Scientia Agricultura Sinica

Previous Articles    

Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Physiological Mechanism in Bt Cotton

YIN YanYu, WANG LiYan, ZHAO ZiXu, HU TianRan, CHEN Yuan, CHEN Yuan, CHEN DeHua*, ZHANG Xiang*   

  1. Yangzhou University/Key Laboratory of Crop Genetics and Physiology of Jiangsu Provinc, Yangzhou 225009, Jiangsu
  • Published:2022-05-11

Abstract: 【ObjectiveThis study was conducted to investigate the effect of alternating high temperature and drought on the content of Cry1Ac protein in Bt cotton and the underlying physiological mechanism to provide a reference for the safe and stable utilization of insect resistance of Bt cotton in production.【Method】The conventional cultivar Sikang 1 (SK-1) and hybrid cultivar Sikang 3 (SK-3) were used in 2019 and 2020 in experimentally controlled greenhouse, Yangzhou University. From 7:00 am to 7:00 pm two high-temperature treatments [34℃ (A1) and 38℃ (A2)] were imposed on cotton plants, followed by an optimum temperature 28℃ during the remaining night hours. There were two treatments for soil moisture content, which were 50% (B1) and 60% (B2) field capacity. The treatment with 32℃/28℃ and 75% field capacity was set as the control (CK). The leaf Cry1Ac protein content and its physiological mechanism were detected on 4, 7, and 10 days after stress (DAS), respectively.【Result】Compared with CK, the Cry1Ac protein content all decreased under stresses of high temperature and drought, and with the extension of the stress time, greater decrease was observed. The extent of decline for A1B2 was the smallest, followed by A1B1, and A2B1 and A2B1 were the largest. The Cry1Ac protein content for A1B2 was significantly lower than CK after 7 DAS, while significant differences between A1B1, A2B2, A2B2 and CK were detected after 4 DAS. The Bt gene expression level, soluble protein (SP), free amino acid (aa) contents, nitrate reductase (NR), the glutamic pyruvic transaminase (GPT), glutamic oxaloacetate transaminase (GOT), glutamine synthetase (GS) and glutamate synthase (GOGAT) activities showed a downward trend. While the tannin content, the activities of protease and peptidase showed an upward trend. The correlation analysis and path analysis showed SP, aa, NR, GPT, GOT, GS, GOGAT were positively correlated with Cry1Ac protein content. The tannin content, the activities of protease and peptidase were negatively correlated with Cry1Ac protein content. NR, GPT and GS could be key indices for the Cry1Ac protein content.【Conclusion】The interaction of high temperature and drought resulted in the decrease of Cry1Ac protein content in Bt cotton, with greater decrease observed as the stress extended. There was no significant difference between the treatment with 34℃/28℃ and 60% field capacity and CK in 7-10 DAS. The extent of reduction decreased and the period was delayed. NR, GPT and GS could be key indices for the Cry1Ac protein content.


Key words: Bt cotton, Cry1Ac protein, high temperature, drought, physiological mechanism

[1] WANG YueNing, DAI HongJun, HE Yan, WEI Qiang, GUO XueLiang, LIU Yan, YIN MengTing, WANG ZhenPing. Regulation Mechanism of Brassinolide on Anthocyanins Synthesis and Fruit Quality in Wine Grapes Under High Temperature Stress Based on Transcriptome Analysis [J]. Scientia Agricultura Sinica, 2023, 56(6): 1139-1153.
[2] WU ShiHao, HUANG TianRan, HUANG Ming. Effect of Heat Treatment on the Warmed-Over Flavor of Nanjing Water-Boiled Salted Duck Detected by HS-SPME-GC-MS Technology and Electronic Nose [J]. Scientia Agricultura Sinica, 2023, 56(17): 3435-3451.
[3] MU XinYuan, LÜ ShanShan, LU LiangTao, LIU TianXue, LI ShuYan, XUE ChangYing, WANG HongWei, ZHAO Xia, XIA LaiKun, TANG BaoJun. Effects of Tassel Sizes on Post-Flowering Dry Matter Accumulation and Yield of Different Maize Varieties Under High Temperature Stress During Pollination [J]. Scientia Agricultura Sinica, 2023, 56(15): 2880-2894.
[4] FU ZhenZhen, ZHU GuangXin, LIU ZhiJuan, GUO ShiBo, LI E, YANG XiaoGuang. Spatial-Temporal Variations of High Temperature During Flowering Period in Maize-Producing Areas of China Under Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(14): 2686-2700.
[5] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[6] GUO ShiBo, ZHANG FangLiang, ZHANG ZhenTao, ZHOU LiTao, ZHAO Jin, YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[7] SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830.
[8] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[9] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[10] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[11] YIN YanYu, XING YuTong, WU TianFan, WANG LiYan, ZHAO ZiXu, HU TianRan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[12] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[13] LI Gang, BAI Yang, JIA ZiYing, MA ZhengYang, ZHANG XiangChi, LI ChunYan, LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[14] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[15] XiaoFan LI, JingYi SHAO, WeiZhen YU, Peng LIU, Bin ZHAO, JiWang ZHANG, BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!