Scientia Agricultura Sinica

Previous Articles    

Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China

LIU Dan1,2,4, AN YuLi1,3, TAO XiaoXiao5, WANG XiaoZhong1,3, LYU DianQiu4, GUO YanJun4, CHEN XinPing1,3, ZHANG WuShuai1,3 #br# #br#   

  1. 1College of Resources and Environment, Southwest University/Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Chongqing 400715; 2Xinjiang Agricultural Vocational Technical College, Changji 831100, Xinjiang; 3Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715; 4College of Agronomy and Biotechnology, Southwest University, Chongqing 400715; 5Changji Prefecture Meteorological Bureau, Changji 831100, Xinjiang
  • Published:2022-05-11

Abstract: 【Objective】In view of the law of nitrogen uptake and accumulation of maize in seed production in China is unclear, the responses of biomass accumulation, yield formation, and the nitrogen uptake to nitrogen supply were studied in order to provide theoretical basis for green and efficient hybrid maize seed production. 【Method】Taking the parent variety combination of large area seed production as the experimental material, the on-site experiment was carried out from 2019 to 2020. A completely random block design was applied to study the effects of different nitrogen gradients on parental biomass, grain yield and nitrogen uptake and accumulation of maize seed production. Four nitrogen gradients were set up as basal fertilizer control (CK), 168, 240 and 320 kg N·hm-2, respectively. 【Result】The accumulation of parental biomass of hybrid maize seed production increased with the increase of nitrogen gradients. The yield of maize seed production increased at first and then remained stable with the increase of nitrogen gradients. N240 treatment achieved higher yield, nitrogen use efficiency and grain nitrogen concentration at the same time, which were consistent in the two years. The yield of N168 treatment was higher than that of N240 treatment in the second year, but the nitrogen concentration was lower than that of N240 treatment. The nitrogen concentration of the whole plant of female parent straw and male parent was higher in high nitrogen gradient treatment than that in low nitrogen gradient treatment; the critical nitrogen concentration of maximum biomass of female parent at filling stage was 15.08 g·kg-1, and there was a linear correlation between female parent biomass and nitrogen concentration at harvest stage. The post-silking biomass of each topdressing nitrogen fertilizer treatment was higher than that of pre-silking stages in two years, and increased with the increase of nitrogen gradients. The change rule of post-silking nitrogen uptake ratio with nitrogen gradients was consistent with the biomass. There was no significant difference in yield level, biomass accumulation, and nitrogen uptake between N320 treatment and N240 treatment. Under the premise of comprehensive consideration of yield and hybrid seed quality, N240 could be regarded as the recommended nitrogen application rate for hybrid maize seed production in this region. 【Conclusion】The optimal nitrogen application rate can increase yield and nitrogen use efficiency by regulating the ratio of nitrogen uptake for maize parents in pre- and post-silking in seed maize production. This study revealed that optimizing nitrogen application rate to stabilize nitrogen uptake in the pre-silking stage and ensure nitrogen supply after anthesis was the key to achieve high yield and nitrogen use efficiency of seed maize, and provided a theoretical basis for sustainable production of hybrid seed maize.


Key words: hybrid seed maize, yield, biomass, critical nitrogen concentration, nitrogen uptake

[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[4] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[5] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[6] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[7] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[8] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[9] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[10] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[11] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[12] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[13] SHENG QianNan, YU XiaoHong, ZHOU Xiong, TIAN GuiSheng, WU HaiYa, GENG GuoTao, YAN JinYao, LI Jing, REN Tao, LU JianWei. Response of Biomass and Nutrient Competition Between Oilseed Rape and Weed to the Rate of N, P and K Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(3): 481-489.
[14] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[15] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!