上的应用研究进展. 今日养猪业, 2019(3): 94-97. |
XIANG X, TANG H M, LIU Y. Advances in the application of non-starch polysaccharide enzymes in pigs. Pig Today, 2019(3): 94-97. (in Chinese) | |
[3] |
ZIJLSTRA R T, OWUSU-ASIEDU A, SIMMINS P H. Future of NSP-degrading enzymes to improve nutrient utilization of co-products and gut health in pigs. Livestock Science, 2010, 134(1-3): 255-257.
doi: 10.1016/j.livsci.2010.07.017 |
[4] |
SALEH A A, EL-FAR A H, ABDEL-LATIF M A, EMAM M A, GHANEM R, ABD EL-HAMID H S. Exogenous dietary enzyme formulations improve growth performance of broiler chickens fed a low-energy diet targeting the intestinal nutrient transporter genes. PLoS ONE, 2018, 13(5): e0198085. doi: 10.1371/journal.pone. 0198085.
doi: 10.1371/journal.pone. 0198085 |
[5] |
MENG X, SLOMINSKI B A, NYACHOTI C M, CAMPBELL L D, GUENTER W. Degradation of cell wall polysaccharides by combinations of carbohydrase enzymes and their effect on nutrient utilization and broiler chicken performance. Poultry Science, 2005, 84(1): 37-47. doi: 10.1093/ps/84.1.37.
doi: 10.1093/ps/84.1.37 |
[6] |
ZHOU Y, JIANG Z, LV D, WANG T. Improved energy-utilizing efficiency by enzyme preparation supplement in broiler diets with different metabolizable energy levels. Poultry Science, 2009, 88(2): 316-322.
doi: 10.3382/ps.2008-00231 |
[7] |
YIN J, LI F N, KONG X F, WEN C Y, GUO Q P, ZHANG L Y, WANG W L, DUAN Y H, LI T J, TAN Z L, YIN Y L. Dietary xylo-oligosaccharide improves intestinal functions in weaned piglets. Food & Function, 2019, 10(5): 2701-2709.. doi: 10.1039/c8fo02485e.
doi: 10.1039/c8fo02485e |
[8] |
高理想, 陈亮, 崔世贵, 谢月华, 张宏福. 体外模拟消化法优化生长猪饲粮非淀粉多糖酶谱. 动物营养学报, 2017, 29(4): 1205-1217. doi: 10.3969/j.issn.1006-267x.2017.04.016.
doi: 10.3969/j.issn.1006-267x.2017.04.016 |
GAO L X, CHEN L, CUI S G, XIE Y H, ZHANG H F. Optimization of non-starch polysaccharide enzymes of diets for growing pigs using in vitro method. Chinese Journal of Animal Nutrition, 2017, 29(4): 1205-1217. doi: 10.3969/j.issn.1006-267x.2017.04.016. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2017.04.016 |
|
[9] |
张立兰, 高理想, 陈亮, 钟儒清, 张宏福. 体外消化法优化生长猪玉米-豆粕-DDGS饲粮和小麦-豆粕饲粮非淀粉多糖酶谱的研究. 畜牧兽医学报, 2017, 48(8): 1468-1480. doi: 10.11843/j.issn.0366- 6964.2017.08.011.
doi: 10.11843/j.issn.0366- 6964.2017.08.011 |
ZHANG L L, GAO L X, CHEN L, ZHONG R Q, ZHANG H F. Optimization of non-starch polysaccharide enzymes of corn-soybean- DDGS and wheat-soybean diets for growing pig using in vitro method. Acta Veterinaria et Zootechnica Sinica, 2017, 48(8): 1468-1480. doi: 10.11843/j.issn.0366-6964.2017.08.011. (in Chinese)
doi: 10.11843/j.issn.0366- 6964.2017.08.011 |
|
[10] |
LEE S H, HOSSEINDOUST A, LAXMAN INGALE S, RATHI P C, YOON S Y, CHOI J W, KIM J S. Thermostable xylanase derived from Trichoderma citrinoviride increases growth performance and non-starch polysaccharide degradation in broiler chickens. British Poultry Science, 2020, 61(1): 57-62. doi: 10.1080/00071668.2019. 1673316.
doi: 10.1080/00071668.2019. 1673316 |
[11] |
CHOCT M, HUGHES R J, BEDFORD M R. Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat. British Poultry Science, 1999, 40(3): 419-422. doi: 10.1080/00071669987548.
doi: 10.1080/00071669987548 |
[12] |
LONG C, RöSCH C, DE VRIES S, SCHOLS H, VENEMA K. Cellulase and alkaline treatment improve intestinal microbial degradation of recalcitrant fibers of rapeseed meal in pigs. Journal of Agricultural and Food Chemistry, 2020, 68(39): 11011-11025.
doi: 10.1021/acs.jafc.0c03618 |
[13] |
CLUNIES M, LEESON S. In vitro estimation of dry matter and crude protein digestibility. Poultry Science, 1984, 63(1): 89-96.
doi: 10.3382/ps.0630089 |
[14] |
胡光源, 赵峰, 张宏福, 钟永兴, 刘震坤. 饲粮蛋白质来源与水平对生长猪空肠液组成的影响. 动物营养学报, 2010, 22(5): 1220-1225. doi: 10.3969/j.issn.1006-267x.2010.05.015.
doi: 10.3969/j.issn.1006-267x.2010.05.015 |
HU G Y, ZHAO F, ZHANG H F, ZHONG Y X, LIU Z K. Effects of the source and level of dietary protein on the composition of jejunal fluid in growing pigs. Acta Zoonutrimenta Sinica, 2010, 22(5): 1220-1225. doi: 10.3969/j.issn.1006-267x.2010.05.015. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2010.05.015 |
|
[15] |
ZHANG S F, ZHONG R Q, GAO L X, LIU Z Q, CHEN L, ZHANG H F. Effects of optimal carbohydrase mixtures on nutrient digestibility and digestible energy of corn- and wheat-based diets in growing pigs. Animals, 2020, 10(10): 1846.
doi: 10.3390/ani10101846 |
[16] |
CHEN L, GAO L X, HUANG Q H, LU Q P, SA R N, ZHANG H F. Prediction of digestible energy of feed ingredients for growing pigs using a computer-controlled simulated digestion system. Journal of Animal Science, 2014, 92(9): 3887-3894. doi: 10.2527/jas.2013-7092.
doi: 10.2527/jas.2013-7092 |
[17] | 高理想. 猪饲粮非淀粉多糖酶谱仿生优化方法的研究[D]. 北京: 中国农业科学院, 2016. |
GAO L X. Study on bionic optimization method of dietary non-starch polysaccharide enzymes profile for pigs[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese) | |
[18] |
ZHONG R Q, GAO L X, ZHANG L L, HUANG Q H, CHEN L, ZHANG H F. Effects of optimal carbohydrases cocktails screened using an in vitro method on nutrient and energy digestibility of different fiber source diets fed to growing pigs. Animal Feed Science and Technology, 2021, 271: 114728.
doi: 10.1016/j.anifeedsci.2020.114728 |
[19] |
CHEN Y X, SHEN D, ZHANG L L, ZHONG R Q, LIU Z Q, LIU L, CHEN L, ZHANG H F. Supplementation of non-starch polysaccharide enzymes cocktail in a corn-miscellaneous meal diet improves nutrient digestibility and reduces carbon dioxide emissions in finishing pigs. Animals, 2020, 10(2): 232.
doi: 10.3390/ani10020232 |
[20] | 张丽英. 饲料分析及饲料质量检测技术. 3版. 北京: 中国农业大学出版社, 2007. |
ZHANG L Y. Feed analysis and quality test technology. (Third Edition). Beijing: China Agricultural university Press, 2007. (in Chinese) | |
[21] | 赵峰, 张宏福, 张子仪. 单胃动物仿生消化系统操作手册. (第二版). 中国农业科学院. 2011. |
ZHAO F, ZHANG H F, ZHANG Z Y. Operation manual of bionic digestive system for monogastric animals. (Second Edition). Chinese Academy of Agricultural Sciences. Chinese Academy of Agricultural Sciences:2011. (in Chinese) | |
[22] |
WANG Q, GARRITY G M, TIEDJE J M, COLE J R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Mucosal Immunology, 2007, 73(16): 5261-5267. doi: 10.1128/aem.00062-07.
doi: 10.1128/aem.00062-07 |
[23] |
张发莲. 饲用酶制剂的应用研究进展. 畜禽业, 2013(7): 14-16. doi: 10.3969/j.issn.1008-0414.2013.07.008.
doi: 10.3969/j.issn.1008-0414.2013.07.008 |
ZHANG F L. Research progress on application of enzyme preparation for feeding. Livestock and Poultry Industry, 2013(7): 14-16. doi: 10. 3969/j.issn.1008-0414.2013.07.008. (in Chinese)
doi: 10.3969/j.issn.1008-0414.2013.07.008 |
|
[24] |
OLUKOSI O A, BEDFORD M R, ADEOLA O. Xylanase in diets for growing pigs and broiler chicks. Canadian Journal of Animal Science, 2007, 87(2): 227-235.
doi: 10.4141/CJAS06005 |
[25] |
DIEBOLD G, MOSENTHIN R, PIEPHO H P, SAUER W C. Effect of supplementation of xylanase and phospholipase to a wheat-based diet for weanling pigs on nutrient digestibility and concentrations of microbial metabolites in ileal digesta and feces. Journal of Animal Science, 2004, 82(9): 2647-2656. doi: 10.2527/2004.8292647x.
doi: 10.2527/2004.8292647x |
[26] |
REILLY P, SWEENEY T, O'SHEA C, PIERCE K M, FIGAT S, SMITH A G, GAHAN D A, O'DOHERTY J V. The effect of cereal-derived beta-glucans and exogenous enzyme supplementation on intestinal microflora, nutrient digestibility, mineral metabolism and volatile fatty acid concentrations in finisher pigs. Animal Feed Science and Technology, 2010, 158(3-4): 165-176.
doi: 10.1016/j.anifeedsci.2010.04.008 |
[27] |
WOYENGO T A, SANDS J S, GUENTER W, NYACHOTI C M. Nutrient digestibility and performance responses of growing pigs fed phytase- and xylanase-supplemented wheat-based diets. Journal of Animal Science, 2008, 86(4): 848-857.
doi: 10.2527/jas.2007-0018 |
[28] |
NITRAYOVÁ S, HEGER J, PATRÁŠ P, KLUGE H, BROŽ J. Effect of xylanase on apparent ileal and total tract digestibility of nutrients and energy of rye in young pigs. Archives of Animal Nutrition, 2009, 63(4): 281-291. doi: 10.1080/17450390903020455.
doi: 10.1080/17450390903020455 |
[29] |
SALEH F, OHTSUKA A, TANAKA T, HAYASHI K. Effect of enzymes of microbial origin on in vitro digestibilities of dry matter and crude protein in soybean meal. Animal Science Journal, 2003, 74(1): 23-29.
doi: 10.1046/j.1344-3941.2003.00082.x |
[30] |
MALATHI V, DEVEGOWDA G. In vitro evaluation of nonstarch polysaccharide digestibility of feed ingredients by enzymes. Poultry Science, 2001, 80(3): 302-305. doi: 10.1093/ps/80.3.302.
doi: 10.1093/ps/80.3.302 |
[31] |
TERVILAWILO A, PARKKONEN T, MORGAN A, HOPEAKOSKINURMINEN M, POUTANEN K, HEIKKINEN P, AUTIO K. In vitro digestion of wheat microstructure with xylanase and cellulase from Trichoderma reesei. Journal of Cereal Science, 1996, 24(3): 215-225.
doi: 10.1006/jcrs.1996.0054 |
[32] |
ANNISON G, CHOCT M. Anti-nutritive activities of cereal non- starch polysaccharides in broiler diets and strategies minimizing their effects. World's Poultry Science Journal, 1991, 47(3): 232-242.
doi: 10.1079/WPS19910019 |
[33] |
MAVROMICHALIS I, HANCOCK J D, SENNE B W, GUGLE T L, KENNEDY G A, HINES R H, WYATT C L. Enzyme supplementation and particle size of wheat in diets for nursery and finishing pigs. Journal of Animal Science, 2000, 78(12): 3086-3095. doi: 10.2527/ 2000.78123086x.
doi: 10.2527/ 2000.78123086x |
[34] |
OLUKOSI O A, SANDS J S, ADEOLA O. Supplementation of carbohydrases or phytase individually or in combination to diets for weanling and growing-finishing pigs. Journal of Animal Science, 2007, 85(7): 1702-1711. doi: 10.2527/jas.2006-709.
doi: 10.2527/jas.2006-709 |
[35] |
O'SHEA C J, MC ALPINE P O, SOLAN P, CURRAN T, VARLEY P F, WALSH A M, DOHERTY J V O. The effect of protease and xylanase enzymes on growth performance, nutrient digestibility, and manure odour in grower-finisher pigs. Animal Feed Science and Technology, 2014, 189: 88-97.
doi: 10.1016/j.anifeedsci.2013.11.012 |
[36] |
FLINT H J, SCOTT K P, LOUIS P, DUNCAN S H. The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology & Hepatology, 2012, 9(10): 577-589. doi: 10.1038/nrgastro.2012.156.
doi: 10.1038/nrgastro.2012.156 |
[37] |
LIN C H, WAN J J, SU Y, ZHU W Y. Effects of early intervention with maternal fecal microbiota and antibiotics on the gut microbiota and metabolite profiles of piglets. Metabolites, 2018, 8(4): 89.
doi: 10.3390/metabo8040089 |
[38] |
ZHOU Y, SHAN G, SODERGREN E, WEINSTOCK G, WALKER W A, GREGORY K E. Longitudinal analysis of the premature infant intestinal microbiome prior to necrotizing enterocolitis: a case-control study. The Journal of Pediatrics, 2015, 10(3): e0118632. doi: 10.1371/ journal.pone.0118632.
doi: 10.1371/ journal.pone.0118632 |
[39] |
MENG Q, SUN S, LUO Z, SHI B, SHAN A, CHENG B. Maternal dietary resveratrol alleviates weaning-associated diarrhea and intestinal inflammation in pig offspring by changing intestinal gene expression and microbiota. Food & Function, 2019, 10(9): 5626-5643. doi: 10.1039/c9fo00637k.
doi: 10.1039/c9fo00637k |
[40] | 刘亚丹, 左周, 秦军军, 杨阳, 蔡春波, 赵燕, 郭晓红, 曹果清, 李步高, 高鹏飞. 仔猪不同生长阶段粪便微生物多样性分析. 国外畜牧学(猪与禽), 2020, 40(6): 22-28, 29. |
LIU Y D, ZUO Z, QIN J J, YANG Y, CAI C B, ZHAO Y, GUO X H, CAO G Q, LI B G, GAO P F. Analysis of microbial diversity in feces of piglets at different growth stages. Animal Science Abroad-Pigs and Poultry 2020, 40(6): 22-28, 29. (in Chinese) | |
[41] |
ALAIN B PAJARILLO E, CHAE J P, BALOLONG M P, BUM KIM H, KANG D K. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. The Journal of General and Applied Microbiology, 2014, 60(4): 140-146. doi: 10.2323/jgam. 60.140.
doi: 10.2323/jgam. 60.140 |
[42] |
LOW K E, XING X, MOOTE P E, INGLIS G D, VENKETACHALAM S, HAHN M G, KING M L, TéTARD-JONES C Y, JONES D R, WILLATS W G T, SLOMINSKI B A, ABBOTT D W. Combinatorial glycomic analyses to direct CAZyme discovery for the tailored degradation of canola meal non-starch dietary polysaccharides. Microorganisms, 2020, 8(12): 1888.
doi: 10.3390/microorganisms8121888 |
[43] |
LUIS A S, BRIGGS J, ZHANG X, FARNELL B, NDEH D, LABOUREL A, BASLÉ A, CARTMELL A, TERRAPON N, STOTT K, LOWE E C, MCLEAN R, SHEARER K, SCHÜCKEL J, VENDITTO I, RALET M C, HENRISSAT B, MARTENS E C, MOSIMANN S C, ABBOTT D W, GILBERT H J. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nature Microbiology, 2018, 3(2): 210-219. doi: 10.1038/s41564-017-0079-1.
doi: 10.1038/s41564-017-0079-1 |
[44] |
ZHANG W, MA C, XIE P, ZHU Q, WANG X, YIN Y, KONG X. Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances. Journal of Applied Microbiology, 2019, 127(2): 354-369. doi: 10.1111/jam. 14304.
doi: 10.1111/jam. 14304 |
[45] |
TAMANAI-SHACOORI Z, SMIDA I, BOUSARGHIN L, LOREAL O, MEURIC V, FONG S B, BONNAURE-MALLET M, JOLIVET- GOUGEON A. Roseburia spp.: a marker of health? Future Microbiology, 2017, 12: 157-170.
doi: 10.2217/fmb-2016-0130 |
[46] |
GRZEŚKOWIAK Ł, DADI T H, ZENTEK J, VAHJEN W. Developing gut microbiota exerts colonisation resistance to Clostridium (syn. Clostridioides) difficile in piglets. Microorganisms, 2019, 7(8): 218.
doi: 10.3390/microorganisms7080218 |
[47] |
孙文静, 张丽, 肖娟, 彭永梅, 冉亚梅, 梁仁政, 湛斌. 粪菌移植治疗肠道艰难梭状芽孢杆菌感染1例. 重庆医学, 2021, 50(7): 1258-1260. doi: 10.3969/j.issn.1671-8348.2021.07.040.
doi: 10.3969/j.issn.1671-8348.2021.07.040 |
SUN W J, ZHANG L, XIAO J, PENG Y M, RAN Y M, LIANG R Z, ZHAN B. Treatment of Clostridium difficile infection by faecal bacteria transplantation: a case report. Chongqing Medical Journal 2021, 50(7): 1258-1260. doi: 10.3969/j.issn.1671-8348.2021.07.040. (in Chinese)
doi: 10.3969/j.issn.1671-8348.2021.07.040 |
[1] | ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674. |
[2] | Ke YU,Lei LIU,RuiFen ZHANG,JianWei CHI,XuChao JIA,MingWei ZHANG. Effect of Pre-Enzymatic-Drum Drying Process on the Quality of Whole Wheat Flakes [J]. Scientia Agricultura Sinica, 2020, 53(6): 1256-1268. |
[3] | WU Xin, FENG Jing-hai, ZHANG Min-hong, SU Hong-guang, JIA An-feng. Influence of Constant High Ambient Temperature on Fat Metabolism of Different Parts in Finishing Pigs [J]. Scientia Agricultura Sinica, 2015, 48(5): 952-958. |
[4] |
JIANG Zong-yong,WANG Yan,LIN Ying-cai,ZHENG Chun-tian,JIANG Shou-qun,CHEN Fang . Effects of Selenomethionine on Selenium Concentration in Plasma and Tissues and Antioxidant Capacity of Finishing Pigs [J]. Scientia Agricultura Sinica, 2010, 43(10): 2147-2155 . |
|