Scientia Agricultura Sinica

Previous Articles    

Effect of nitrogen rate on yield formation and nitrogen use efficiency in oilseed (Brassica napus L.) under different cropping system

LI XiaoYong1, HUANG Wei2, LIU HongJu3, LI YinShui1, GU ChiMing1, DAI Jing1, HU WenShi1, YANG Lu1, LIAO Xing 1, QIN Lu 1* #br#   

  1. 1Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062; 2Huanggang Academy of Agricultural Sciences, Huanggang 438000, Hubei3Yingcheng Agricultural Technology Extension Center, Yingcheng 432400, Hubei
  • Online:2022-09-13 Published:2022-09-13

Abstract:

Objective Cropping system and nitrogen rate are important factors affecting the growth and yield formation of oilseed (Brassica napus L.). To investigate the effect of nitrogen application on yield formation and nutrient utilization of oilseed under different cropping system. Method a field experiment was carried out in Huanggang, Hubei province. A oilseed variety “Zhongyouza19” was used as the material, setting with two cropping system (rice-oil rotation, RO; soybean-oil rotation, SO) and four nitrogen rate (N0, 0; N1, 90 kg·hm-2; N2, 180 kg·hm-2; N3, 270 kg·hm-2) in this study. Yield and its components, dry matter accumulation, agronomic traits, nitrogen content and seeds quality were measured. Result(1) the seed yield of SO was significantly higher than that of RO, and the pods per plant, seeds per pod and 1000-seeds weight of oilseed in different cropping system all tended to increase significantly by increasing the amount of nitrogen. Compared with N0, the seed yield of RO increased by 176.68%, 436.49% and 835.40% under N1, N2 and N3 treatments, respectively, while that of SO increased by 123.96%, 344.46% and 547.25%. And the seed yield increased by 62.09%, 31.33%, 71.79% and 12.21% under N0, N1, N2 and N3 treatments, respectively, in SO compared to RO;(2) The root crown diameter, plant height, first effective branch height and branch number of SO rape were significantly higher than those of RO at maturity stage, and the increase in each agronomic trait index were significant under different cropping system with the increase in nitrogen application; the root biomass and above-ground biomass of SO were significantly higher than those of RO at all growth stages, but the root shoot ratio was lower than that of RO. the root shoot ratio decreased significantly after seedling stage in both cropping system with increasing nitrogen application. (3) Nitrogen content and nitrogen accumulation in the root, pod shell, stalk and seeds of SO were higher than those in RO, and the increase in nitrogen content and nitrogen accumulation in each part were significant with the increase in nitrogen application; the apparent nitrogen recovery efficiency under SO were higher than those under RO, and the apparent nitrogen recovery efficiency under RO increased with the increase in nitrogen application. (4) Compared with the RO, the soluble sugar content of pod shell under SO was lower, while the amino acid content and amino acid /soluble sugar content were higher with the same nitrogen application. The soluble sugar content decreased, but the amino acid content and amino acid/soluble sugar content increased with the increase of nitrogen application. Therefore, the oil content of oilseed in SO was lower than that in RO due to the limitation of fatty acid synthesis substrate, and the oil content of seeds decreased significantly with the increase of nitrogen application in cropping system. Oil yield was maximum in both cropping system at 270 kg·hm-2 nitrogen application level, 1 678.60 kg·hm-2 and 1 665.33 kg·hm-2 for RO and 1 684.03 kg·hm-2 and 1 687.10 kg·hm-2 for SO respectively, but the difference in oil yield between 180 kg·hm-2 and 270 kg·hm-2 nitrogen application for SO was not significant. ConclusionIn conclusion, the nitrogen rate for RO can be controlled at about 270 kg·hm-2, but the nitrogen rate for SO can be controlled at about 180 kg·hm-2 to ensure higher nitrogen use efficiency and higher oil yield.

Key words: oilseed , (Brassica napus , L.),  , cropping system,  , nitrogen rate,  , yield,  , nitrogen use efficiency

[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[4] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[5] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[6] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[7] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[8] WANG YueNing, DAI HongJun, HE Yan, WEI Qiang, GUO XueLiang, LIU Yan, YIN MengTing, WANG ZhenPing. Regulation Mechanism of Brassinolide on Anthocyanins Synthesis and Fruit Quality in Wine Grapes Under High Temperature Stress Based on Transcriptome Analysis [J]. Scientia Agricultura Sinica, 2023, 56(6): 1139-1153.
[9] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[10] FAN JunQiang, WU JunYan, LIU LiJun, MA Li, YANG Gang, PU YuanYuan, LI XueCai, SUN WanCang. Correlation Between Stomatal Characteristics and Cold Resistance of Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(4): 599-618.
[11] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[12] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[13] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[14] SHENG QianNan, YU XiaoHong, ZHOU Xiong, TIAN GuiSheng, WU HaiYa, GENG GuoTao, YAN JinYao, LI Jing, REN Tao, LU JianWei. Response of Biomass and Nutrient Competition Between Oilseed Rape and Weed to the Rate of N, P and K Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(3): 481-489.
[15] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!