Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (11): 2118-2128.doi: 10.3864/j.issn.0578-1752.2023.11.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Dynamics Characteristic of Straw Decomposition and Nutrient Release Under Different C/N Ratio

LI Ran1,2(), XU MingGang1,2(), SUN Nan2(), WANG JinFeng1, WANG Fei1, LI JianHua1   

  1. 1 Institute of Eco-Environment and Industrial Technology, Shanxi Agricultural University/Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Taiyuan 030031
    2 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2022-05-05 Accepted:2022-08-09 Online:2023-06-01 Published:2023-06-19

Abstract:

【Objective】The decomposition, nutrient release characteristics and driving factors of straw under different C/N ratio were studied based on coal mining area, so as to provide as theoretical basis for the full utilization of straw resources and reclaimed soil fertility improvement.【Method】Air-dried maize straw and wheat straw were cut into 2 mm pieces and were selected for decomposition experiment of a coal mining reclamation area in Shanxi Province. Two C/N ratio levels of 25 and 10 were designed in maize straw and wheat straw by supplementing urea, taking no nitrogen application that C/N ratio levels was 52 and 74 as the control. All the straws (8 g in organic carbon) were put into a nylon mesh bag (0.38 µm aperture), and horizontally buried into 15 cm deep of soil. On the 12, 23, 55, 218, 281 and 365 days after buried, samples were collected from the bags to analyze the dynamic of the dry matter residue and nutrient (carbon, nitrogen, phosphorus and potassium). 【Result】During the first 55 days, the adjusting the C/N on 25 with the application N was the best way to accelerate the decomposition of maize straw. Meanwhile, the adjusting the C/N on 10 was the best way to accelerate the decomposition of wheat straw. Application N could significantly promote the release of carbon and phosphorus from maize straw during the first 55 days. Application N could significantly accelerate the release of carbon, nitrogen and phosphorus from wheat straw, but had no significant effect on the release of potassium. The thermal equation of straw decomposition and nitrogen and potassium release was better than the temporal equation, and phosphorus release from straw was not suitable for the exponential decay equation. When the accumulated temperature was 4 600 ℃, the average release rates of carbon, nitrogen, phosphorus and potassium from straw were 49.2%, 39.5%, 40.8% and 90.3%, respectively; When the accumulated temperature reached 1 125 ℃, more than 85% the potassium of straw was released. The decomposition of straw was mainly influenced by the temperature, organic carbon, lignin and hemicellulose. 【Conclusion】Application N could accelerate the decomposition of maize straw and the release of carbon and phosphorus in the early stage, which could significantly accelerate the wheat straw decomposition and the release of carbon, nitrogen and phosphorus too. Temperature could better reflect the process of straw decomposition and nitrogen, potassium release than time, the decomposition of straw was mainly regulated by the temperature, organic carbon, lignin and hemicellulose. Therefore, combined with the hydrothermal conditions in the coal mining area, the straw with an appropriate amount of urea should be returned to the field in the right time to improve the content of nitrogen, phosphorus and potassium of the reclaimed soil.

Key words: C/N ratio, straw, decomposition, nutrient release, dynamics equation, coal mining reclamation area

Fig. 1

The dynamic of straw decomposition residual rate and C residual rate"

Table 1

Coefficient of temporal equation for decomposition of straw (St =S0+S1e-kx)"

秸秆类型
Straw type
处理
Treatment (C/N)
S0
(%)
S1
(%)
k
(d-1)
R2
(n=7)
玉米秸秆MS MN0 (52) 67.93±4.25 30.51±7.82 0.03±0.02 0.801*
MN1 (25) 68.34±2.88 30.78±4.56 0.05±0.02 0.883*
MN2 (10) 68.34±2.62 31.17±5.34 0.06±0.02 0.897*
小麦秸秆WS WN0 (74) 61.36±3.63 36.67±6.88 0.04±0.02 0.882*
WN1 (25) 58.86±3.21 40.14±6.48 0.05±0.02 0.908*
WN2 (10) 57.94±4.65 41.00±9.09 0.04±0.02 0.841*

Table 2

Coefficient of thermal equation for decomposition of straw (St=S0+S1e-kx)"

秸秆类型
Straw type
处理
Treatment (C/N)
S0
(%)
S1
(%)
k
(%·℃-1)
R2
(n=7)
玉米秸秆MS MN0 (52) 59.47±4.87 36.79±5.23 0.08 0.932*
MN1 (25) 65.43±2.93 32.91±4.56 0.18±0.06 0.929*
MN2 (10) 65.82±2.55 32.83±4.21 0.21±0.06 0.938*
小麦秸秆WS WN0 (74) 56.83±3.20 40.60±4.55 0.14±0.04 0.952*
WN1 (25) 55.97±2.98 42.46±4.93 0.21±0.06 0.949*
WN2 (10) 53.26±5.14 44.25±7.65 0.16±0.06 0.893*

Fig. 2

The dynamic of straw N, P and K residual rate"

Table 3

The exponential decay temporal equation fitting attenuations of residual rates of N, P and K in maize straw and wheat straw (Rt=ae-bx)"

养分类型 Nutrient 秸秆 Straw type 处理 Treatment(C/N) a (%) b (%·d-1) R2 n=7)
N 玉米秸秆
Maize straw
MN0 (52) 95.56±2.63 0.12±0.02 0.911*
MN1 (25) 96.19±2.84 0.13±0.02 0.911*
MN2 (10) 96.12±3.24 0.13±0.02 0.888*
小麦秸秆
Wheat straw
WN0 (52) 89.57±3.43 0.11±0.02 0.801*
WN1 (25) 95.62±2.40 0.13±0.02 0.932*
WN2 (10) 94.81±2.49 0.13±0.02 0.928*
P 玉米秸秆
Maize straw
MN0 (52) - - -
MN1 (25) - - -
MN2 (10) 94.28±2.64 0.10±0.02 0.882*
小麦秸秆
Wheat straw
WN0 (52) 93.31±2.40 0.13±0.02 0.931*
WN1 (25) 91.30±3.60 0.13±0.03 0.860*
WN2 (10) 90.36±3.16 0.15±0.02 0.905*
K 玉米秸秆
Maize straw
MN0 (52) 94.60±14.12 3.59±1.29 0.800*
MN1 (25) 95.74±14.37 3.75±1.34 0.793*
MN2 (10) 98.44±13.76 3.48±1.17 0.820*
小麦秸秆
Wheat straw
WN0 (52) 97.36±9.84 6.66±1.51 0.931*
WN1 (25) 98.89±6.97 6.36±1.01 0.966*
WN2 (10) 98.21±6.82 6.16±0.96 0.966*

Table 4

The exponential decay thermal equation fitting attenuations of residual rates of N, P and K in maize straw and wheat straw (Rt=ae-bx)"

养分类型 Nutrient 秸秆 Straw type 处理 Treatment(C/N) a (%) b (%·℃-1) R2 (n=7)
N 玉米秸秆
Maize straw
MN0 (52) 95.78±2.24 0.01 0.937*
MN1 (25) 96.81±1.53 0.01 0.976*
MN2 (10) 96.98±1.62 0.01 0.973*
小麦秸秆
Wheat straw
WN0 (52) 89.49±3.54 0.01 0.801*
WN1 (25) 95.66±2.54 0.01 0.937*
WN2 (10) 94.98±2.48 0.01 0.931*
P 玉米秸秆
Maize straw
MN0 (52) - - -
MN1 (25) - - -
MN2 (10) 94.16±2.74 0.01 0.875*
小麦秸秆
Wheat straw
WN0 (52) 93.32±2.75 0.01 0.913*
WN1 (25) 92.01±2.78 0.01 0.921*
WN2 (10) 90.32±4.09 0.02 0.850*
K 玉米秸秆
Maize straw
MN0 (52) 96.52±11.08 0.19±0.04 0.878*
MN1 (25) 96.43±11.14 0.19±0.04 0.875*
MN2 (10) 99.19±11.38 0.18±0.04 0.877*
小麦秸秆
Wheat straw
WN0 (52) 97.41±6.95 0.31±0.04 0.965*
WN1 (25) 99.14±4.22 0.30±0.03 0.987*
WN2 (10) 98.72±4.05 0.30±0.03 0.988*

Fig. 3

Driving factors of straw decomposition"

[1]
张志权, 束文圣, 廖文波, 蓝崇钰. 豆科植物与矿业废弃地植被恢复. 生态学杂志, 2002, 21(2): 47-52.
ZHANG Z Q, SHU W S, LIAO W B, LAN C Y. Role of legume species in revegetation of mined wastelands. Chinese Journal of Ecology, 2002, 21(2): 47-52. (in Chinese)
[2]
ZHANG W J, WANG X J, XU M G, HUANG S M, LIU H, PENG C. Soil organic carbon dynamics under long-term fertilizations in arable land of Northern China. Biogeosciences, 2010, 7(2): 409-425.

doi: 10.5194/bg-7-409-2010
[3]
叶胜兰. 我国建筑垃圾综合利用的现状及发展趋势. 绿色科技, 2018(18): 124-127.
YE S L. Analysis on the present situation and treatment of comprehensive utilization of construction waste in China. Journal of Green Science and Technology, 2018(18): 124-127. (in Chinese)
[4]
虞轶俊, 马军伟, 陆若辉, 邬奇峰, 朱伟锋, 孔海民, 王峰. 有机肥对土壤特性及农产品产量和品质影响研究进展. 中国农学通报, 2020, 36(35): 64-71.

doi: 10.11924/j.issn.1000-6850.casb2020-0110
YU Y J, MA J W, LU R H, WU Q F, ZHU W F, KONG H M, WANG F. Effect of organic fertilizer on soil characteristics, yield and quality of agricultural products: Research progress. Chinese Agricultural Science Bulletin, 2020, 36(35): 64-71. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2020-0110
[5]
WALELA C, DANIEL H, WILSON B, LOCKWOOD P, COWIE A, HARDEN S. The initial lignin: nitrogen ratio of litter from above and below ground sources strongly and negatively influenced decay rates of slowly decomposing litter carbon pools. Soil Biology and Biochemistry, 2014, 77: 268-275.

doi: 10.1016/j.soilbio.2014.06.013
[6]
YAN Z Y, SONG Z L, LI D, YUAN Y X, LIU X F, ZHENG T. The effects of initial substrate concentration, C/N ratio, and temperature on solid-state anaerobic digestion from composting rice straw. Bioresource Technology, 2015, 177: 266-273.

doi: 10.1016/j.biortech.2014.11.089 pmid: 25496947
[7]
石琳, 金梦灿, 单旭东, 高敏, 陈曦, 郜红建. 不同形态氮素对玉米秸秆腐解与养分释放的影响. 农业资源与环境学报, 2021, 38(2): 277-285.
SHI L, JIN M C, SHAN X D, GAO M, CHEN X, GAO H J. Influences of different forms of nitrogen fertilizer on the decomposition and release of nutrients from corn straw residue. Journal of Agricultural Resources and Environment, 2021, 38(2): 277-285. (in Chinese)
[8]
LI X G, JIA B, LV J T, MA Q J, KUZYAKOV Y, LI F M. Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biology and Biochemistry, 2017, 112: 47-55.

doi: 10.1016/j.soilbio.2017.04.018
[9]
WANG D D, ZHU Z K, SHAHBAZ M, CHEN L, LIU S L, INUBUSHI K, WU J S, GE T D. Split N and P addition decreases straw mineralization and the priming effect of a paddy soil: A 100-day incubation experiment. Biology and Fertility of Soils, 2019, 55(7): 701-712.

doi: 10.1007/s00374-019-01383-6
[10]
李帆, 王静, 武际, 叶寅, 刘泽, 朱宏斌. 尿素硝酸铵调节碳氮比促进小麦秸秆堆肥腐熟. 植物营养与肥料学报, 2019, 25(5): 832-840.
LI F, WANG J, WU J, YE Y, LIU Z, ZHU H B. Fast production of wheat straw aerobic compost through regulating C/N ratio with urea ammonium nitrate solution. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 832-840. (in Chinese)
[11]
LI X W, HAN S, LEI Z M, WU J, SHI Z L, SUN Z X, LI M, WANG H, TANG S, CHENG W L, ZHU L. Effects of nitrogen forms on decomposition and nutrient release of rapeseed straw. Chinese Journal of Eco-Agriculture, 2019, 27(5): 717-725.
[12]
WANG X Y, SUN B, MAO J D, SUI Y Y, CAO X Y. Structural convergence of maize and wheat straw during two-year decomposition under different climate conditions. Environmental Science & Technology, 2012, 46(13): 7159-7165.

doi: 10.1021/es300522x
[13]
曾莉, 张鑫, 张水清, 王秀斌, 梁国庆, 周卫, 艾超, 张跃强. 不同施氮量下潮土中小麦秸秆腐解特性及其养分释放和结构变化特征. 植物营养与肥料学报, 2020, 26(9): 1565-1577.
ZENG L, ZHANG X, ZHANG S Q, WANG X B, LIANG G Q, ZHOU W, AI C, ZHANG Y Q. Characteristics of decomposition, nutrient release and structure change of wheat straw in a fluvo-aquic soil under different nitrogen application rates. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1565-1577. (in Chinese)
[14]
张学林, 周亚男, 李晓立, 侯小畔, 安婷婷, 王群. 氮肥对室内和大田条件下作物秸秆分解和养分释放的影响. 中国农业科学, 2019, 52(10): 1746-1760. doi: 10.3864/j.issn.0578-1752.2019.10.008.

doi: 10.3864/j.issn.0578-1752.2019.10.008
ZHANG X L, ZHOU Y N, LI X L, HOU X P, AN T T, WANG Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubation and field conditions. Scientia Agricultura Sinica, 2019, 52(10): 1746-1760. doi: 10.3864/j.issn.0578-1752.2019.10.008. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.10.008
[15]
RIGGS C E, HOBBIE S E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biology and Biochemistry, 2016, 99: 54-65.

doi: 10.1016/j.soilbio.2016.04.023
[16]
郑文魁, 卢永健, 邓晓阳, 齐范, 毕小媛, 刘艳丽. 控释氮肥对玉米秸秆腐解及潮土有机碳组分的影响. 水土保持学报, 2020, 34(5): 292-298.
ZHENG W K, LU Y J, DENG X Y, QI F, BI X Y, LIU Y L. Effects of controlled-release nitrogen fertilizer on decomposition of maize straw and organic carbon fractions in fluvo-aquic soil. Journal of Soil and Water Conservation, 2020, 34(5): 292-298. (in Chinese)
[17]
DANNEHL T, LEITHOLD G, BROCK C. The effect of C: N ratios on the fate of carbon from straw and green manure in soil. European Journal of Soil Science, 2017, 68(6): 988-998.

doi: 10.1111/ejss.12497
[18]
李然, 徐明岗, 邬磊, 申华平, 孙楠, 蔡岸冬, 王斌, 艾天成, 靳东升, 张强, 洪坚平. 煤矿区复垦土壤中秸秆和生物炭的分解特征. 植物营养与肥料学报, 2021, 27(7): 1129-1140.
LI R, XU M G, WU L, SHEN H P, SUN N, CAI A D, WANG B, AI T C, JIN D S, ZHANG Q, HONG J P. Decomposition characteristics of straw and biochar in a reclaimed soil from coal mining area. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1129-1140. (in Chinese)
[19]
李昌明, 王晓玥, 孙波. 不同气候和土壤条件下秸秆腐解过程中养分的释放特征及其影响因素. 土壤学报, 2017, 54(5): 1206-1217.
LI C M, WANG X Y, SUN B. Characteristics of nutrient release and its affecting factors during plant residue decomposition under different climate and soil conditions. Acta Pedologica Sinica, 2017, 54(5): 1206-1217. (in Chinese)
[20]
陈兵, 王小利, 徐明岗, 李然, 李建华, 靳东升, 段英华, 孙楠. 煤矿复垦区不同有机物料的分解特征. 植物营养与肥料学报, 2020, 26(6): 1126-1134.
CHEN B, WANG X L, XU M G, LI R, LI J H, JIN D S, DUAN Y H, SUN N. Decomposition characteristics of different organic materials in coal mine reclamation area. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1126-1134. (in Chinese)
[21]
CARVALHO A M, BUSTAMANTE M M C, ALCÂNTARA F A, RESCK I S, LEMOS S S. Characterization by solid-state CPMAS 13C NMR spectroscopy of decomposing plant residues in conventional and no-tillage systems in Central Brazil. Soil and Tillage Research, 2009, 102(1): 144-150.

doi: 10.1016/j.still.2008.08.006
[22]
GREGORICH E G, JANZEN H, ELLERT B H, HELGASON B L, QIAN B D, ZEBARTH B J, ANGERS D A, BEYAERT R P, DRURY C F, DUGUID S D, MAY W E, MCCONKEY B G, DYCK M F. Litter decay controlled by temperature, not soil properties, affecting future soil carbon. Global Change Biology, 2017, 23(4): 1725-1734.

doi: 10.1111/gcb.13502 pmid: 27633488
[23]
SHAUKAT A A, TIAN X H, WANG X D, WU F Q, JUMOKE E K. Decomposition characteristics of maize (Zea mays. L.) straw with different carbon to nitrogen (C/N) ratios under various moisture regimes. African Journal of Biotechnology, 2011, 10(50): 10149-10156.

doi: 10.5897/AJB
[24]
赵娜, 赵护兵, 鱼昌为, 曹群虎, 李敏, 曹卫东, 高亚军. 旱地豆科绿肥腐解及养分释放动态研究. 植物营养与肥料学报, 2011, 17(5): 1179-1187.
ZHAO N, ZHAO H B, YU C W, CAO Q H, LI M, CAO W D, GAO Y J. Nutrient releases of leguminous green manures in rainfed lands. Plant Nutrition and Fertilizer Science, 2011, 17(5): 1179-1187. (in Chinese)
[25]
霍竹, 付晋锋, 王璞. 秸秆还田和氮肥施用对夏玉米氮肥利用率的影响. 土壤, 2005, 37(2): 202-204.
HUO Z, FU J F, WANG P. Effects of application of N-fertilizer and crop residues as manure on summer maize n recovery rate. Soils, 2005, 37(2): 202-204. (in Chinese)
[26]
代文才, 高明, 兰木羚, 黄容, 王金柱, 王子芳, 韩晓飞. 不同作物秸秆在旱地和水田中的腐解特性及养分释放规律. 中国生态农业学报, 2017, 25(2): 188-199.
DAI W C, GAO M, LAN M L, HUANG R, WANG J Z, WANG Z F, HAN X F. Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields. Chinese Journal of Eco-Agriculture, 2017, 25(2): 188-199. (in Chinese)
[27]
马想, 徐明岗, 赵惠丽, 段英华. 我国典型农田土壤中有机物料腐解特征及驱动因子. 中国农业科学, 2019, 52(9): 1564-1573. doi: 10.3864/j.issn.0578-1752.2019.09.008.

doi: 10.3864/j.issn.0578-1752.2019.09.008
MA X, XU M G, ZHAO H L, DUAN Y H. Decomposition characteristics and driving factors of organic materials in typical farmland soils in China. Scientia Agricultura Sinica, 2019, 52(9): 1564-1573. doi: 10.3864/j.issn.0578-1752.2019.09.008. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.09.008
[28]
ZHANG D Q, HUI D F, LUO Y Q, ZHOU G Y. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. Journal of Plant Ecology, 2008, 1(2): 85-93.

doi: 10.1093/jpe/rtn002
[29]
BRADFORD M A, BERG B, MAYNARD D S, WIEDER W R, WOOD S A. Understanding the dominant controls on litter decomposition. Journal of Ecology, 2016, 104(1): 229-238.

doi: 10.1111/jec.2016.104.issue-1
[30]
CAI A D, LIANG G P, ZHANG X B, ZHANG W J, LI L, RUI Y C, XU M G, LUO Y Q. Long-term straw decomposition in agro- ecosystems described by a unified three-exponentiation equation with thermal time. Science of the Total Environment, 2018, 636: 699-708.

doi: 10.1016/j.scitotenv.2018.04.303
[31]
MOORHEAD D L, LASHERMES G, SINSABAUGH R L, WEINTRAUB M N. Calculating co-metabolic costs of lignin decay and their impacts on carbon use efficiency. Soil Biology and Biochemistry, 2013, 66: 17-19.

doi: 10.1016/j.soilbio.2013.06.016
[1] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[4] LI DeJin, MA Xiang, SUN Yue, XU MingGang, DUAN YingHua. Decomposition Characteristics of Straw and Organic Fertilizer Mixed Soil After Landfill in Typical Area [J]. Scientia Agricultura Sinica, 2023, 56(6): 1127-1138.
[5] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[6] YANG JianJun, GAI Hao, ZHANG MengXuan, CAI YuRong, WANG LiYan, WANG LiGang. Effect of Subsoiling Combined with Straw Returning Measure on Pore Structure of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(5): 892-906.
[7] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[8] LIAO HongJuan, JIANG YuMei, YE Xia, ZHANG ZhiBin, MA TongYu, ZHU Du. Optimization of Solid State Fermentation for Production of Active Substances Against Plant Pathogenic Fungi from Chaetomium globosum [J]. Scientia Agricultura Sinica, 2023, 56(11): 2106-2117.
[9] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[10] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[11] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[12] LIU ShuJun,LI DongChu,HUANG Jing,LIU LiSheng,WU Ding,LI ZhaoQuan,WU YuanFan,ZHANG HuiMin. Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation [J]. Scientia Agricultura Sinica, 2022, 55(23): 4651-4663.
[13] CHEN ChunYu,CHEN SongLing,HAN YanYu,REN LiJun,ZOU HongTao,ZHANG YunLong. Preparation and Properties of Bionic Modified Water-Based Polymer Coated Urea [J]. Scientia Agricultura Sinica, 2022, 55(20): 3970-3982.
[14] WANG Liang,LIU YuanYuan,QIAN Xin,ZHANG Hui,DAI HongCui,LIU KaiChang,GAO YingBo,FANG ZhiJun,LIU ShuTang,LI ZongXin. The Single Season Wheat Straw Returning to Promote the Synergistic Improvement of Carbon Efficiency and Economic Benefit in Wheat- Maize Double Cropping System [J]. Scientia Agricultura Sinica, 2022, 55(2): 350-364.
[15] Chao MA,YuBao WANG,Gang WU,Hong WANG,JianFei WANG,Lin ZHU,JiaJia LI,XiaoJing MA,RuShan CHAI. Research Progress of Direct Straw Return in Anhui Province over the Last Decade [J]. Scientia Agricultura Sinica, 2022, 55(18): 3584-3599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!