Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (11): 2106-2117.doi: 10.3864/j.issn.0578-1752.2023.11.006

• PLANT PROTECTION • Previous Articles     Next Articles

Optimization of Solid State Fermentation for Production of Active Substances Against Plant Pathogenic Fungi from Chaetomium globosum

LIAO HongJuan1(), JIANG YuMei1(), YE Xia1, ZHANG ZhiBin1, MA TongYu1, ZHU Du1,2()   

  1. 1 College of Life Sciences, Jiangxi Normal University/Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Nanchang 330022
    2 College of Life Sciences, Jiangxi Science and Technology Normal University/Key Laboratory of Bioprocess Engineering of Jiangxi Province, Nanchang 330013
  • Received:2023-02-27 Accepted:2023-04-11 Online:2023-06-01 Published:2023-06-19

Abstract:

【Objective】The objective of this study is to optimize the medium composition and fermentation conditions of straw solid-state fermentation of Chaetomium globosum, improve the antifungal activity of fermentation crude extract, and to provide references for the development of biopesticides of C. globosum and the green resource utilization of straw.【Method】Firstly, using the inhibition rate of crude extracts against the mycelia growth of 9 plant pathogenic fungi as evaluation index, straw (rice, wheat, maize, rape) and nitrogen source (bean pulp, wheat bran, ammonium chloride) in the medium were screened to determine the optimal composition of fermentation medium. Then the single factor optimization of fermentation conditions was carried out, and the inhibition rate of crude extracts against Phytophthora capsici was taken as the evaluation index to determine the optimal range of each fermentation condition and the degree of influence on the antifungal activity of crude extracts. Based on the results of single factor optimization, orthogonal design was used to optimize the fermentation conditions. Parameters were as follows: fermentation time 18-36 d, fermentation temperature 26-32 ℃, initial water content of medium 70%-85%, mass ratio of straw to wheat bran 4﹕1-1﹕1, straw particle size 20->100 mesh. Finally, the optimal fermentation conditions for producing antifungal active substances by solid state fermentation of straw from C. globosum were obtained and verified.【Result】When the composition of solid fermentation medium was screened, it was found that the antifungal effect of crude extracts obtained from the medium composed of wheat straw and wheat bran was generally better than that of other medium. In the single factor optimization of fermentation conditions, the inoculation amount of fungal solution had no significant effect on the antifungal effect of crude extract, so the subsequent orthogonal optimization was not carried out. In the orthogonal optimization, the effects of fermentation conditions on the antifungal activity of the crude extracts were extremely significant (P<0.001), and the effects were as follows: mass ratio of wheat straw to wheat bran>fermentation time>initial water content of medium>fermentation temperature>particle size of wheat straw. The optimal fermentation conditions obtained by orthogonal optimization were as follows: fermentation time 24 d, fermentation temperature 26 ℃, initial water content of medium 80%, mass ratio of wheat straw to wheat bran 4﹕1, particle size of wheat straw 60-100 mesh. After optimization of fermentation conditions, the inhibitory rates of 1 mg·mL-1 crude extract from the fermentation of C. globosum against Sclerotinia sclerotiorum, P. capsica, Magnaporthe oryzae, Monilinia fructicola, Fusarium oxysporum, Fusarium culmorum, Sarocladium oryzae, Fusarium graminearum and Rhizoctonia solani were 100%, 92.86%, 85.94%, 83.90%, 76.12%, 73.02%, 66.18%, 58.96% and 52.99%, respectively.【Conclusion】After the optimization of fermentation medium composition and fermentation conditions, the crude extracts of C. globosum had high antifungal activity, which could lay a foundation for the subsequent separation and purification of antifungal active substances produced by straw solid fermentation of C. globosum.

Key words: Chaetomium globosum, straw, plant pathogenic fungi, solid state fermentation, antifungal activity

Table 1

Factors and levels of orthogonal test"

水平
Level
发酵时间
Fermentation time
(d)
发酵温度
Fermentation temperature (℃)
初始含水量
Initial moisture content (%)
秸秆与麦麸质量比
Mass ratio of straw to bran
(g/g)
秸秆粒径
Straw particle size
(Mesh number)
1 18 26 70 4﹕1 20-40
2 24 28 75 3﹕1 40-60
3 30 30 80 2﹕1 60-100
4 36 32 85 1﹕1 >100

Table 2

Effects of straw and nitrogen source types on antifungal activity of C. globosum crude extract"

秸秆与氮源
Straw and nitrogen source
粗提物对不同植物病原真菌的抑制率Inhibition rate of crude extracts against different plant pathogenic fungi (%)
A B C D E F G H I
小麦秸秆+麦麸
Wheat straw + Bran
97.97±1.35a 72.68±1.05a 77.05±1.33a 71.30±2.14a 63.24±1.56a 62.16±2.14a 61.29±2.53a 49.15±1.18a 42.86±0.94b
小麦秸秆+NH4Cl
Wheat straw + NH4Cl
80.75±2.32b 11.70±2.27e 34.53±1.19f 11.36±1.05f 28.19±0.77d 16.51±1.95e 0.00±0.48f 14.60±0.67e 49.22±0.91a
小麦秸秆+豆粕
Wheat straw + Bean pulp
63.29±1.65c 17.32±0.31d 49.59±2.17d 2.56±0.86g 17.91±0.36f 4.14±0.46g -3.73±0.56g 22.22±0.50d 2.63±0.28e
水稻秸秆+麦麸
Rice straw + Bran
94.59±0.89a 77.38±3.74a 71.31±0.74b 64.67±0.85b 59.31±2.75a 55.76±1.56b 48.57±2.35b 40.26±2.64b 40.18±2.59b
水稻秸秆+NH4Cl
Rice straw + NH4Cl
19.88±1.98e 17.74±0.85d 49.64±1.91d 0.00±0.75g 16.05±0.95f 4.59±0.24g 1.95±0.68e 13.18±0.19e 48.88±2.65a
水稻秸秆+豆粕
Rice straw + Bean pulp
36.71±1.65d 24.41±1.82c 64.22±1.58c 12.81±0.59f 21.27±0.35e 19.84±0.54e 2.24±0.76e 24.44±2.51d 14.91±1.99d
玉米秸秆+麦麸
Maize straw + Bran
98.31±3.37a 74.38±1.84a 70.49±1.88b 63.89±1.55b 47.35±1.50b 46.85±0.89c 47.14±0.96b 46.66±1.90a 43.64±1.77b
玉米秸秆+NH4Cl
Maize straw + NH4Cl
77.78±3.25b 7.67±1.12f 22.30±1.54g 25.00±1.16d 28.57±0.45d 20.85±2.56e 6.14±0.09d 38.76±2.05b 42.97±1.08b
玉米秸秆+豆粕
Maize straw + Bean pulp
18.09±1.56e 9.45±1.37ef 42.15±0.79e 12.82±1.02f 16.42±1.25f 16.67±1.45e 14.94±0.70c 15.52±1.36e -12.03±1.5f
油菜秸秆+麦麸
Rape straw + Bran
82.28±2.62b 22.05±1.26c 63.42±1.07c 34.18±1.39c 35.46±0.65c 28.57±1.95d 45.28±3.14b 31.85±1.70c 27.19±2.04c
油菜秸秆+NH4Cl
Rape straw + NH4Cl
78.26±1.95b 37.36±1.43b 31.22±1.37f 18.94±1.25e 23.02±1.61e 2.75±0.67h 15.79±1.64c 32.11±1.49c 28.28±0.65c
油菜秸秆+豆粕
Rape straw + Bean pulp
21.79±1.17e 22.05±0.59c 43.90±1.46e 11.11±0.65f 15.66±1.63f 12.70±0.40f 5.97±0.11d 23.70±1.86d -11.40±1.1f

Fig. 1

Effects of fermentation time and fermentation temperature on antifungal activity of crude extracts Different lowercase letters on the bars indicate significantly different among treatments at P<0.05 level. The same as below"

Fig. 2

Effects of initial water content of medium and inoculum amount on antifungal activity of crude extracts"

Fig. 3

Effects of particle size of wheat straw and mass ratio of wheat straw to wheat bran on antifungal activity of crude extracts"

Table 3

Orthogonal experimental scheme and results"

试验号
Test No.
因素Factor 抑制率
Inhibition ratio (%)
A B C D E
1 1 1 1 1 1 73.94
2 1 2 2 2 2 64.06
3 1 3 3 3 3 83.82
4 1 4 4 4 4 33.24
5 2 1 2 3 4 76.53
6 2 2 1 4 3 76.53
7 2 3 4 1 2 91.35
8 2 4 3 2 1 79.82
9 3 1 3 4 2 81.48
10 3 2 4 3 1 77.35
11 3 3 1 2 4 80.39
12 3 4 2 1 3 83.00
13 4 1 4 2 3 76.70
14 4 2 3 1 4 77.35
15 4 3 2 4 1 36.04
16 4 4 1 3 2 55.17
K1 63.77 77.16 71.51 81.41 66.79
K2 81.06 73.82 64.91 75.24 73.02
K3 80.56 72.90 80.62 73.22 80.01
K4 61.32 62.81 69.66 56.82 66.88
R 19.74 14.35 15.71 24.59 13.22
主次顺序Order D>A>C>B>E
优水平Excellent level A2 B1 C3 D1 E3
优组合Excellent combination A2B1C3D1E3

Table 4

Orthogonal test analysis of variance"

方差来源
Source of variance
偏差平方和
Sum of squares of deviations
自由度
df
F
F-value
显著性水平
Significance level
A 0.406 3 79.821 P<0.001
B 0.136 3 26.750 P<0.001
C 0.160 3 31.453 P<0.001
D 0.394 3 77.443 P<0.001
E 0.139 3 27.288 P<0.001
误差Error 0.054 32

Fig. 4

Antifungal pictures of fermentation crude extract from C. globosum on 9 kinds of plant pathogenic fungi under the optimal fermentation condition"

Fig. 5

Comparison of antifungal activity of crude extracts from the fermentation process of C. globosum before and after optimization"

[1]
黄青盈, 吕嘉昕, 何秋愉, 武全, 刘明秋. 纤维素降解菌种的筛选测定及其对秸秆的降解. 复旦学报 (自然科学版), 2022, 61(1): 34-42.
HUANG Q Y, J X, HE Q Y, WU Q, LIU M Q. Screening and determination of cellulose-degrading strains and their utilization in degrading straw. Journal of Fudan University (Natural Science), 2022, 61(1): 34-42. (in Chinese)
[2]
KIM I J, NAM K H, YUN E J, KIM S, YOUN H J, LEE H J, CHOI I G, KIM K H. Optimization of synergism of a recombinant auxiliary activity 9 from Chaetomium globosum with cellulase in cellulose hydrolysis. Applied Microbiology and Biotechnology, 2015, 99(20): 8537-8547.

doi: 10.1007/s00253-015-6592-3
[3]
HU Y, LIU Y J, HAO X R, WANG D, AKHBERDI O, XIANG B Y, ZHU X D. Regulation of the Gα-cAMP/PKA signaling pathway in cellulose utilization of Chaetomium globosum. Microbial Cell Factories, 2018, 17: 160.

doi: 10.1186/s12934-018-1008-6
[4]
郝晓冉, 牛学良, 李强, 潘皎, 朱旭东. 球毛壳菌降解天然木质纤维素能力差异及酶系基因分析. 生物技术通讯, 2014, 25(1): 1-8.
HAO X R, NIU X L, LI Q, PAN J, ZHU X D. Difference in ligocellulose degradation of endophytic Chaetomium globosum isolates and related genes analysis. Letters in Biotechnology, 2014, 25(1): 1-8. (in Chinese)
[5]
GAO B L, XIAO Y W, ZHANG Q, SUN J R, ZHANG Z B, ZHU D. Concurrent production of glycyrrhetic acid 3-O-mono-β-D- glucuronide and lignocellulolytic enzymes by solid-state fermentation of a plant endophytic Chaetomium globosum. Bioresources and Bioprocessing, 2021, 8(1): 88.

doi: 10.1186/s40643-021-00441-y
[6]
梁海林, 童志武, 朱笃. 球毛壳菌次级代谢产物及其生物活性研究进展. 天然产物研究与开发, 2018, 30(4): 609, 702-707.
LIANG H L, TONG Z W, ZHU D. Secondary metabolites from Chaetomiun globosum and their bioactivities. Natural Product Research and Development, 2018, 30(4): 609, 702-707. (in Chinese)
[7]
徐国波, 张青艳, 周孟. 毛壳属真菌的次生代谢产物及其生物活性研究进展. 天然产物研究与开发, 2018, 30(3): 515-525.
XU G B, ZHANG Q Y, ZHOU M. Review on the secondary metabolites and its biological activities from Chaetomium fungi. Natural Product Research and Development, 2018, 30(3): 515-525. (in Chinese)
[8]
廖宏娟, 张志斌, 江玉梅, 朱笃. 球毛壳菌对植物病原真菌和根结线虫的生物防治潜力. 天然产物研究与开发, 2022, 34(6): 1076-1089.
LIAO H J, ZHANG Z B, JIANG Y M, ZHU D. Biocontrol potential of Chaetomium globosum against plant pathogenic fungi and root- knot nematodes: A review. Natural Product Research and Development, 2022, 34(6): 1076-1089. (in Chinese)
[9]
HUTCHINSON M I, POWELL A J, TSANG A, O’TOOLE N, BERKA R M, BARRY K, GRIGORIEW I V, NATVIG D O. Genetics of mating in members of the Chaetomiaceae as revealed by experimental and genomic characterization of reproduction in Myceliophthora heterothallica. Fungal Genetics and Bioldgy, 2016, 86: 9-19.
[10]
PHONG N H, PONGNAK W, SOYTONG K. Antifungal activities of Chaetomium spp. against fusarium wilt of tea. Plant Protection Science, 2016, 52(1): 10-17.
[11]
姜成. 球毛壳菌素A的合成调控及发酵条件优化[D]. 哈尔滨: 哈尔滨工业大学, 2017.
JIANG C. Synthesis regulation and fermentaton optimization of chaetoglobosin A[D]. Harbin:Harbin Institute of Technology, 2017. (in Chinese)
[12]
JIANG C, SONG J Z, ZHANG J Z, YANG Q. New production process of the antifungal chaetoglobosin A using cornstalks. Brazilian Journal of Microbiology, 2017, 48(3): 410-418.

doi: S1517-8382(16)30013-2 pmid: 28223029
[13]
WANG Z C, CUI J W, GAO W S, YANG Q, CHEN L Z, YANG L B, SUN Q, ZHANG H R. Effects of rice straw structure on chaetoglobosin A production by Chaetomium globosum CGMCC 6882. International Journal of Biological Macromolecules, 2020, 150: 1223-1228.

doi: 10.1016/j.ijbiomac.2019.10.132
[14]
王子朝, 郭佳源, 郜文硕, 崔静雯, 杨青青, 朱金帆, 张慧茹. 球毛壳菌CGMCC 6882利用小麦秸秆发酵生产抗氧化多糖. 食品与发酵工业, 2021, 47(10): 185-191.
WANG Z C, GUO J Y, GAO W S, CUI J W, YANG Q Q, ZHU J F, ZHANG H R. Production of an antioxidant polysaccharide from wheat straw by Chaetomium globosum CGMCC 6882. Food and Fermentation Industries, 2021, 47(10): 185-191. (in Chinese)
[15]
WANG Z C, JIA S T, CUI J W, QU J H, YUE Y Y, SUN Q, ZHANG H R. Antioxidant activity of a polysaccharide produced by Chaetomium globosum CGMCC 6882. International Journal of Biological Macromolecules, 2019, 141: 955-960.

doi: 10.1016/j.ijbiomac.2019.09.069
[16]
WANG Y, GAO B L, LI X X, ZHANG Z B, YAN R M, YANG H L, ZHU D. Phylogenetic diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff), detection of polyketide synthase gene and their antagonistic activity analysis. Fungal Biology, 2015, 119(11): 1032-1045.

doi: 10.1016/j.funbio.2015.07.009
[17]
KUMAR V, AHLUWALIA V, SARAN S, KUMAR J, PATEL A K, SINGHANIA R R. Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresource Technology, 2021, 323: 124566.

doi: 10.1016/j.biortech.2020.124566
[18]
EL-HOUSSEINY G S, IBRAHIM A A, YASSIEN M A, ABOSHANAB K M. Production and statistical optimization of paromomycin by Streptomyces rimosus NRRL 2455 in solid state fermentation. BMC Microbiology, 2021, 21(1): 34.

doi: 10.1186/s12866-021-02093-6
[19]
POSTIO L O C, JACOBO-VELAZQUEZ D A, GUAJARDO-FLORES D, AMEZQUITA L E G, GARCIA-CAYUELA T. Solid-state fermentation for enhancing the nutraceutical content of agrifood by-products: Recent advances and its industrial feasibility. Food Bioscience, 2021, 41: 100926.

doi: 10.1016/j.fbio.2021.100926
[20]
YAZID N A, BARRENA R, KOMILIS D, SANCHEZ A. Solid-state fermentation as a novel paradigm for organic waste valorization: A review. Sustainability, 2017, 9(2): 224.

doi: 10.3390/su9020224
[21]
PAN F, LIU Z Q, CHEN Q, XU Y W, HOU K, WU W. Endophytic fungus strain 28 isolated from Houttuynia cordata possesses wide-spectrum antifungal activity. Brazilian Journal of Microbiology, 2016, 47(2): 480-488.

doi: 10.1016/j.bjm.2016.01.006
[22]
KUMAR S, KAUSHIK N, PROKSCH P. Identification of antifungal principle in the solvent extract of an endophytic fungus Chaetomium globosum from Withania somnifera. Springerplus, 2013, 2: 37.

doi: 10.1186/2193-1801-2-37
[23]
LIU C Y, CHANG Z. Identification of the biocontrol strain LB-2 and determination of its antifungal effects on plant pathogenic fungi. Journal of Plant Pathology, 2018, 100(1): 25-32.

doi: 10.1007/s42161-018-0005-2
[24]
吴正可, 刘国华, 李阳, 郑爱娟, 常文环, 陈志敏, 蔡辉益. 混菌固态发酵菜籽粕工艺优化. 中国农业科学, 2019, 52(24): 4603-4612. doi: 10.3864/j.issn.0578-1752.2019.24.014.

doi: 10.3864/j.issn.0578-1752.2019.24.014
WU Z K, LIU G H, LI Y, ZHENG A J, CHANG W H, CHEN Z M, CAI H Y. Optimization of solid state fermentation for rapeseed meal with mixed strains. Scientia Agricultura Sinica, 2019, 52(24): 4603-4612. doi: 10.3864/j.issn.0578-1752.2019.24.014. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.24.014
[25]
李静, 赵筱萌, 王雪薇. 毛壳属Chaetomium真菌的生长温度特征及其分类学价值. 菌物学报, 2012, 31(2): 213-222.
LI J, ZHAO X M, WANG X W. Growth temperature of Chaetomium species and its taxonomic value. Mycosystema, 2012, 31(2): 213-222. (in Chinese)
[26]
RAGHAVARAO K S, RANGANATHAN T V, KARANTH N G. Some engineering aspects of solid-state fermentation. Biochemical Engineering Journal, 2003, 13(2/3): 127-135.

doi: 10.1016/S1369-703X(02)00125-0
[27]
CHEN H Z, HE Q. Value-added bioconversion of biomass by solid-state fermentation. Journal of Chemical Technology and Biotechnology, 2012, 87(12): 1619-1625.
[28]
DE-CASTRO R J S, SATO H H. Enzyme production by solid state fermentation: General aspects and an analysis of the physicochemical characteristics of substrates for agro-industrial wastes valorization. Waste and Biomass Valorization, 2015, 6(6): 1085-1093.

doi: 10.1007/s12649-015-9396-x
[29]
李沛, 王永伟, 刘宁, 李军训. 饲用麦麸纤维降解及其产物功能特性研究进展. 动物营养学报, 2022, 34(9): 5579-5588.

doi: 10.3969/j.issn.1006-267x.2022.09.014
LI P, WANG Y W, LIU N, LI J X. Research progress on fiber degradation of feeding wheat bran and functional properties of its products. Chinese Journal of Animal Nutrition, 2022, 34(9): 5579-5588. (in Chinese)

doi: 10.3969/j.issn.1006-267x.2022.09.014
[30]
孙佳静, 李貌, 孙志洪, 唐志如, 张相鑫, 陈进超. 胶红酵母产类胡萝卜素固态发酵工艺. 中国农业科学, 2018, 51(10): 1982-1994. doi: 10.3864/j.issn.0578-1752.2018.10.017.

doi: 10.3864/j.issn.0578-1752.2018.10.017
SUN J J, LI M, SUN Z H, TANG Z R, ZHANG X X, CHEN J C. The solid-state fermentation process of Rhodotorula mucilaginosa for producing carotenoids. Scientia Agricultura Sinica, 2018, 51(10): 1982-1994. doi: 10.3864/j.issn.0578-1752.2018.10.017. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.10.017
[31]
余新燕, 孟庆果, 任思栋, 刘振叶, 王茂云, 高克祥. 球毛壳ND35对植物生长的影响及其生防效果初探. 安徽农业科学, 2009, 37(34): 16900-16902, 16972.
YU X Y, MENG Q G, REN S D, LIU Z Y, WANG M Y, GAO K X. Effect of Chaetomium globosum ND35 on plant growth and preliminary study of its biocontrol efficacy. Journal of Anhui Agricultural Sciences, 2009, 37(34): 16900-16902, 16972. (in Chinese)
[32]
孟庆果, 李超, 何邦令, 王庆华, 高广增, 高克祥, 温丽伟. 内生真菌球毛壳ND35对板栗苗生长发育的影响. 安徽农业科学, 2010, 38(12): 6258-6259, 6286.
MENG Q G, LI C, HE B L, WANG Q H, GAO G Z, GAO K X, WEN L W. Influence of endophytic fungus Chaetomium globosum ND35 on growth and development of chestnut seedlings. Journal of Anhui Agricultural Sciences, 2010, 38(12): 6258-6259, 6286. (in Chinese)
[33]
王志敏, 米士伟, 李超, 郭君兴, 田叶韩, 高克祥, 何邦令. 球毛壳菌生物菌肥对核桃苗生长的影响. 林业科技, 2017, 42(5): 1-3.
WANG Z M, MI S W, LI C, GUO J X, TIAN Y H, GAO K X, HE B L. Effect of Chaetomium globosum microbial fertilizer on growth of waldnut seedlings. Forestry Science and Technology, 2017, 42(5): 1-3. (in Chinese)
[34]
ZHAI X, LOU D, LI X Q, HAN T, JIA M, KONG Z Y, JI J C, RAHMAN K, QIN L P, ZHENG C J. Endophyte Chaetomium globosum D38 promotes bioactive constituents accumulation and root production in Salvia miltiorrhiza. Frontiers in Microbiology, 2018, 8: 2694.

doi: 10.3389/fmicb.2017.02694
[1] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[4] LI DeJin, MA Xiang, SUN Yue, XU MingGang, DUAN YingHua. Decomposition Characteristics of Straw and Organic Fertilizer Mixed Soil After Landfill in Typical Area [J]. Scientia Agricultura Sinica, 2023, 56(6): 1127-1138.
[5] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[6] YANG JianJun, GAI Hao, ZHANG MengXuan, CAI YuRong, WANG LiYan, WANG LiGang. Effect of Subsoiling Combined with Straw Returning Measure on Pore Structure of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(5): 892-906.
[7] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[8] LI Ran, XU MingGang, SUN Nan, WANG JinFeng, WANG Fei, LI JianHua. Dynamics Characteristic of Straw Decomposition and Nutrient Release Under Different C/N Ratio [J]. Scientia Agricultura Sinica, 2023, 56(11): 2118-2128.
[9] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[10] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[11] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[12] LIU ShuJun,LI DongChu,HUANG Jing,LIU LiSheng,WU Ding,LI ZhaoQuan,WU YuanFan,ZHANG HuiMin. Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation [J]. Scientia Agricultura Sinica, 2022, 55(23): 4651-4663.
[13] SHA YueXia, HUANG ZeYang, MA Rui. Control Efficacy of Pseudomonas alcaliphila Strain Ej2 Against Rice Blast and Its Effect on Endogenous Hormones in Rice [J]. Scientia Agricultura Sinica, 2022, 55(2): 320-328.
[14] WANG Liang,LIU YuanYuan,QIAN Xin,ZHANG Hui,DAI HongCui,LIU KaiChang,GAO YingBo,FANG ZhiJun,LIU ShuTang,LI ZongXin. The Single Season Wheat Straw Returning to Promote the Synergistic Improvement of Carbon Efficiency and Economic Benefit in Wheat- Maize Double Cropping System [J]. Scientia Agricultura Sinica, 2022, 55(2): 350-364.
[15] Chao MA,YuBao WANG,Gang WU,Hong WANG,JianFei WANG,Lin ZHU,JiaJia LI,XiaoJing MA,RuShan CHAI. Research Progress of Direct Straw Return in Anhui Province over the Last Decade [J]. Scientia Agricultura Sinica, 2022, 55(18): 3584-3599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!