Scientia Agricultura Sinica ›› 2006, Vol. 39 ›› Issue (05): 879-885 .

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES • Previous Articles     Next Articles

Genetics, Development and Application of Cytoplasmic Herbicide Resistance in Foxtail Millet

,,,,,   

  • Received:2005-05-19 Revised:2005-12-06 Online:2006-05-10 Published:2006-05-10

Abstract: 【Objective】The effect of cytoplasmic herbicide resistant gene in millet plants was studied. 【Method】The heterozygous populations and isogenic lines with homocaryotic alloplasmic genes were obtained by crossing and reciprocal crossing of cytoplasmic herbicide resistant plants with susceptive plants of foxtail millet. The characters of F1, F2, backcross and composite cross groups and the growth and development of isogenic lines were compared. 【Result】The cytoplasmic herbicide resistant gene slowed the development of seedling, delayed heading and shortened milking stage in foxtail millet plant. Yield capacity and main agronomic characters were all affected by the cytoplasmic herbicide resistant gene in most of the backcross, composite cross and F2 populations. However, there were stronger hybrid vigor in F1. The backcrosses, composite crosses and F2 populations were widely separated and some of them had good characters as that of susceptive groups. 【Conclusion】 The plant characters and development of foxtail millet were negatively affected by the cytoplasmic herbicide resistant gene. The authors proposed a method of using hybrid vigor to obtain high yield and avoid the negative effects of herbicide resistance cytoplasm in plant growth. The expected results could be obtained by selecting individuals in separated populations of fast developed seedlings, well developed roots, and with capacities of early heading and fast milking. Guided by the principal mentioned above, many high yield lines and hybrid crosses of foxtail millet with herbicide resistant cytoplasm were obtained.

Key words: Foxtail millet [Setaria italic (L.) Beav.], Cytoplasmic herbicide resistance, Genetic, Development, Application

[1] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] JIANG Hui,FENG Yu,QIN YuMing,ZHU LiangQuan,FAN XueZheng,DING JiaBo. Method Improvement and Its Application of Micro Complement Fixation Test for Brucellosis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1676-1684.
[4] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[5] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[6] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[7] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[8] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
[9] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[10] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[11] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[12] LI YaFei, SHI JiangLan, WU TianQi, WANG ShaoXia, LI YuNuo, QU ChunYan, LIU CongHui, NING Peng, TIAN XiaoHong. Effects of Combined Foliar Application of Zinc with Imidacloprid on Zinc Enrichment and Protein Components Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2022, 55(3): 514-528.
[13] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[14] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[15] REN ZiQi,KANG YuJie,LI HaiZhen,WANG LianGang,MA HaoYun,LI Hui,WANG LiuYang,MEI XiangDong,NING Jun. Synthesis and Bioactivity of Sex Pheromone Analogues of Trachea atriplicis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4640-4650.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!