Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (12): 2329-2340.doi: 10.3864/j.issn.0578-1752.2023.12.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effect of No-Tillage Combined with Mulching on the Structure and Organic Carbon Content of Aggregates in Heilu Soil of the Weibei Dry Plateau

ZHOU MingXing1(), DAI ZiJun1, FAN Jun1,2(), FU Wei1, HAO MingDe1,2   

  1. 1 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, Shaanxi
    2 Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi
  • Received:2022-05-05 Accepted:2022-08-09 Online:2023-06-16 Published:2023-06-27

Abstract:

【Objective】The aim of this study was to clarify the effects of long-term no-tillage and mulching measures on soil aggregate structure and organic carbon content in Weibei dry plateau farmland, and to explore suitable tillage measures to improve the local soil.【Method】On the basis of continuous 16-year field positioning experiments, a total of 5 field management measures were selected as experiment treatments, including traditional tillage (CT), no-tillage and no mulch (NT), no-tillage + straw mulch (NS), no-tillage + plastic film mulching (NP), and no-tillage + straw + plastic film mulching (NSP). The 0-40 cm ring knife and profile soil samples were collected during the spring maize harvest in October 2019, and the bulk density, aggregate particle size distribution and organic carbon content were determined.【Result】(1) No-tillage and mulching measures (NT, NP, NS and NSP) affected the bulk density and aggregate size distribution of Heilu soil. No-tillage and mulching measures both increased the soil bulk density of the plough layer (0-20 cm), of which 0-10 cm increased significantly (6.8%-17.8%). The changes of bulk density and porosity of the plough layer were opposite to those of the plough layer. The proportion of micro-aggregates was significantly reduced, which promoted the transformation of micro-aggregates into macro-aggregates. The weight percentage of aggregates of each particle size in the plough layer (0-20 cm) was distributed as follows: larger aggregates (0.25-2 mm)>large aggregates (>2 mm)>micro aggregates (0.053-0.25 mm)>powder. The clay fraction (<0.053 mm), the larger aggregates and silty clay fractions in the plow bottom layer (20-40 cm) were significantly higher than the macroaggregates and microaggregates. (2) Under no-tillage and mulching measures, the organic carbon content increased with the increase of aggregate particle size. In the 0-40 cm soil layer, the organic carbon content of the aggregates of each particle size under NT treatment was significantly lower than that under CT treatment, while the NS and NSP treatments were significantly higher than those under CT treatment. (3) The particle size distribution of aggregates was the dominant factor causing the change of the nutrient contribution rate of aggregates. The total organic carbon accumulation in the plough layer was dominated by aggregates>0.25 mm, and the plough layer was mainly composed of silty clay components and organic carbon in larger aggregates. 【Conclusion】Long-term no-tillage and mulching measures promoted the transformation of micro-aggregates into macro-aggregates in the plough layer. Compared with traditional tillage, no-tillage and plastic film mulching decreased the organic carbon content of aggregates of various particle sizes in Heilong soil and in the plough layer, respectively. However, no-tillage mulching (NS, NP and NSP) increased the organic carbon content of aggregates of each particle size compared with no mulching. Straw mulching alone had the best effect, and significantly improved the bulk density and the organic carbon content of each particle size aggregate increased the most, which was the best treatment in this study.

Key words: no-tillage, coated, straw mulching, organic carbon, aggregate, Helu soil, Weibei dry plateau

Table 1

Experimental treatment details"

代码
Code
处理
Treatment
耕作管理
Tillage management
CT 传统耕作 Conventional tillage 仅在春玉米播种前翻耕一次,无覆盖 One plough before spring maize, no mulching on soil
NT 连年免耕 No tillage 试验期连年免耕,无覆盖 No-tillage and no mulching have been taken all the years
NS NT+秸秆覆盖
NT + straw mulching
在NT的基础上,每季作物收获后,秸秆(约7 000 kg·hm-2)粉碎成条状,均匀覆盖小区,播种时收拢放置于行间
Based on NT, all the harvested straw (7 000 kg·hm-2) was crushed into strips and covered on each plot. Before maize seeding, all the straw was piled up in inter-rows
NP NT+地膜覆盖
NT + plastic film mulching
在NT的基础上,垄上覆膜,行间不覆膜,膜上打孔种植
Based on NT, only the ridges covered with plastic films, leave inter-rows clear
NSP NT+秸秆覆盖+地膜覆盖
NT + straw mulching + plastic film mulching
在NT基础上,秸秆覆盖同NS,地膜覆盖同NP
Based on NT, straw mulching was the same as NS, and plastic film mulching was the same as NP

Fig. 1

Distribution of aggregate size in 0-40 cm soil layers under different tillage and mulching measures Letters on the square column indicate that there is significant difference at 0.05 level between the same aggregate size under different treatments"

Table 2

Soil bulk density of 0-40 cm soil layer under different tillage and mulching measures"

处理
Treatment
容重 Soil bulk density (g·cm-3)
0-10 cm 10-20 cm 20-30 cm 30-40 cm
CT 1.12±0.09cC 1.36±0.03aB 1.55±0.07aA 1.57±0.08aA
NT 1.28±0.07aB 1.36±0.05aAB 1.39±0.09bA 1.40±0.05cA
NP 1.32±0.05aB 1.40±0.06aA 1.45±0.07bA 1.15±0.04bcA
NS 1.20±0.05bC 1.40±0.05aB 1.45±0.06bAB 1.50±0.08abA
NSP 1.25±0.03abC 1.40±0.06aB 1.39±0.03bB 1.55±0.06aA

Table 3

Distribution of total organic carbon content in 0-40 cm soil layer under different tillage and mulching measures"

处理
Treatment
总有机碳含量 Total organic carbon content (g·kg-1)
0-10 cm 10-20 cm 20-30 cm 30-40 cm
CT 16.30±0.69c 11.21±0.65c 9.33±0.44c 8.54±0.32b
NT 13.53±0.56e 10.00±0.66bc 9.26±0.56c 8.29±0.42b
NP 14.91±0.89d 11.18±0.45bc 10.41±043b 8.96±0.44ab
NS 20.35±1.53a 13.47±0.35a 10.93±0.35ab 10.20±0.56a
NSP 18.08±0.89b 12.57±0.25ab 9.33±0.44c 9.40±0.42ab

Fig. 2

Distribution of organic carbon content in 0-40 cm soil layers under different tillage and mulching measures Uppercase letters on the square column indicate that the organic carbon of different treatments with the same aggregate size is significantly different at the 0.05 level; lowercase letters indicate that the organic carbon of different aggregate size with the same treatment is significantly different at the 0.05 level"

Fig. 3

Correlation between total organic carbon and aggregate organic carbon content under different tillage and mulching measures"

Fig. 4

Contribution rate of organic carbon from aggregates in 0-40 cm soil layers under different tillage and mulching measures"

[1]
胡锦昇, 樊军, 付威, 王欢, 郝明德. 保护性耕作措施对旱地春玉米土壤水分和硝态氮淋溶累积的影响. 应用生态学报, 2019, 30(4): 1188-1198.

doi: 10.13287/j.1001-9332.201904.009
HU J S, FAN J, FU W, WANG H, HAO M D. Effects of conservation tillage measures on soil water and NO3--N leaching in dryland maize cropland. Chinese Journal of Applied Ecology, 2019, 30(4): 1188-1198. (in Chinese)
[2]
尚金霞, 李军, 贾志宽, 张丽华. 渭北旱塬春玉米田保护性耕作蓄水保墒效果与增产增收效应. 中国农业科学, 2010, 43(13): 2668-2678. doi:10.3864/j.issn.0578-1752.2010.13.006.

doi: 10.3864/j.issn.0578-1752.2010.13.006
SHANG J X, LI J, JIA Z K, ZHANG L H. Soil water conservation effect, yield and income increments of conservation tillage measures in spring maize field on Weibei highland. Scientia Agricultura Sinica, 2010, 43(13): 2668-2678. doi:10.3864/j.issn.0578-1752.2010.13.006. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2010.13.006
[3]
潘雅文, 樊军, 郝明德, 陈旭. 黄土塬区长期不同耕作、覆盖措施对表层土壤理化性状和玉米产量的影响. 植物营养与肥料学报, 2016, 22(6): 1558-1567.
PAN Y W, FAN J, HAO M D, CHEN X. Effects of long-term tillage and mulching methods on properties of surface soil and maize yield in tableland region of the Loess Plateau. Journal of Plant Nutrition and Fertilizers, 2016, 22(6): 1558-1567. (in Chinese)
[4]
陈强, 孙涛, 宋春雨. 免耕对土壤物理性状及作物产量影响. 草业科学, 2014, 31(4): 38-42.
CHEN Q, SUN T, SONG C Y. Influence of no-tillage on soil physical properties and crop production. Pratacultural Science, 2014, 31(4): 38-42. (in Chinese)
[5]
吴杨, 贾志宽, 边少锋, 王永军. 不同方式周年覆盖对黄土高原玉米农田土壤水热的调控效应. 中国农业科学, 2018, 51(15): 2872-2885. doi: 10.3864/j.issn.0578-1752.2018.15.004.

doi: 10.3864/j.issn.0578-1752.2018.15.004
WU Y, JIA Z K, BIAN S F, WANG Y J. Regulation effects of different mulching patterns during the whole season on soil water and temperature in the maize field of loess plateau. Scientia Agricultura Sinica, 2018, 51(15): 2872-2885. doi: 10.3864/j.issn.0578-1752.2018.15.004. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.15.004
[6]
陈林, 杨新国, 翟德苹, 宋乃平, 杨明秀, 候静. 柠条秸秆和地膜覆盖对土壤水分和玉米产量的影响. 农业工程学报, 2015, 31(2): 108-116.
CHEN L, YANG X G, ZHAI D P, SONG N P, YANG M X, HOU J. Effects of mulching withCaragana powder and plastic film on soil water and maize yield. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 108-116. (in Chinese)
[7]
朱琳, 李世清. 地表覆盖对玉米籽粒氮素积累和干物质转移“源-库”过程的影响. 中国农业科学, 2017, 50(13): 2528-2537. doi:10.3864/j.issn.0578-1752.2017.13.012.

doi: 10.3864/j.issn.0578-1752.2017.13.012
ZHU L, LI S Q. Effect of soil surface mulching on the maize source-sink relationship of nitrogen accumulation and dry matter transfer. Scientia Agricultura Sinica, 2017, 50(13): 2528-2537. doi:10.3864/j.issn.0578-1752.2017.13.012. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.13.012
[8]
刘萌, 付威, 樊军, 代子俊, 郝明德. 耕作与覆盖措施对黄土塬区春玉米田土壤水气传输的影响. 植物营养与肥料学报, 2021, 27(5): 814-825.
LIU M, FU W, FAN J, DAI Z J, HAO M D. Effects of tillage and mulching methods on soil water and gas transport in spring maize field on the Loess Plateau. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 814-825. (in Chinese)
[9]
胡锦昇, 樊军, 付威, 郝明德. 不同管理措施对黄土塬区农田土壤水分调控和硝态氮淋溶累积的影响. 植物营养与肥料学报, 2019, 25(2): 213-222.
HU J S, FAN J, FU W, HAO M D. Effect of different agricultural measures on soil water and NO3--N leaching and accumulation in cropland of the Loess Plateau. Journal of Plant Nutrition and Fertilizers, 2019, 25(2): 213-222. (in Chinese)
[10]
BLANCO-CANQUI H, RUIS S J. No-tillage and soil physical environment. Geoderma, 2018, 326: 164-200.

doi: 10.1016/j.geoderma.2018.03.011
[11]
闫雷, 董天浩, 喇乐鹏, 刘鸣一, 孙小贺, 孟庆尧, 张钰莹, 张乃文, 孟庆峰. 免耕和秸秆还田对东北黑土区土壤团聚体组成及有机碳含量的影响. 农业工程学报, 2020, 36(22): 181-188.
YAN L, DONG T H, LA Y P, LIU M Y, SUN X H, MENG Q Y, ZHANG Y Y, ZHANG N W, MENG Q F. Effects of no-tillage and straw returning on soil aggregates composition and organic carbon content in black soil areas of Northeast China. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22): 181-188. (in Chinese)
[12]
周虎, 吕贻忠, 杨志臣, 李保国. 保护性耕作对华北平原土壤团聚体特征的影响. 中国农业科学, 2007, 40(9): 1973-1979. doi:10.3321/j.issn:0578-1752.2007.09.017.

doi: 10.3321/j.issn:0578-1752.2007.09.017
ZHOU H, Y Z, YANG Z C, LI B G. Effects of conservation tillage on soil aggregates in Huabei plain, China. Scientia Agricultura Sinica, 2007, 40(9): 1973-1979. doi:10.3321/j.issn:0578-1752.2007.09.017. (in Chinese)

doi: 10.3321/j.issn:0578-1752.2007.09.017
[13]
荣勤雷, 李若楠, 黄绍文, 周春火, 唐继伟, 王丽英, 张彦才. 不同施肥模式下设施菜田土壤团聚体养分和微生物量特征. 植物营养与肥料学报, 2019, 25(7): 1084-1096.
RONG Q L, LI R N, HUANG S W, ZHOU C H, TANG J W, WANG L Y, ZHANG Y C. Characteristics of nutrients and microbial biomass in soil aggregates under different fertilization modes in greenhouse vegetable production. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1084-1096. (in Chinese)
[14]
NDZELU B S, DOU S, ZHANG X W, ZHANG Y F, MA R, LIU X. Tillage effects on humus composition and humic acid structural characteristics in soil aggregate-size fractions. Soil and Tillage Research, 2021, 213: 105090.

doi: 10.1016/j.still.2021.105090
[15]
高洪军, 彭畅, 张秀芝, 李强, 贾立辉, 朱平. 不同秸秆还田模式对黑钙土团聚体特征的影响. 水土保持学报, 2019, 33(1): 75-79.
GAO H J, PENG C, ZHANG X Z, LI Q, JIA L H, ZHU P. Effects of different straw returning modes on characteristics of soil aggregates in chernozem soil. Journal of Soil and Water Conservation, 2019, 33(1): 75-79. (in Chinese)
[16]
李娟, 廖洪凯, 龙健, 陈彩云. 喀斯特山区土地利用对土壤团聚体有机碳和活性有机碳特征的影响. 生态学报, 2013, 33(7): 2147-2156.
LI J, LIAO H K, LONG J, CHEN C Y. Effect of land use on the characteristics of organic carbon and labile organic carbon in soil aggregates in Karst Mountain areas. Acta Ecologica Sinica, 2013, 33(7): 2147-2156. (in Chinese)

doi: 10.5846/stxb
[17]
MODAK K, BISWAS D R, GHOSH A, PRAMANIK P, DAS T K, DAS S, KUMAR S, KRISHNAN P, BHATTACHARYYA R. Zero tillage and residue retention impact on soil aggregation and carbon stabilization within aggregates in subtropical India. Soil and Tillage Research, 2020, 202: 104649.

doi: 10.1016/j.still.2020.104649
[18]
王秀颖, 高晓飞, 刘和平, 路炳军. 土壤水稳性大团聚体测定方法综述. 中国水土保持科学, 2011, 9(3): 106-113.
WANG X Y, GAO X F, LIU H P, LU B J. Review of analytical methods for aggregate size distribution and water-stability of soil macro-aggregates. Science of Soil and Water Conservation, 2011, 9(3): 106-113. (in Chinese)
[19]
王欢, 付威, 胡锦昇, 樊军, 郝明德. 渭北旱塬管理措施对冬小麦地土壤剖面物理性状的影响. 植物营养与肥料学报, 2019, 25(7): 1097-1106.
WANG H, FU W, HU J S, FAN J, HAO M D. Effects of agricultural measures on soil profile physical properties of winter wheat field in Weibei highland, China. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1097-1106. (in Chinese)
[20]
HUANG T, YANG H, HUANG C, JU X. Effects of nitrogen management and straw return on soil organic carbon sequestration and aggregate-associated carbon. European Journal of Soil Science, 2018, 69(5): 913-923.

doi: 10.1111/ejss.2018.69.issue-5
[21]
HAN X H, ZHAO F Z, TONG X G, DENG J, YANG G H, CHEN L M, KANG D. Understanding soil carbon sequestration following the afforestation of former arable land by physical fractionation. Catena, 2017, 150: 317-327.

doi: 10.1016/j.catena.2016.11.027
[22]
ZHAO F Z, FAN X D, REN C J, ZHANG L, HAN X H, YANG G H, WANG J, DOUGHTY R. Changes of the organic carbon content and stability of soil aggregates affected by soil bacterial community after afforestation. Catena, 2018, 171: 622-631.

doi: 10.1016/j.catena.2018.08.006
[23]
QIN X L, HUANG T T, LU C, DANG P F, ZHANG M M, GUAN X K, WEN P F, WANG T C, CHEN Y L, SIDDIQUE K H M. Benefits and limitations of straw mulching and incorporation on maize yield, water use efficiency, and nitrogen use efficiency. Agricultural Water Management, 2021, 256: 107128.

doi: 10.1016/j.agwat.2021.107128
[24]
KETEMA H, YIMER F. Soil property variation under agroforestry based conservation tillage and maize based conventional tillage in Southern Ethiopia. Soil and Tillage Research, 2014, 141: 25-31.

doi: 10.1016/j.still.2014.03.011
[25]
武均, 蔡立群, 齐鹏, 张仁陟, Yeboah Stephen, 岳丹, 高小龙. 不同耕作措施下旱作农田土壤团聚体中有机碳和全氮分布特征. 中国生态农业学报, 2015, 23(3): 276-284.
WU J, CAI L Q, QI P, ZHANG R Z, STEPHEN Y, YUE D, GAO X L. Distribution characteristics of organic carbon and total nitrogen in dry farmland soil aggregates under different tillage methods in the Loess Plateau of central Gansu Province. Chinese Journal of Eco- Agriculture, 2015, 23(3): 276-284. (in Chinese)
[26]
王浩. 黄土旱塬麦玉轮作田长期定位耕作的土壤改良及耕地生产力提升效应研究[D]. 杨凌: 西北农林科技大学, 2020.
WANG H. Study on soil improvement and productivity improvement effect of long-term fixed tillage in wheat-jade rotation field on loess plateau[D]. Yangling: Northwest A & F University, 2020. (in Chinese)
[27]
KAN Z R, LIU W X, LIU W S, LAL R, DANG Y P, ZHAO X, ZHANG H L. Mechanisms of soil organic carbon stability and its response to no-till: A global synthesis and perspective. Global Change Biology, 2022, 28(3): 693-710.

doi: 10.1111/gcb.v28.3
[28]
白怡婧, 刘彦伶, 李渝, 黄兴成, 张雅蓉, 蒋太明, 秦松. 长期不同施肥和耕作对坡耕地黄壤团聚体组成及有机碳的影响. 中国水土保持科学, 2021, 19(2): 52-60.
BAI Y J, LIU Y L, LI Y, HUANG X C, ZHANG Y R, JIANG T M, QIN S. Effect of long-term different tillage and fertilization measures on aggregates composition and organic carbon in yellow soil slope cultivated land. Science of Soil and Water Conservation, 2021, 19(2): 52-60. (in Chinese)
[29]
李景, 吴会军, 武雪萍, 王碧胜, 姚宇卿, 吕军杰. 长期免耕和深松提高了土壤团聚体颗粒态有机碳及全氮含量. 中国农业科学, 2021, 54(2): 334-344. doi: 10.3864/j.issn.0578-1752.2021.02.009.

doi: 10.3864/j.issn.0578-1752.2021.02.009
LI J, WU H J, WU X P, WANG B S, YAO Y Q, J J. Long-term conservation tillage enhanced organic carbon and nitrogen contents of particulate organic matter in soil aggregates. Scientia Agricultura Sinica, 2021, 54(2): 334-344. doi: 10.3864/j.issn.0578-1752.2021.02.009. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.02.009
[30]
李辉信, 袁颖红, 黄欠如, 胡锋, 潘根兴. 不同施肥处理对红壤水稻土团聚体有机碳分布的影响. 土壤学报, 2006, 43(3): 422-429.
LI H X, YUAN Y H, HUANG Q R, HU F, PAN G X. Effects of fertilization on soil organic carbon distribution in various aggregates of red paddy soil. Acta Pedologica Sinica, 2006, 43(3): 422-429. (in Chinese)
[31]
MESSIGA A J, ZIADI N, ANGERS D A, MOREL C, PARENT L E. Tillage practices of a clay loam soil affect soil aggregation and associated C and P concentrations. Geoderma, 2011, 164(3/4): 225-231.

doi: 10.1016/j.geoderma.2011.06.014
[32]
RAKHSH F, GOLCHIN A, BEHESHTI AL AGHA A, NELSON P N. Mineralization of organic carbon and formation of microbial biomass in soil: Effects of clay content and composition and the mechanisms involved. Soil Biology and Biochemistry, 2020, 151: 108036.

doi: 10.1016/j.soilbio.2020.108036
[33]
薛斌, 黄丽, 鲁剑巍, 李小坤, 殷志遥, 刘智杰, 陈涛. 连续秸秆还田和免耕对土壤团聚体及有机碳的影响. 水土保持学报, 2018, 32(1): 182-189.
XUE B, HUANG L, LU J W, LI X K, YIN Z Y, LIU Z J, CHEN T. Effects of continuous straw returning and no-tillage on soil aggregates and organic carbon. Journal of Soil and Water Conservation, 2018, 32(1): 182-189. (in Chinese)
[34]
杨永辉, 武继承, 丁晋利, 张洁梅, 潘晓莹, 何方. 长期免耕对不同土层土壤结构与有机碳分布的影响. 农业机械学报, 2017, 48(9): 173-182.
YANG Y H, WU J C, DING J L, ZHANG J M, PAN X Y, HE F. Effects of long-term no-tillage on soil structure and organic carbon distribution in different soil layers. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 173-182. (in Chinese)
[35]
李琳, 李素娟, 张海林, 陈阜. 保护性耕作下土壤碳库管理指数的研究. 水土保持学报, 2006, 20(3): 106-109.
LI L, LI S J, ZHANG H L, CHEN F. Study on soil C pool management index of conversation tillage. Journal of Soil and Water Conservation, 2006, 20(3): 106-109. (in Chinese)
[36]
ZHENG F J, WU X P, ZHANG M N, LIU X T, SONG X J, LU J J, WANG B S, JAN VAN GROENIGEN K, LI S P. Linking soil microbial community traits and organic carbon accumulation rate under long-term conservation tillage practices. Soil and Tillage Research, 2022, 220: 105360.

doi: 10.1016/j.still.2022.105360
[37]
赵晶, 刘萌, 付威, 牛育华, 郝明德. 传统耕作结合秸秆地膜双元覆盖是提高渭北旱塬春玉米产量和养分吸收的有效措施. 植物营养与肥料学报, 2021, 27(7): 1151-1163.
ZHAO J, LIU M, FU W, NIU Y H, HAO M D. Coventional tillage and dual mulching of straw and plastic film has stable effects on spring maize yield and nutrient absorption in Weibei dryland. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1151-1163. (in Chinese)
[38]
邱莉萍, 张兴昌, 张晋爱. 黄土高原长期培肥土壤团聚体中养分和酶的分布. 生态学报, 2006, 26(2): 364-372.
QIU L P, ZHANG X C, ZHANG J A. Distribution of nutrients and enzymes in Loess Plateau soil aggregates after long-term fertilization. Acta Ecologica Sinica, 2006, 26(2): 364-372. (in Chinese)
[39]
高会议, 郭胜利, 刘文兆, 车升国, 李淼. 不同施肥处理对黑垆土各粒级团聚体中有机碳含量分布的影响. 土壤学报, 2010, 47(5): 931-938.
GAO H Y, GUO S L, LIU W Z, CHE S G, LI M. Effect of fertilization on organic carbon distribution in various fractions of aggregates in caliche soils. Acta Pedologica Sinica, 2010, 47(5): 931-938. (in Chinese)
[40]
孙天聪, 李世清, 邵明安. 长期施肥对褐土有机碳和氮素在团聚体中分布的影响. 中国农业科学, 2005, 38(9): 1841-1848.
SUN T C, LI S Q, SHAO M A. Effects of long-term fertilization on distribution of organic matters and nitrogen in cinnamon soil aggregates. Scientia Agricultura Sinica, 2005, 38(9): 1841-1848. (in Chinese)
[1] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[2] PANG JinWen, WANG YuHao, TAO HongYang, WEI Ting, GAO Fei, LIU EnKe, JIA ZhiKuan, ZHANG Peng. Effects of Different Biochar Application Rates on Soil Aggregate Characteristics and Organic Carbon Contents for Film-Mulching Field in Semiarid Areas [J]. Scientia Agricultura Sinica, 2023, 56(9): 1729-1743.
[3] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[4] LI Hao, CHEN Jin, WANG HongLiang, LIU KaiLou, HAN TianFu, DU JiangXue, SHEN Zhe, LIU LiSheng, HUANG Jing, ZHANG HuiMin. Response of Carbon and Nitrogen Distribution in Organo-Mineral Complexes of Red Paddy Soil to Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(7): 1333-1343.
[5] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[6] LI DeJin, MA Xiang, SUN Yue, XU MingGang, DUAN YingHua. Decomposition Characteristics of Straw and Organic Fertilizer Mixed Soil After Landfill in Typical Area [J]. Scientia Agricultura Sinica, 2023, 56(6): 1127-1138.
[7] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[8] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[9] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[10] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[11] LIU ShuJun,LI DongChu,HUANG Jing,LIU LiSheng,WU Ding,LI ZhaoQuan,WU YuanFan,ZHANG HuiMin. Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation [J]. Scientia Agricultura Sinica, 2022, 55(23): 4651-4663.
[12] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[13] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
[14] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[15] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!