Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (5): 892-906.doi: 10.3864/j.issn.0578-1752.2023.05.007

• SOIL & FERTILIZER · WATER-SAVING IRRIGATION · AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effect of Subsoiling Combined with Straw Returning Measure on Pore Structure of Black Soil

YANG JianJun1(), GAI Hao1, ZHANG MengXuan1, CAI YuRong1, WANG LiYan2, WANG LiGang1()   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Beijing 100081
    2 Qinggang Meteorological Bureau, Qinggang 151600, Heilongjiang
  • Received:2022-07-11 Accepted:2022-09-14 Online:2023-03-01 Published:2023-03-13

Abstract:

【Objective】The effect of subsoiling combined with straw returning on soil pore structure of black soil in Northeast China is lack of definite judgment. Aimed at such problem, this research was conducted in order to provide scientific basis for the influence mechanism of this measure on soil structure of black soil and the establishment of reasonable tillage.【Method】In this study, a 5-year field positioning experiment conducted in Qinggang County, Suihua City, Heilongjiang Province, a typical black soil area in Northeast China was used as a platform. Farmers’ conventional treatment (FP), 25 cm subsoiling alone treatment (T2), 25 cm subsoiling combined with straw returning treatment (T3) and 35 cm subsoiling combined with straw returning treatment (T4) were set. The visualization and quantification of soil pore structure were studied using CT scanning technology, and combined with field capacity and bulk density to explore the effect of subsoiling combined with straw returning on the pore structure of black soil. 【Result】The results showed that the two-dimensional and three-dimensional images of soil pores clearly showed that the pore distribution at 0-20 cm soil layer was significantly less than that at 20-40 cm soil layer in all treatments, while the pore distribution of suboiling combined with straw returning treatment (T3 and T4) was significantly higher than that under FP treatment, and their macropores with more complex structure were increased. Quantitative analysis showed that compared with FP treatment, the total porosity of 20-30 cm soil layer under T2 was significantly increased by 103.0% (P<0.05), which was achieved by significantly increasing the micropores porosity(pore diameter d≤0.50 mm) by 91.3% and mesopores porosity (0.50 mm<d≤1.00 mm) by 143.5% (P<0.05). While subsowing combined with straw returning treatments (T3 and T4) significantly increased the total porosity of 0-30 cm soil layer by 109.8%-382.7% (P<0.05), which was achieved by significantly increasing the macropores porosity (d>1.00 mm) by 221.5%-661.7% and the mesopores porosity by 105.4%-544.9% (P<0.05). In addition, compared with FP treatment, subsoiling combined with straw returning (T3 and T4) significantly increased the fractal dimension of soil pores at 0-30cm soil layer by 9.9%-17.7% (P<0.05), decreased the Euler number by 32.4%-66.4% (P<0.05), and significantly increased the field water capacity by 24.2%-40.6% (P<0.05). Further analysis showed that the different pore size porosity and total porosity was significantly positively correlated with field capacity and fractal dimension, but significantly negatively correlated with Euler number (P<0.01). 【Conclusion】Subsoiling combined with straw returning could improve porosity of macropores and mesopores pore of black soil, improve pore structure and connectivity, and increase field capacity, especially the effect of 35 cm subsoiling combined with straw returning treatment is the most significant, which could be recommended measure for rational tillage construction in black soil of Northeast China.

Key words: Northeast black soil, subsoiling combined with straw returning, CT scanning technology, pore structure in soil

Table 1

Basic physical and chemical properties of soil in study site in 2017"

土壤深度
Soil depth (cm)
土壤有机碳
SOC (g·kg-1)
全氮
TN (mg·kg-1)
速效磷
AP (mg·kg-1)
速效钾
AK (mg·kg-1)
土壤容重
SBD (g·cm-3)
pH
0-20 18.8 3.4 30.9 179.8 1.34 6.5
20-40 15.1 1.3 9.7 161.7 1.25 7.0
40-60 10.4 0.8 5.1 152.5 1.37 7.3
60-80 7.3 0.5 3.8 150.0 1.41 7.5
80-100 5.7 0.5 5.8 152.2 1.41 7.5

Fig. 1

Schematic diagram of test plot and sampling sites layout"

Fig. 2

Tillage process of subsoiling combined with straw returning"

Fig. 3

Schematic diagram of a sample box"

Fig. 4

Two-dimensional structure diagram of soil pores under different subsoiling combined with straw returning The white part in the figure is the pore, and the black part is the soil matrix, the actual size is 2 cm×2 cm"

Fig. 5

Three-dimensional structure diagram of soil pores under different subsoiling combined with straw returning In the figure, the red part of the rectangular body is the pore, and the rest part is the soil matrix, the actual size is 2 cm×2 cm×40 cm"

Fig. 6

Effects of different subsoiling combined with straw returning on soil total porosity at different depths"

Fig. 7

Distribution of pore size porosity at different soil layers under different subsoiling combined with straw returning"

Table 2

Effects of different subsoiling combined with straw returning on soil fractal dimension and euler number"

土层
Soil layer (cm)
指标
Items
处理Treatments
FP T2 T3 T4
0-10 分形维数 Fractal dimension 2.23±0.23b 2.30±0.03b 2.59±0.03a 2.62±0.04a
欧拉数 Euler number 7954±1301a 5393±463b 3556±406b 3603±477b
10-20 分形维数 Fractal dimension 2.26±0.01b 2.33±0.03b 2.63±0.02a 2.61±0.02a
欧拉数 Euler number 9934±798a 6350±848b 5149±747b 6718±1909b
20-30 分形维数 Fractal dimension 2.42±0.02a 2.50±0.12b 2.71±0.07a 2.66±0.08a
欧拉数 Euler number 7204±677a 6506±1270b 3541±271c 4606±830bc
30-40 分形维数 Fractal dimension 2.54±0.02b 2.60±0.07b 2.63±0.03b 2.78±0.01a
欧拉数 Euler number 8753±734a 5676±1091b 5250±443bc 4133±440c

Fig. 8

Effects of different subsoiling combined with straw returning measures on soil bulk density and field capacity"

Fig. 9

Correlation heat map between soil pore structure parameters and soil physical properties parameters In the figure, SP, MP, LP, TP, FD, EN, BD and FC respectively represent porosity of small pores, porosity of medium pores, porosity of large pores, total porosity, fractal dimension, Euler number, bulk density and field capacity. **Significance at 0.01 level"

Table 3

Soil organic carbon content in 0-40 cm soil layer of each treatment"

土层
Soil layer (cm)
处理Treatments
FP T2 T3 T4
0-10 18.2±0.7b 17.3±0.5b 19.4±0.5a 19.9±0.4a
10-20 16.9±0.6b 16.2±0.5b 19.5±0.4a 20.0±0.7a
20-30 15.5±0.4b 13.6±0.6c 18.3±0.7a 18.7±0.8a
30-40 12.4±0.4c 12.1±0.5c 14.6±0.5b 15.8±1.4a
[1]
郭孟洁, 李建业, 李健宇, 齐佳睿, 张兴义. 实施16年保护性耕作下黑土土壤结构功能变化特征. 农业工程学报, 2021, 37(22): 108-118.
GUO M J, LI J Y, LI J Y, QI J R, ZHANG X Y. Changes of soil structure and function after 16-year conservation tillage in black soil. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 108-118.(in Chinese)
[2]
韩晓增, 邹文秀. 我国东北黑土地保护与肥力提升的成效与建议. 中国科学院院刊, 2018, 33(2): 206-212. doi:10.16418/j.issn.1000-3045.2018.02.011.

doi: 10.16418/j.issn.1000-3045.2018.02.011
HAN X Z, ZOU W X. Effects and suggestions of black soil protection and soil fertility increase in northeast China. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 206-212. doi:10.16418/j.issn.1000-3045.2018.02.011.(in Chinese)

doi: 10.16418/j.issn.1000-3045.2018.02.011
[3]
张博文, 杨彦明, 张兴隆, 李金龙, 陈新宇, 李志新. 连续深松对黑土结构特性和有机碳及碳库指数影响. 中国土壤与肥料, 2019(2): 6-13.
ZHANG B W, YANG Y M, ZHANG X L, LI J L, CHEN X Y, LI Z X. Effects of continuous deep loosening on soil physical characteristics, organic carbon content and carbon pool index in black soil. Soil and Fertilizer Sciences in China, 2019(2): 6-13.(in Chinese)
[4]
李景, 吴会军, 武雪萍, 王碧胜, 姚宇卿, 吕军杰. 长期免耕和深松提高了土壤团聚体颗粒态有机碳及全氮含量. 中国农业科学, 2021, 54(2): 334-344.

doi: 10.3864/j.issn.0578-1752.2021.02.009
LI J, WU H J, WU X P, WANG B S, YAO Y Q, J J. Long-term conservation tillage enhanced organic carbon and nitrogen contents of particulate organic matter in soil aggregates. Scientia Agricultura Sinica, 2021, 54(2): 334-344.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.02.009
[5]
邱琛, 韩晓增, 陈旭, 陆欣春, 严君, 冯玉钿, 甘佳伟, 邹文秀, 刘国辉. CT扫描技术研究有机物料还田深度对黑土孔隙结构影响. 农业工程学报, 2021, 37(14): 98-107.
QIU C, HAN X Z, CHEN X, LU X C, YAN J, FENG Y T, GAN J W, ZOU W X, LIU G H. Effects of organic amendment depths on black soil pore structure using CT scanning technology. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(14): 98-107.(in Chinese)
[6]
高洪军, 彭畅, 张秀芝, 李强, 朱平, 王立春. 秸秆还田量对黑土区土壤及团聚体有机碳变化特征和固碳效率的影响. 中国农业科学, 2020, 53(22): 4613-4622.

doi: 10.3864/j.issn.0578-1752.2020.22.008
GAO H J, PENG C, ZHANG X Z, LI Q, ZHU P, WANG L C. Effects of corn straw returning amounts on carbon sequestration efficiency and organic carbon change of soil and aggregate in the black soil area. Scientia Agricultura Sinica, 2020, 53(22): 4613-4622.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.22.008
[7]
张伟明, 陈温福, 孟军, 金梁, 郭伟, 赵洪亮. 东北地区秸秆生物炭利用潜力、产业模式及发展战略研究. 中国农业科学, 2019, 52(14): 2406-2424.

doi: 10.3864/j.issn.0578-1752.2019.14.003
ZHANG W M, CHEN W F, MENG J, JIN L, GUO W, ZHAO H L. Study of straw-biochar on utilization potential, industry model and developing strategy in northeast China. Scientia Agricultura Sinica, 2019, 52(14): 2406-2424.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.14.003
[8]
翟振, 李玉义, 郭建军, 王婧, 董国豪, 郭智慧, 逄焕成. 耕深对土壤物理性质及小麦-玉米产量的影响. 农业工程学报, 2017, 33(11): 115-123.
ZHAI Z, LI Y Y, GUO J J, WANG J, DONG G H, GUO Z H, PANG H C. Effect of tillage depth on soil physical properties and yield of winter wheat-summer maize. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 115-123.(in Chinese)
[9]
李嵩, 韩巍, 张凯, 依艳丽. 不同耕作方式对辽西褐土物理性状及玉米根系分布的影响. 玉米科学, 2020, 28(6): 101-106. doi:10.13597/j.cnki.maize.science.20200615.

doi: 10.13597/j.cnki.maize.science.20200615
LI S, HAN W, ZHANG K, YI Y L. Effect of different tillage methods on soil structure and maize root distribution in cinnamon soil area in western Liaoning. Journal of Maize Sciences, 2020, 28(6): 101-106. doi:10.13597/j.cnki.maize.science.20200615.(in Chinese)

doi: 10.13597/j.cnki.maize.science.20200615
[10]
丛聪, 王天舒, 岳龙凯, 周璇, 李玉明, 尧水红. 深松配施有机物料还田对黑土区坡耕地土壤物理性质的改良效应. 中国土壤与肥料, 2021(3): 227-236.
CONG C, WANG T S, YUE L K, ZHOU X, LI Y M, YAO S H. Amendment effect of subsoiling with organic materials application on soil physical properties of slope cropland in mollisol region. Soil and Fertilizer Sciences in China, 2021(3): 227-236.(in Chinese)
[11]
刘平奇. 不同耕作措施下东北黑土平/坡耕地有机碳平衡及影响因素研究[D]. 北京: 中国农业科学院, 2020.
LIU P Q. Study on organic carbon balance and influencing factors of flat/sloping farmlands with different tillage measures in black soil region of northeast China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020.(in Chinese)
[12]
贺美, 王迎春, 王立刚, 李成全, 王利民, 李玉红, 刘平奇. 深松施肥对黑土活性有机碳氮组分及酶活性的影响. 土壤学报, 2020, 57(2): 446-456.
HE M, WANG Y C, WANG L G, LI C Q, WANG L M, LI Y H, LIU P Q. Effects of subsoiling combined with fertilization on the fractions of soil active organic carbon and soil active nitrogen, and enzyme activities in black soil in northeast China. Acta Pedologica Sinica, 2020, 57(2): 446-456.(in Chinese)
[13]
程亚南, 刘建立, 张佳宝. 土壤孔隙结构定量化研究进展. 土壤通报, 2012, 43(4): 988-994. doi:10.19336/j.cnki.trtb.2012.04.038.

doi: 10.19336/j.cnki.trtb.2012.04.038
CHENG Y N, LIU J L, ZHANG J B. Advance in the study on quantification of soil pore structure. Chinese Journal of Soil Science, 2012, 43(4): 988-994. doi:10.19336/j.cnki.trtb.2012.04.038.(in Chinese)

doi: 10.19336/j.cnki.trtb.2012.04.038
[14]
POESEN J, INGELMO-SANCHEZ F. Runoff and sediment yield from topsoils with different porosity as affected by rock fragment cover and position. CATENA, 1992, 19(5): 451-474. doi:10.1016/0341-8162(92)90044-C.

doi: 10.1016/0341-8162(92)90044-C
[15]
EDWARDS W M, NORTON L D, REDMOND C E. Characterizing macropores that affect infiltration into nontilled soil. Soil Science Society of America Journal, 1988, 52(2): 483-487. doi:10.2136/sssaj1988.03615995005200020033x.

doi: 10.2136/sssaj1988.03615995005200020033x
[16]
周虎, 李文昭, 张中彬, 彭新华. 利用X射线CT研究多尺度土壤结构. 土壤学报, 2013, 50(6): 1226-1230.
ZHOU H, LI W Z, ZHANG Z B, PENG X H. Characterization of multi-scale soil structure with X-ray computed tomography. Acta Pedologica Sinica, 2013, 50(6): 1226-1230.(in Chinese)
[17]
张宏媛, 逄焕成, 卢闯, 刘娜, 张晓丽, 李玉义. CT扫描分析秸秆隔层孔隙特征及其对土壤水入渗的影响. 农业工程学报, 2019, 35(6): 114-122.
ZHANG H Y, PANG H C, LU C, LIU N, ZHANG X L, LI Y Y. Pore characteristics of straw interlayer based on computed tomography images and its influence on soil water infiltration. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 114-122.(in Chinese)
[18]
ELLIOT T R, HECK R J. A comparison of optical and X-ray CT technique for void analysis in soil thin section. Geoderma, 2007, 141(1/2): 60-70. doi:10.1016/j.geoderma.2007.05.001.

doi: 10.1016/j.geoderma.2007.05.001
[19]
MUNKHOLM L J, HECK R J, DEEN B. Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability. Geoderma, 2012, 181/182: 22-29. doi:10.1016/j.geoderma.2012.02.024.

doi: 10.1016/j.geoderma.2012.02.024
[20]
王宪玲, 赵志远, 马艳婷, 郑朝霞, 郑伟, 翟丙年, 赵政阳. 基于CT扫描技术研究有机无机肥长期配施对土壤物理特征的影响. 植物营养与肥料学报, 2020, 26(9): 1647-1655.
WANG X L, ZHAO Z Y, MA Y T, ZHENG Z X, ZHENG W, ZHAI B N, ZHAO Z Y. Study on the effects of long-term application of chemical fertilizer combined with manure on soil physical properties of apple orchard based on CT scanning technology. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1647-1655.(in Chinese)
[21]
房焕, 李奕, 周虎, 颜晓元, 彭新华. 稻麦轮作区秸秆还田对水稻土结构的影响. 农业机械学报, 2018, 49(4): 297-302.
FANG H, LI Y, ZHOU H, YAN X Y, PENG X H. Effects of straw incorporation on paddy soil structure in rice-wheat rotation system. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 297-302.(in Chinese)
[22]
GARBOUT A, MUNKHOLM L J, HANSEN S B. Tillage effects on topsoil structural quality assessed using X-ray CT, soil cores and visual soil evaluation. Soil and Tillage Research, 2013, 128: 104-109. doi:10.1016/j.still.2012.11.003.

doi: 10.1016/j.still.2012.11.003
[23]
蔡太义, 张佳宝, 张丛志, 黄会娟, 白玉红, 赵占辉, 李太魁. 基于显微CT研究施肥方式对砂姜黑土大孔隙结构的影响. 干旱区资源与环境, 2017, 31(12): 143-149. doi:10.13448/j.cnki.jalre.2017.393.

doi: 10.13448/j.cnki.jalre.2017.393
CAI T Y, ZHANG J B, ZHANG C Z, HUANG H J, BAI Y H, ZHAO Z H, LI T K. Effects of fertilization mode on macropore characteristics of the Shajiang black soil (vertisol) based on computed tomography (CT) images. Journal of Arid Land Resources and Environment, 2017, 31(12): 143-149. doi:10.13448/j.cnki.jalre.2017.393.(in Chinese)

doi: 10.13448/j.cnki.jalre.2017.393
[24]
张琪. 长期免耕措施下土壤结构定量化研究[D]. 北京: 中国地质大学(北京), 2020.
ZHANG Q. Quantitative description of soil structure under long-term no-tillage farming[D]. Beijing: China University of Geosciences, 2020.(in Chinese)
[25]
GUO Y F, FAN R Q, ZHANG X P, ZHANG Y, WU D H, MCLAUGHLIN N, ZHANG S X, CHEN X W, JIA S X, LIANG A Z. Tillage-induced effects on SOC through changes in aggregate stability and soil pore structure. Science of the Total Environment, 2020, 703: 134617. doi:10.1016/j.scitotenv.2019.134617.

doi: 10.1016/j.scitotenv.2019.134617
[26]
甘磊, 张静举, 黄太庆, 陈晓冰, 马蕊, 张金莲, 陈廷速. 基于CT技术的甘蔗地不同耕作措施下土壤孔隙结构研究. 西南农业学报, 2017, 30(8): 1843-1848. doi:10.16213/j.cnki.scjas.2017.8.025.

doi: 10.16213/j.cnki.scjas.2017.8.025
GAN L, ZHANG J J, HUANG T Q, CHEN X B, MA R, ZHANG J L, CHEN T S. Pore structure in sugarcane soil under different tillage managements based on CT scanning. Southwest China Journal of Agricultural Sciences, 2017, 30(8): 1843-1848. doi:10.16213/j.cnki.scjas.2017.8.025.(in Chinese)

doi: 10.16213/j.cnki.scjas.2017.8.025
[27]
许静. 不同试验方法测定田间持水量的对比研究[D]. 长春: 吉林大学, 2018.
XU J. Comparative study on the field capacity based on different test methods[D]. Changchun: Jilin University, 2018.(in Chinese)
[28]
邹文秀, 韩晓增, 严君, 陈旭, 陆欣春, 邱琛, 郝翔翔. 耕翻和秸秆还田深度对东北黑土物理性质的影响. 农业工程学报, 2020, 36(15): 9-18.
ZOU W X, HAN X Z, YAN J, CHEN X, LU X C, QIU C, HAO X X. Effects of incorporation depth of tillage and straw returning on soil physical properties of black soil in Northeast China. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 9-18.(in Chinese)
[29]
邹洪涛, 王胜楠, 闫洪亮, 马迎波, 范庆锋, 黄毅, 张玉龙. 秸秆深还田对东北半干旱区土壤结构及水分特征影响. 干旱地区农业研究, 2014, 32(2): 52-60.
ZOU H T, WANG S N, YAN H L, MA Y B, FAN Q F, HUANG Y, ZHANG Y L. Effects of straw deep returning on soil structure moisturein semiarid region of Northeast China. Agricultural Research in the Arid Areas, 2014, 32(2): 52-60.(in Chinese)
[30]
冯杰, 于纪玉. 利用CT扫描技术确定土壤大孔隙分形维数. 灌溉排水学报, 2005, 24(4): 26-28, 40. doi:10.13522/j.cnki.ggps.2005.04.007.

doi: 10.13522/j.cnki.ggps.2005.04.007
FENG J, YU J Y. Determination fractal dimension of soil macropore using comput ed tomography. Journal of Irrigation and Drainage, 2005, 24(4): 26-28, 40. doi:10.13522/j.cnki.ggps.2005.04.007.(in Chinese)

doi: 10.13522/j.cnki.ggps.2005.04.007
[31]
ZHANG Z B, LIU K L, ZHOU H, LIN H, LI D M, PENG X H. Linking saturated hydraulic conductivity and air permeability to the characteristics of biopores derived from X-ray computed tomography. Journal of Hydrology, 2019, 571: 1-10. doi:10.1016/j.jhydrol.2019.01.041.

doi: 10.1016/j.jhydrol.2019.01.041
[32]
GRONLE A, LUX G, BÖHM H, SCHMIDTKE K, WILD M, DEMMEL M, BRANDHUBER R, WILBOIS K P, HEß J. Effect of ploughing depth and mechanical soil loading on soil physical properties, weed infestation, yield performance and grain quality in sole and intercrops of pea and oat in organic farming. Soil and Tillage Research, 2015, 148: 59-73. doi:10.1016/j.still.2014.12.004.

doi: 10.1016/j.still.2014.12.004
[33]
周艳丽, 卢秉福. 农田机械压实对土壤物理特性的影响. 中国农机化学报, 2018, 39(9): 66-70. doi:10.13733/j.jcam.issn.2095-5553.2018.09.015.

doi: 10.13733/j.jcam.issn.2095-5553.2018.09.015
ZHOU Y L, LU B F. Influence on soil physical properties for farmland mechanical compaction. Journal of Chinese Agricultural Mechanization, 2018, 39(9): 66-70. doi:10.13733/j.jcam.issn.2095-5553.2018.09.015.(in Chinese)

doi: 10.13733/j.jcam.issn.2095-5553.2018.09.015
[34]
ZHANG Y J, WANG R, WANG S L, WANG H, XU Z G, JIA G C, WANG X L, LI J. Effects of different sub-soiling frequencies incorporated into no-tillage systems on soil properties and crop yield in dryland wheat-maize rotation system. Field Crops Research, 2017, 209: 151-158. doi:10.1016/j.fcr.2017.05.002.

doi: 10.1016/j.fcr.2017.05.002
[35]
LIU Z D, QIN A Z, ZHAO B, ATA-UL-KARIM S T, XIAO J F, SUN J S, NING D F, LIU Z G, NAN J Q, DUAN A W. Yield response of spring maize to inter-row subsoiling and soil water deficit in Northern China. PLoS ONE, 2016, 11(4): e0153809. doi:10.1371/journal.pone.0153809.

doi: 10.1371/journal.pone.0153809
[36]
齐红志, 余天雨, 刘天学. 农田机械碾压对土壤物理特性及玉米生长和产量的影响. 南方农业学报, 2021, 52(4): 951-958.
QI H Z, YU T Y, LIU T X. Effects of mechanical compaction on soil physical properties, maize growth and yield in farmland. Journal of Southern Agriculture, 2021, 52(4): 951-958.(in Chinese)
[37]
张聪, 慕平, 尚建明. 长期持续秸秆还田对土壤理化特性、酶活性和产量性状的影响. 水土保持研究, 2018, 25(1): 92-98. doi:10.13869/j.cnki.rswc.2018.01.016.

doi: 10.13869/j.cnki.rswc.2018.01.016
ZHANG C, MU P, SHANG J M. Effects of continuous returning corn straw on soil chemical properties, enzyme activities and yield trait. Research of Soil and Water Conservation, 2018, 25(1): 92-98. doi:10.13869/j.cnki.rswc.2018.01.016.(in Chinese)

doi: 10.13869/j.cnki.rswc.2018.01.016
[38]
FERRO N D, CHARRIER P, MORARI F. Dual-scale micro-CT assessment of soil structure in a long-term fertilization experiment. Geoderma, 2013, 204/205: 84-93. doi:10.1016/j.geoderma.2013.04.012.

doi: 10.1016/j.geoderma.2013.04.012
[39]
丁奠元, 冯浩, 赵英, 杜璇. 氨化秸秆还田对土壤孔隙结构的影响. 植物营养与肥料学报, 2016, 22(3): 650-658.
DING D Y, FENG H, ZHAO Y, DU X. Effect of ammoniated straw returning on soil pore structure. Journal of Plant Nutrition and Fertilizers, 2016, 22(3): 650-658.(in Chinese)
[40]
杨旭, 高梅香, 张雪萍, 林琳, 沙迪, 张利敏. 秸秆还田对耕作黑土中小型土壤动物群落的影响. 生态学报, 2017, 37(7): 2206-2216.
YANG X, GAO M X, ZHANG X P, LIN L, SHA D, ZHANG L M. Effect of straw-returning management on meso-micro soil fauna in a cultivated black soil area. Acta Ecologica Sinica, 2017, 37(7): 2206-2216.(in Chinese)
[41]
朱强根, 朱安宁, 张佳宝, 张焕朝, 杨淑莉, 王意锟. 保护性耕作下土壤动物群落及其与土壤肥力的关系. 农业工程学报, 2010, 26(2): 70-76.
ZHU Q G, ZHU A N, ZHANG J B, ZHANG H C, YANG S L, WANG Y K. Relation of agricultural soil fauna and soil fertility under conservation tillage systems. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(2): 70-76.(in Chinese)
[42]
刘鹏飞. 玉米秸秆还田量对黑土区农田土壤动物群落的影响[D]. 呼和浩特: 内蒙古农业大学, 2019.
LIU P F. Effect of quantity of returned corn straw on the cropland soil fauna community in a black soil area[D]. Hohhot: Inner Mongolia Agricultural University, 2019.(in Chinese)
[43]
徐永刚, 马强, 周桦, 姜春明, 宇万太. 秸秆还田与深松对土壤理化性状和玉米产量的影响. 土壤通报, 2015, 46(2): 428-432. doi:10.19336/j.cnki.trtb.2015.02.026.

doi: 10.19336/j.cnki.trtb.2015.02.026
XU Y G, MA Q, ZHOU H, JIANG C M, YU W T. Effects of straw returning and deep loosening on soil physical and chemical properties and maize yields. Chinese Journal of Soil Science, 2015, 46(2): 428-432. doi:10.19336/j.cnki.trtb.2015.02.026.(in Chinese)

doi: 10.19336/j.cnki.trtb.2015.02.026
[44]
XU D, MERMOUD A. Topsoil properties as affected by tillage practices in North China. Soil and Tillage Research, 2001, 60(1/2): 11-19. doi:10.1016/S0167- 1987(01)00167-2.

doi: 10.1016/S0167-1987(01)00167-2
[45]
GAN L, PENG X, PETH S, HORN R. Effects of grazing intensity on soil thermal properties and heat flux under Leymus chinensis and Stipa grandis vegetation in Inner Mongolia, China. Soil and Tillage Research, 2012, 118: 147-158. doi:10.1016/j.still.2011.11.005.

doi: 10.1016/j.still.2011.11.005
[46]
崔正果. 不同年限玉米秸秆还田对黑土土壤理化性状以及土壤微生物的影响[D]. 长春: 吉林大学, 2019.
CUI Z G. Effect of different years straw returning on physicochemical and microorganism characteristics of black soil[D]. Changchun: Jilin University, 2019.(in Chinese)
[47]
周彦莉, 吴海梅, 周彦栋, 尚旭民, 逄蕾. 短期秸秆不同还田方式对土壤结构和水分影响. 干旱区研究, 2022, 39(2): 502-509. doi:10.13866/j.azr.2022.02.18.

doi: 10.13866/j.azr.2022.02.18
ZHOU Y L, WU H M, ZHOU Y D, SHANG X M, PANG L. Effects of different short-term straw returning methods on soil structure and water content. Arid Zone Research, 2022, 39(2): 502-509. doi:10.13866/j.azr.2022.02.18.(in Chinese)

doi: 10.13866/j.azr.2022.02.18
[48]
MATEO-MARÍN N, BOSCH-SERRA À D, MOLINA M G, POCH R M. Impacts of tillage and nutrient management on soil porosity trends in dryland agriculture. European Journal of Soil Science, 2022, 73(1): e13139. doi:10.1111/ejss.13139.

doi: 10.1111/ejss.13139
[49]
鞠忻倪, 贾玉华, 甘淼, 金珊, 肖波. 黄土沟壑区不同地形部位土壤大孔隙特征研究. 土壤学报, 2018, 55(5): 1098-1107.
JU X N, JIA Y H, GAN M, JIN S, XIAO B. Characteristics of soil macropores in the gully area of loess plateau as affected by terrain. Acta Pedologica Sinica, 2018, 55(5): 1098-1107.(in Chinese)
[50]
王玮璐, 贺康宁, 张潭, 王先棒, 张震中. 青海高寒区水源涵养林土壤机械组成和理化性质对其饱和导水率和持水能力的影响. 植物资源与环境学报, 2020, 29(2): 69-77.
WANG W L, HE K N, ZHANG T, WANG X B, ZHANG Z Z. Effects of mechanical components and physical and chemical properties of soil in water conservation forests in cold highland area of Qinghai on its saturated hydraulic conductivity and water holding capacity. Journal of Plant Resources and Environment, 2020, 29(2): 69-77.(in Chinese)
[51]
阮仁杰. 土壤孔隙特征对氧化亚氮排放和硝态氮释放的影响[D]. 合肥: 安徽农业大学, 2021.
RUAN R J. Nitrate released and nitrous oxide emission under different soil pore characteristics[D]. Hefei: Anhui Agricultural University, 2021.(in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!