Scientia Agricultura Sinica

Previous Articles    

Dynamics of Straw Decomposition and Nutrient Release Under Different C/N Ratios

LI Ran1,2, XU MingGang1,2*, SUN Nan2*, WANG JinFeng1, WANG Fei1, LI JianHua1 #br#   

  1. 1Institute of Eco-environment and Industrial Technology, Shanxi Agricultural University/Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Taiyuan 030031; 2Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/ Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Online:2022-10-12 Published:2022-10-12

Abstract: 【ObjectiveUnderstanding the decomposition, nutrient release characteristics and driving factors of straw under different C/N ratio based on coal mining area could provide theoretical basis for the full utilization of straw resources and reclaimed soil fertility improvement.MethodAir-dried maize straw and wheat straw cut into 2 mm pieces were selected for decomposition experiment of a coal mining reclamation area in Shanxi province. Two C/N ratio levels of 25 and 10 were designed in maize straw and wheat straw by supplementing urea, taking no nitrogen application that C/N ratio levels was 52 and 74 as the control. All the straws (8g in organic carbon) were put into a nylon mesh bag (0.38 μm aperture), and horizontally buried into 15cm deep of soil. On the 12, 23, 55, 218, 281 and 365 days since buried, samples were collected from the bags to analyze the dynamic of the dry matter residue and nutrient (carbon, nitrogen, phosphorus and potassium). ResultDuring the first 55 days, adjusting the C/N on 25 with the application N was the best way to accelerate the decomposition of maize straw. And adjusting the C/N on 10 was the best way to accelerate the decomposition of wheat straw. Application N could significantly promote the release of carbon and phosphorus from maize straw during the first 55 days. Application N could significantly accelerate the release of carbon, nitrogen and phosphorus from wheat straw, but had no significant effect on the release of potassium. The thermal equation of straw decomposition and nitrogen and potassium release was better than the temporal equation, and phosphorus release from straw was not suitable for the exponential decay equation. When the accumulated temperature was 4 600℃, the average release rates of carbon, nitrogen, phosphorus and potassium from straw were 49.2%, 39.5%, 40.8% and 9.3%; When the accumulated temperature reached 1 125℃, more than 85% the potassium of straw was released. The decomposition of straw was mainly influenced by the temperature, organic carbon, lignin and hemicellulose. 【Conclusion】Application N could accelerate the decomposition of maize straw and the release of carbon and phosphorus in the early stage, and application N could significantly accelerate the wheat straw decomposition and the release of carbon, nitrogen and phosphorus. Temperature could better reflect the process of straw decomposition and nitrogen, potassium release than time, the decomposition of straw was mainly regulated by the temperature, organic carbon, lignin and hemicellulose. Therefore, combined with the hydrothermal conditions in the coal mining area, the straw with an appropriate amount of urea should be returned to the field in the right time to improve the content of nitrogen, phosphorus and potassium of the reclaimed soil.


Key words: straw, decomposition, nutrient release, dynamics equation

[1] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[2] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[3] LI DeJin, MA Xiang, SUN Yue, XU MingGang, DUAN YingHua. Decomposition Characteristics of Straw and Organic Fertilizer Mixed Soil After Landfill in Typical Area [J]. Scientia Agricultura Sinica, 2023, 56(6): 1127-1138.
[4] YANG JianJun, GAI Hao, ZHANG MengXuan, CAI YuRong, WANG LiYan, WANG LiGang. Effect of Subsoiling Combined with Straw Returning Measure on Pore Structure of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(5): 892-906.
[5] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[6] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[7] WANG YongLiang, XU ZiHang, LI Shen, LIANG ZheMing, XUE XiaoRong, BAI Ju, YANG ZhiPing. Straw Returning and Post-Silking Irrigating Improve the Grain Yield and Utilization of Water and Nitrogen of Spring Maize [J]. Scientia Agricultura Sinica, 2023, 56(18): 3599-3614.
[8] LIU ShuJun, LI DongChu, HUANG Jing, QU XiaoLin, MA ChangBao, WANG HuiYing, YU ZiKun, ZHANG Lu, HAN TianFu, LIU KaiLou, SHEN Zhe, ZHANG HuiMin. Spatial-Temporal Variation Characteristics of Wheat and Maize Stalk Resources and Chemical Fertilizer Reduction Potential of Returning to Farmland in Recent 30 Years in China [J]. Scientia Agricultura Sinica, 2023, 56(16): 3140-3155.
[9] LI Jin, REN LiJun, LI XiaoYu, BI RunXue, JIN XinXin, YU Na, ZHANG YuLing, ZOU HongTao, ZHANG YuLong. Effects of Different Straw Returning Patterns on Soil CO2 Emission and Carbon Balance in Maize Field [J]. Scientia Agricultura Sinica, 2023, 56(14): 2738-2750.
[10] CHEN ShuoTong, XIA Xin, DING YuanJun, FENG Xiao, LIU XiaoYu, Marios Drosos, LI LianQing, PAN GenXing. Changes in Topsoil Organic Matter Content and Composition of a Gleyic Stagnic Anthrosol Amended with Maize Residue in Different Forms from the Tai Lake Plain, China [J]. Scientia Agricultura Sinica, 2023, 56(13): 2518-2529.
[11] ZHOU MingXing, DAI ZiJun, FAN Jun, FU Wei, HAO MingDe. Effect of No-Tillage Combined with Mulching on the Structure and Organic Carbon Content of Aggregates in Heilu Soil of the Weibei Dry Plateau [J]. Scientia Agricultura Sinica, 2023, 56(12): 2329-2340.
[12] YU Ru, SONG JiaShen, ZHANG HongYuan, CHANG FangDi, WANG YongQing, WANG XiQuan, WANG Jing, WANG WeiNi, LI YuYi. Effects of Straw Interlayer Combined with Spring Irrigation on Saline- Alkali Soil Respiration and Its Temperature Sensitivity in Hetao Irrigation District [J]. Scientia Agricultura Sinica, 2023, 56(12): 2341-2353.
[13] LIAO HongJuan, JIANG YuMei, YE Xia, ZHANG ZhiBin, MA TongYu, ZHU Du. Optimization of Solid State Fermentation for Production of Active Substances Against Plant Pathogenic Fungi from Chaetomium globosum [J]. Scientia Agricultura Sinica, 2023, 56(11): 2106-2117.
[14] LI Ran, XU MingGang, SUN Nan, WANG JinFeng, WANG Fei, LI JianHua. Dynamics Characteristic of Straw Decomposition and Nutrient Release Under Different C/N Ratio [J]. Scientia Agricultura Sinica, 2023, 56(11): 2118-2128.
[15] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!