Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (17): 3435-3451.doi: 10.3864/j.issn.0578-1752.2023.17.016

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effect of Heat Treatment on the Warmed-Over Flavor of Nanjing Water-Boiled Salted Duck Detected by HS-SPME-GC-MS Technology and Electronic Nose

WU ShiHao1(), HUANG TianRan2, HUANG Ming1()   

  1. 1College of Food Science and Technology/Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095
    2Nanjing Huangjiaoshou Food Science and Technology Co., Ltd./National R&D Center for Poultry Processing/Jiangsu Research Center for Livestock and Poultry Products Processing Engineering Technology, Nanjing 211225
  • Received:2023-03-13 Accepted:2023-05-31 Online:2023-09-01 Published:2023-09-08
  • Contact: HUANG Ming
  • Supported by:
    3194

Abstract:

【Objective】 By using flavor detection technology, the effect of heat treatment on Nanjing water-boiled salted duck’s warmed-over flavor (WOF) was investigated, and the main components of warmed-over flavor were identified. The study could fill the gap in research on warmed-over flavor of Nanjing water-boiled salted duck, as well as provide a basis for controlling the odor associated with poultry processing. 【Method】 The raw materials for the Nanjing water-boiled salted duck were 12 cherry valley duck legs, washed, dry pickled, wet pickled, cooled, and boiled. The samples were vacuum packed in high-temperature retort pouches and randomly divided into four groups after cooling. In order to examine the changes in volatile odor substances in water-boiled salted ducks after heat treatment, one group was used as a control without heat treatment, and the other three groups were heated at different temperatures (80 ℃ 50 min, 100 ℃ 30 min, and 121 ℃ 15 min). By using HS-SPME-GC-MS in combination with electronic nose and sensory evaluation, the effect of heat treatment on Nanjing water-boiled salted duck's warmed-over flavor was studied by cluster analysis and PLS-DA. 【Result】 Under different heat treatment conditions, Nanjing water-boiled salted duck contained different volatile flavor substances. Sensory evaluation showed that the highest warmed-over flavor was found in the 121 ℃ heat treatment group, followed by 100 ℃ and 80 ℃ group, and the best flavor was found in water-boiled salted duck without heat treatment. A total of 78 flavor compounds were detected in the four groups, mainly including aldehydes, ketones, hydrocarbons, alcohols, nitrogenous sulfur, and benzene. These 78 flavor substances were analyzed for OAV, and 22 active odors were detected with OAV>1, among these 22 active odor substances, cluster analysis showed that Valeraldehyde, 2-Heptanone, Decanal, Dodecanal, Octanal, Hexanal, Heptanal, Nonanal, 2,5-Octanedione, 1-Octen-3-ol and 2-Pentylfuran were the most abundant in the 121 ℃ group. Nonanal, Octanal, Valeraldehyde, 1-Octen-3-ol, and 2-Pentylfuran were found to have VIP>1 and the highest content at 121 ℃ in the OPLS-DA analysis (P<0.05). 【Conclusion】 It has been found that heat treatment at 121 ℃ increased oxidative degradation of lipids in water-boiled salted duck, significantly reduced the content of representative aroma substances, and increased the amount of representative odor substances. Nanjing water-boiled salted duck’s warmed-over flavor mainly consisted of Nonanal, Octanal, Valeraldehyde, 1-Octen-3-ol, and 2-Pentylfuran.

Key words: Nanjing water-boiled salted duck, heat treatment, warmed-over flavor, volatile compounds

Table 1

Performance description of 10 sensors for PEN3 electronic nose"

传感器名称Sensor name 性能描述Performance description 灵敏性Sensitivity (mL·m-3)
W1C 对芳香族化合物敏感,苯 Sensitive to aromatic compounds, Benzene 10
W5S 对氮氧化物敏感 Sensitive to nitrogen oxides 1
W3C 对香气敏感,氨气 Sensitive to aroma, ammonia 10
W6S 对氢化物敏感 Sensitive to hydrides 100
W5C 对短链烷烃及芳香组分敏感 Sensitive to short-chain alkanes and aromatic components 1
W1S 对甲基敏感 Sensitive to methyl groups 100
W1W 对硫化物敏感 Sensitive to sulfides 1
W2S 对醇、醛、酮类化合物敏感 Sensitive to alcohols, aldehydes and ketones 100
W2W 对芳香成分及有机硫化物敏感 Sensitive to aromatic components and organic sulfides 1
W3S 对长链烷烃敏感 Sensitive to long-chain alkanes 100

Fig. 1

Nanjing water-boiled salted duck electronic nose radar diagram (A) and PCA diagram (B) at different heat treatment temperatures"

Table 2

Changes of volatile flavor substances in Nanjing water-boiled salted duck at different heat treatment temperatures"

化合物名称
Compound
SI 鉴定依据
Identification basis
气味描述
Odor description
含量Content (μg·kg-1)
CK 80 ℃ 100 ℃ 121 ℃
烃类 Hydrocarbons
(3E)-3-丙-2-烯亚基环丁烯(3E)-3-prop-2-enylidenecyclobutene 828 MS NC 520.10±15.11a 84.69±3.03b 60.38±2.71b
右旋萜二烯 Cyclohexene,1-methyl-4-(1-methylethenyl)-, (4R)- 1071 MS、RI 橙子香气
Orange aroma
669.16±20.31a
3,7-二甲基-1辛烯 3,7-dimethyl-1-Octene 862 MS、RI NC 308.56±11.33a
茴香脑 cis-Anethol 906 MS、RI 甜、清凉、茴香气味 Sweet, cool, fennel smell 229.56±10.76b 56.43±5.34a 92.81±9.31a
十二烷 Dodecane 1200 MS、RI NC 374.03±12.43b 198.99±8.35a 131.35±6.33a 134.05±5.12a
2,6,10-三甲基十四烷 2,6,10-Trimethyltetradecane 1456 MS、RI NC 73.09±6.15a 54.57±4.33a 55.81±4.11a 67.92±5.32a
2,6,11-三甲基十二烷 2,6,11-Trimethyldodecane 1241 MS、RI NC 141.89±9.31a 174.29±8.82a 120.05±10.05a 125.86±9.33a
十四烷 Tetradecane 1400 MS、RI NC 97.76±9.11a 66.11±6.21a 50.83±3.33a 72.35±5.33a
2-氯辛烷 2-Chlorooctane 902 MS、RI NC 106.63±6.30a
十五烷 Pentadecane 1504 MS、RI NC 153.31±10.33a 114.88±9.45a 100.72±8.33a 123.04±10.33a
[1S-(1R*,4E,9S*)]-4,11,11-三甲基-8-亚甲基双环[7.2.0]十一碳-4-烯
[1S-(1R*,4E,9S*)]-4,11,11-Trimethyl-8-methylenebicyclo [7.2.0] undec-4-ene
971 MS NC 9.98±1.21a
异松油烯
Terpinolene
1074 MS、RI 松木,柑橘味 Matsuki, citrus flavor 64.58±4.30a
2,4,6-三甲基癸烷
2,4,6-Trimethyldecane
1087 MS、RI NC 164.65±10.33a 70.55±8.20b
柠檬烯
Limonene
1033 MS、RI 柠檬、薄荷味
Lemon, mint flavor
65.91±7.01b 76.01±8.10b 54.37±6.33b 37.44±4.02a
1,5,5-三甲基-6-亚甲基环己烯
6-methylene-1,5,5-Trimethyl cyclohexene
911 MS、RI NC 52.98±4.37b 51.20±6.12a 12.55±0.12b
β-石竹烯
β-Caryophyllene
1468 MS、RI 辛香、木头味
Spicy, woody flavor
85.07±10.33a
α-蒎烯
α-Pinene
1375 MS、RI 松木,针叶香
Pine, coniferous aroma
121.60±11.12a
十六烷 Hexadecane 1618 MS、RI NC 161.39±12.33b 89.67±7.33a
2,3,5,8-四甲基癸烷
2,3,5,8-Tetramethyldecane
1080 MS、RI NC 35.21±1.02a
十一烷 Undecane 1101 MS、RI NC 63.67±4.33a 56.69±3.72a 52.18±5.11a 64.21±9.02a
癸烷 Decane 996 MS、RI NC 42.75±8.33a 38.33±5.56a 28.89±2.33a 28.01±1.89a
2,6-二甲基十一烷
2,6-Dimethylundecane
1152 MS、RI NC 123.50±11.03a 89.69±8.02a 75.16±8.41a 95.15±7.73a
γ-萜品烯
γ-Terpinene
1018 MS、RI 木头,金属味
Wood, metallic smell
32.37±2.36a 33.63±1.03a 44.11±5.45a 43.60±3.33a
CK 80 ℃ 100 ℃ 121 ℃
11-戊烷-3-基己烷
11-Pentane-3-Methylhexane
804 MS NC 121.68±13.72a
1,2-环氧十四烷
1,2-Epoxytetradecane
1421 MS、RI NC 16.81±2.01a 15.00±1.89a
3-二十碳烯 3-Eicosane 1986 MS、RI NC 123.48±17.03a
辛基环丙烷 Octylcyclopropane 805 MS、RI NC 7.41±0.33a
2,4-二甲基十二烷
2,4-Dimethyldodecane
1226 MS、RI NC 9.48±1.64a
3-二十二烯 3-Docosanol 2281 MS、RI NC 21.33±3.41a 28.30±6.02a
环庚三烯 Cycloheptatriene 813 MS、RI NC 94.34±10.05a
10-二十一碳烯 10-Henicosene 2046 MS、RI NC 13.66±1.82a
醛类 Aldehydes
戊醛
Valeraldehyde
692 MS、RI 杏仁,麦芽,辛辣味Almond, malt, spicy flavor 280.53±19.33a 285.13±13.02a 256.59±17.56a 996.64±17.01b
癸醛
Decanal
1202 MS、RI 肥皂,橙皮,牛脂味Soap, orange peel, tallow flavor 45.49±4.13a 45.01±3.01a 47.20±3.33a 48.89±4.11a
(Z)-2-壬烯醛
(Z)-2-Nonenal
1146 MS、RI 鸢尾,脂肪,黄瓜味Iris, fatty, cucumber flavor 20.35±2.03a 27.09±2.67a
壬醛
Nonanal
1101 MS、RI 脂肪,柑橘味
Fatty, citrus flavor
914.53±21.01c 1329.39±32.37b 1316.03±17.33b 1584.60±34.02a
辛醛
Octanal
1003 MS、RI 脂肪,肥皂,柠檬味Fatty, soap, lemon flavor 1022.08±43.73c 1369.69±34.56b 1347.81±29.11b 1689.87±39.72a
庚醛
Heptanal
908 MS、RI 脂肪,柑橘,腐臭味Fatty, citrus, rancid smell 424.10±27.15a 320.82±18.62b 347.96±20.13ab 486.59±30.56a
苯甲醛
Benzaldehyde
961 MS、RI 杏仁,烧糖味Almonds, burnt sugar flavor 91.38±10.33a 73.23±9.67a 65.33±7.56a 80.31±9.02a
己醛
Hexanal
801 MS、RI 低浓度:脂肪、青草味;高浓度:酸败、辛辣味
Low concentration: fat, grassy flavor; high concentration: rancidity, spicy taste
3286.68±312.65b 3788.73±275.13a 3824.27±266.42a 3960.89±302.33a
3-甲基丁醛
Isovaleraldehyde
638 MS、RI 可可、杏仁、麦芽味 Cocoa, almond, malt flavor 351.26±37.42a 22.70±3.12b
十八醛 Octadecanal 2052 MS、RI 油脂味 Grease smell 7.76±1.21b 15.24±2.73a 20.44±3.32a 20.52±2.67a
十六醛 Hexadecanal 1834 MS、RI 蒜味 Garlic smell 16.83±3.23c 31.57±4.02b 62.38±6.45a 81.02±6.12a
(Z)-4-癸烯醛 (Z)-4-Decenal 667 MS、RI 青味 Green taste 21.97±2.33b 56.94±6.67a
肉豆蔻醛
Myristicin aldehyde
1198 MS、RI 脂肪、蜡味
Fatty, waxy taste
37.94±5.21a
CK 80 ℃ 100 ℃ 121 ℃
十二醛
Dodecanal
1423 MS、RI 脂肪、松油味
Fatty, pine oil flavor
13.05±1.01a 15.92±1.67a 13.26±0.92a 16.56±1.93a
十七醛 Heptadecanal 1906 MS、RI NC 5.42±0.21a 5.35±0.73a
十三醛 Tridecanal 1503 MS、RI 花,甜味 Flower, sweet 4.66±0.91a
十四醛 Tetradecenal 1611 MS、RI NC 22.24±3.72a 51.18±6.11a
(E)-2-辛烯醛
(E)-2-Octenal
1056 MS、RI 绿色,坚果,脂肪味 Green, nutty, fatty flavor 7.69±2.12a
醇类Alcohols
1-辛烯-3-醇
1-Octen-3-ol
956 MS、RI 蘑菇味
Mushroom flavor
1367.97±121.42b 1582.81±145.29b 1469.03±133.65b 1747.05±113.67a
芳樟醇
Linalool
1100 MS、RI 花,薰衣草味
Flower, lavender flavor
206.62±22.67a 116.50±17.33b 135.77±13.51b 106.80±11.01b
2-辛烯-1-醇
2-Octen-1-ol
1104 MS、RI 肥皂,塑料味
Soap, plastic smell
62.19±7.93b 88.07±9.20b 213.03±28.77a 73.28±9.33b
桉叶油醇
Cineole
1031 MS、RI 樟脑样香气,清凉味
Camphor-like aroma, cool taste
348.84±52.21a 131.01±17.83b 158.49±15.01b 186.30±19.62b
4-萜烯醇
Terpinine-4-ol
907 MS 松节油,肉豆蔻
Turpentine, nutmeg
233.49±28.33a 142.54±16.67b 163.39±21.56b 188.70±19.38b
1-十六烷醇
1-Hexadecanol
1889 MS、RI 花,蜡味
Flower, waxy smell
87.03±9.73a 46.30±5.20b 35.49±3.45b 30.84±4.21b
α-松油醇
Alpha-Terpineol
1189 MS、RI 松油,茴香,薄荷味 Pine oil, fennel, mint flavor 131.08±16.31b 57.36±11.14a 46.45±8.42a
戊醇
1-Pentanol
760 MS、RI 香醋味
Vinegar flavor
90.04±8.67b 109.13±13.62b 123.92±19.33b 179.04±21.77a
(-)-4-萜品醇 (-)-Terpinen-4-ol 904 MS、RI NC 366.92±66.67a
(R)-α,α-4-三甲基-3-环己烯-1-甲醇
3-Cyclohexene-1-methanol, α,α, 4-trimethyl-, (R)-
857 MS NC 74.61±11.01a 74.84±9.82a 82.24±7.34a
6-甲基-1-庚醇
6-Methylheptanol
962 MS、RI 化学、青味
Chemical, green
19.28±2.78a
酮类Ketones
2-庚酮 2-Heptanone 891 MS、RI 肥皂味 Soapy smell 24.51±3.12b 219.90±19.33a 247.34±23.56a 281.07±22.67a
2-甲基环戊酮
2-Methylcyclopentanone
921 MS NC 197.66±18.03b 281.95±25.67a 319.20±33.45a 311.04±29.89a
2,5-辛二酮 2,5-Heptanedione 984 MS、RI NC 4041.89±245.35a 4392.15±168.62a 4181.72±160.67a 4410.86±217.45a
香叶基丙酮
Geranylacetone
2015 MS、RI 玫瑰,花香
Roses, Flowers
83.22±11.02b 42.88±9.73a 42.48±6.33a 41.93±7.67a
酯类 Esters
己酸乙烯酯
Vinyl hexanoate
998 MS、RI 甜的醚香味
Sweet ether scent
2489.36±344.78a
(3-羟基-2,2,4-三甲基戊基)2-甲基
丙酸酯
Propanoic acid, 2-methyl-, 3-hydroxy- 2,2,4-Trimethylpentyl ester
815 MS NC 205.30±21.33a 115.58±11.45b 173.90±17.67a 121.79±13.80b
CK 80 ℃ 100 ℃ 121 ℃
含氮含硫及苯系物 Benzene and sulfur series containing nitrogen
2,6-二叔丁基对甲酚
Butylated hydroxytoluene
1180 MS、RI NC 23.69±4.02b 34.11±3.33a 40.67±6.74a 47.90±5.67a
对二甲苯 p-Xylene 845 MS、RI 塑胶味 Plastic smell 26.69±4.33c 67.20±8.67b 107.65±9.06a 159.93±11.45a
乙胺 Ethylamine 677 MS、RI 鱼味 Fish smell 345.75±39.71a 203.44±22.04b 187.29±23.33b
乙基苯 Ether 816 MS、RI NC 25.68±3.31b 41.59±5.73a 49.51±6.01a 44.13±6.33a
间二甲苯 m-Xylene 869 MS、RI 塑胶味 Plastic smell 42.86±5.42a 95.43±7.67b
2,4-二叔丁基苯酚
2,4-Di-t-butylphenol
1073 MS、RI NC 19.42±1.72b 31.47±2.84a 34.33±3.65a
甲苯 Toluene 773 MS、RI 油漆味 Smell of paint 42.27±6.78a
邻异丙基甲苯 o-Cymene 846 MS、RI NC 149.94±17.67a
间异丙基甲苯 m-Cymene 872 MS、RI NC 101.71±11.33a
2-(氮杂环丁-1-基)乙胺
1-Azetidineethanamine
817 MS、RI NC 131.54±14.48a
呋喃类 Furans
2-戊基呋喃
2-Pentylfuran
992 MS、RI 豆香、果香
Bean-aroma, fruity
1386.48±110.73d 1887.56±187.42c 2477.94±214.33b 2884.23±267.25a
其他 Others
十二烷-1-磺酰氯
Dodecane-1-sulfonyl chloride
770 MS NC 3.92±0.67a

Table 3

OAV of volatile flavor substances of Nanjing water-boiled salted duck at different heat treatment temperatures"

化合物名称
Compound
感觉阈值
Sensitivity (μg·kg-1)
OAV
CK 80 ℃ 100 ℃ 121 ℃
醛类 Aldehydes
戊醛 Valeraldehyde 12 23.38 23.76 21.38 83.05
癸醛 Decanal 0.1 454.90 450.10 472 488.90
(Z)-2-壬烯醛 (Z)-2-Nonenal 4.1 4.96 6.61
壬醛 Nonanal 1 914.53 1329.39 1316.03 1584.6
辛醛 Octanal 0.7 1460.11 1956.7 1925.44 2414.4
庚醛 Heptanal 3 141.37 106.94 115.99 162.20
苯甲醛 Benzaldehyde 350 0.26 0.21 0.19 0.23
己醛 Hexanal 4.5 730.37 841.94 849.84 880.2
3-甲基丁醛 Isovaleraldehyde 0.2 1756.3 113.5
十二醛 Dodecanal 2 6.53 7.96 6.63 8.28
(E)-2-辛烯醛 (E)-2-octenal 3 2.56
醇类 Alcohols
1-辛烯-3-醇 1-Octen-3-ol 1 1367.97 1582.81 1469.03 1747.05
芳樟醇 Linalool 6 34.44 19.42 22.63 17.80
2-辛烯-1-醇 2-Octen-1-ol 40 1.55 2.20 5.33 1.83
桉叶油醇 Cineole 140.04 2.49 0.94 1.13 1.33
4-萜烯醇 Terpinine-4-ol 1240 0.19 0.11 0.13 0.15
α-松油醇 Alpha-Terpineol 330 0.40 0.17 0.14
戊醇 Isoamyl alcohol 4000 0.02 0.03 0.03 0.04
酮类 Ketones
2-庚酮 2-Heptanone 141 0.17 1.56 1.75 1.99
2,5-辛二酮 2,5-Heptanedione 2.52 1603.92 1742.92 1659.41 1750.34
香叶基丙酮 Geranylacetone 60 1.39 0.71 0.71 0.70
酯类 Esters
己酸乙烯酯 Vinyl hexanoate 14 177.81
呋喃类 Furans
2-戊基呋喃 2-Pentylfuran 6 231.08 314.59 412.99 480.705
烃类 Hydrocarbons
茴香脑 cis-Anethol 0.14 925.43 403.07 662.93
十二烷 Dodecane 2040 0.09 0.10 0.06 0.07
异松油烯 Terpinolene 3260 0.02
柠檬烯 Limonene 10 6.59 7.60 5.44 3.74
β-石竹烯 β-Caryophyllene 64 1.33
α-蒎烯 α-pinene 6 20.27
含氮含硫及苯系物 Benzene and sulfur series containing nitrogen
对二甲苯 p-Xylene 450.23 0.06 0.15 0.24 0.36
甲苯 Toluene 1550 0.03

Fig. 2

Cluster analysis heat map of volatile flavor substance OAV>1 of Nanjing water-boiled salted duck at different heat treatment temperatures CK1-3 represent 3 replicates of the control group; L1-3 represent 3 replicates of the 80 ℃ treatment group; M1-3 represent 3 replicates of the 100 ℃ treatment group; H1-3 represent 3 replicates of the 121 ℃ treatment group"

Fig. 3

The variable importance in the projection (VIP) values based on key volatile compound data OAV>1"

Fig. 4

Sensory evaluation of Nanjing water-boiled salted duck at different heat treatment temperatures"

[1]
LIU Y, XU X L, ZHOU G H. Changes in taste compounds of duck during processing. Food Chemistry, 2007, 102(1): 22-26.

doi: 10.1016/j.foodchem.2006.03.034
[2]
孙亚男. 扬州狮子头菜肴的中央厨房加工机理及品质调控研究[D]. 无锡: 江南大学, 2021.
SUN Y N. Study on processing mechanism and quality control of Yangzhou lion head cuisine in central kitchen[D]. Wuxi: Jiangnan University, 2021. (in Chinese)
[3]
王卫, 张佳敏, 赵志平, 张锐, 白婷, 张崟. 川菜肉类菜肴工业化及其关键技术. 肉类研究, 2020, 34(5): 98-103.
WANG W, ZHANG J M, ZHAO Z P, ZHANG R, BAI T, ZHANG Y. Recent progress in industrialization of Sichuan-style meat dishes and related key technologies. Meat Research, 2020, 34(5): 98-103. (in Chinese)
[4]
蔡侻. 浅谈我国餐饮产业链中央厨房中预制菜的发展趋势. 食品安全导刊, 2021(23): 187-188.
CAI K. A discussion of prefabricated dishes’ development trend in China’s catering chain’s central kitchen. China Food Safety Magazine, 2021(23): 187-188. (in Chinese)
[5]
罗霜霜, 康建平, 张星灿, 杨健, 刘建. 方便米饭品质改良研究进展. 粮油食品科技, 2020, 28(3): 78-84.
LUO S S, KANG J P, ZHANG X C, YANG J, LIU J. Research progress on quality improvement of instant rice. Science and Technology of Cereals, Oils and Foods, 2020, 28(3): 78-84. (in Chinese)
[6]
MAJUMDAR R K, ROY D, SAHA A. Textural and sensory characteristics of retort-processed freshwater prawn (Macrobrachium rosenbergii) in curry medium. International Journal of Food Properties, 2017, 20(11): 2487-2498.

doi: 10.1080/10942912.2016.1242139
[7]
LIU F, WANG D Y, DU L H, ZHU Y Z, XU W M. Diversity of the predominant spoilage bacteria in water-boiled salted duck during storage. Journal of Food Science, 2010, 75(5): M317-M321.

doi: 10.1111/j.1750-3841.2010.01644.x
[8]
TIMS M J, WATTS B M. Protection of cooked meats with phosphates. Food Technology, 1958(12): 240-243.
[9]
张哲奇, 臧明伍, 张凯华, 李丹, 王守伟, 李笑曼. 熟制、高压灭菌和复热对粉蒸肉挥发性风味物质的影响. 食品科学, 2019, 40(10): 187-192.

doi: 10.7506/spkx1002-6630-20181009-063
ZHANG Z Q, ZANG M W, ZHANG K H, LI D, WANG S W, LI X M. Effect of cooking, autoclaving and reheating on the volatile components of steamed pork with rice flour. Food Science, 2019, 40(10): 187-192. (in Chinese)

doi: 10.7506/spkx1002-6630-20181009-063
[10]
袁先铃, 彭先杰, 陈崇艳, 万晓玉, 林洪斌. 高压蒸汽灭菌时间对冷吃兔风味物质的影响. 现代食品科技, 2022, 38(3): 257-265.
YUAN X L, PENG X J, CHEN C Y, WAN X Y, LIN H B. Effect of the time of high pressure steam sterilization on the changes of flavor substance in cold-eating rabbits. Modern Food Science & Technology, 2022, 38(3): 257-265. (in Chinese)
[11]
ST ANGELO A J, VERCELLOTTI J R, LEGENDRE M G, VINNELT C H, KUAN J W, JAMES C, DUPUY H P. Chemical and instrumental analyses of warmed-over flavor in beef. Journal of Food Science, 1987, 52(5): 1163-1168.

doi: 10.1111/jfds.1987.52.issue-5
[12]
AJUYAH A O, FENTON T W, HARDIN R T, SIM J S. Measuring lipid oxidation volatiles in meats. Journal of Food Science, 1993, 58(2): 270-273.

doi: 10.1111/jfds.1993.58.issue-2
[13]
ANTONY S, RIECK J R, DAWSON P L. Effect of dry honey on oxidation in Turkey breast meat. Poultry Science, 2000, 79(12): 1846-1850.

pmid: 11194051
[14]
AN Y Q, WEN L, LI W R, ZHANG X Z, HU Y, XIONG S B. Characterization of warmed-over flavor compounds in surimi gel made from silver carp (Hypophthalmichthys molitrix) by gas chromatography-ion mobility spectrometry, aroma extract dilution analysis, aroma recombination, and omission studies. Journal of Agricultural and Food Chemistry, 2022, 70(30): 9451-9462.

doi: 10.1021/acs.jafc.2c02119
[15]
ZANG M W, WANG L, ZHANG Z Q, ZHANG K H, LI D, LI X M, WANG S W, CHEN H Z. Changes in flavor compound profiles of precooked pork after reheating (warmed-over flavor) using gas chromatography-olfactometry-mass spectrometry with chromatographic feature extraction. International Journal of Food Science & Technology, 2020, 55(3): 978-987.
[16]
何苗, 陈洁, 曾茂茂, 何志勇, 秦防, 张志刚. 高温杀菌对福建风味鸭风味的影响. 食品与机械, 2014, 30(3): 29-34.
HE M, CHEN J, ZENG M M, HE Z Y, QIN F, ZHANG Z G. Effects of high temperature sterilization on volatiles in Fujian flavor duck. Food & Machinery, 2014, 30(3): 29-34. (in Chinese)
[17]
CHEN J H, TAO L N, ZHANG T, ZHANG J J, WU T T, LUAN D L, NI L, WANG X C, ZHONG J. Effect of four types of thermal processing methods on the aroma profiles of acidity regulator-treated tilapia muscles using E-nose, HS-SPME-GC-MS, and HS-GC-IMS. LWT-Food Science and Technology, 2021, 147: 111585.

doi: 10.1016/j.lwt.2021.111585
[18]
李聪, 徐宝才, 李世保, 郝敬芝. 市售盐水鸭挥发性风味物质研究分析. 现代食品科技, 2016, 32(12): 350-358.
LI C, XU B C, LI S B, HAO J Z. Analysis of volatile flavor compounds in commercially available salted duck. Modern Food Science and Technology, 2016, 32(12): 350-358. (in Chinese)
[19]
ZHOU X X, CHONG Y Q, DING Y T, GU S Q, LIU L. Determination of the effects of different washing processes on aroma characteristics in silver carp mince by MMSE-GC-MS, e-nose and sensory evaluation. Food Chemistry, 2016, 207: 205-213.

doi: 10.1016/j.foodchem.2016.03.026 pmid: 27080898
[20]
CHEN X, LUO J, LOU A H, WANG Y, YANG D W, SHEN Q W. Duck breast muscle proteins, free fatty acids and volatile compounds as affected by curing methods. Food Chemistry, 2021, 338: 128138.

doi: 10.1016/j.foodchem.2020.128138
[21]
何聪聪, 苏柯冉, 刘梦雅, 刘建彬, 刘野, 宋焕禄. 基于AEDA和OAV值确定西瓜汁香气活性化合物的比较. 现代食品科技, 2014, 30(7): 279-285.
HE C C, SU K R, LIU M Y, LIU J B, LIU Y, SONG H L. Identification of aroma-active compounds in watermelon juice by AEDA and OAV calculation. Modern Food Science and Technology, 2014, 30(7): 279-285. (in Chinese)
[22]
徐渊, 韩敏义, 陈艳萍, 李春保, 邓绍林, 李凌云, 刘源. 三个品种白切鸡食用品质评价. 食品工业科技, 2021, 42(1): 89-95.
XU Y, HAN M Y, CHEN Y P, LI C B, DENG S L, LI L Y, LIU Y. Comparative analysis of edible quality of three varieties of boiled chicken. Science and Technology of Food Industry, 2021, 42(1): 89-95. (in Chinese)
[23]
裴正钰, 张香美, 卢涵, 李鑫, 张玉, 冯浩桐. 风味分析技术在发酵肉制品中的应用研究进展. 食品科技, 2021, 46(2): 91-96.
PEI Z Y, ZHANG X M, LU H, LI X, ZHANG Y, FENG H T. Application of flavor analysis technology in fermented meat products. Food Science and Technology, 2021, 46(2): 91-96. (in Chinese)
[24]
刘登勇, 赵志南, 吴金城, 邹玉峰, 王逍, 李明倩. 基于SPME-GC-MS分析熏制材料对熏鸡腿挥发性风味物质的影响. 食品科学, 2019, 40(24): 220-227.

doi: 10.7506/spkx1002-6630-20190104-062
LIU D Y, ZHAO Z N, WU J C, ZOU Y F, WANG X, LI M Q. Effects of different smoking materials on volatile flavor compounds in smoked chicken thighs. Food Science, 2019, 40(24): 220-227. (in Chinese)

doi: 10.7506/spkx1002-6630-20190104-062
[25]
顾赛麒, 吴浩, 张晶晶, 王锡昌. 固相萃取整体捕集剂-气相色谱-质谱联用技术分析中华绒螯蟹性腺中挥发性成分. 现代食品科技, 2013, 29(12): 3019-3025, 3058.
GU S Q, WU H, ZHANG J J, WANG X C. Analysis of volatile components in gonad of Eriocheir sinensis by monolithic material sorptive extraction coupled with gas chromatography and mass spectrometry. Modern Food Science and Technology, 2013, 29(12): 3019-3025, 3058. (in Chinese)
[26]
彭子宁, 郑昌江. 酱卤肉制品品质与风味研究进展. 现代食品, 2020(6): 30-33.
PENG Z N, ZHENG C J. Research progress on the quality and flavor of sauce stewed meat products. Modern Food, 2020(6): 30-33. (in Chinese)
[27]
DUAN Z L, DONG S L, SUN Y X, DONG Y W, GAO Q F. Response of Atlantic salmon (Salmo salar) flavor to environmental salinity while culturing between freshwater and seawater. Aquaculture, 2021, 530: 735953.

doi: 10.1016/j.aquaculture.2020.735953
[28]
CHMIEL M, ROSZKO M, HAĆ-SZYMAŃCZUK E, ADAMCZAK L, FLOROWSKI T, PIETRZAK D, CEGIEŁKA A, BRYŁA M. Time evolution of microbiological quality and content of volatile compounds in chicken fillets packed using various techniques and stored under different conditions. Poultry Science, 2020, 99(2): 1107-1116.

doi: S0032-5791(19)44784-6 pmid: 32036963
[29]
HE Y X, ZHOU M Y, XIA C L, XIA Q, HE J, CAO J X, PAN D D, SUN Y Y. Volatile flavor changes responding to heat stress-induced lipid oxidation in duck meat. Animal Science Journal, 2020, 91(1): e13461.

doi: 10.1111/asj.v91.1
[30]
孙圳, 韩东, 张春晖, 李海, 李侠, 刘志斌, 徐世明. 定量卤制鸡肉挥发性风味物质剖面分析. 中国农业科学, 2016, 49(15): 3030-3045. doi: 10.3864/j.issn.0578-1752.2016.15.017.

doi: 10.3864/j.issn.0578-1752.2016.15.017
SUN Z, HAN D, ZHANG C H, LI H, LI X, LIU Z B, XU S M. Profile analysis of the volatile flavor compounds of quantitative marinated chicken during processing. Scientia Agricultura Sinica, 2016, 49(15): 3030-3045. doi: 10.3864/j.issn.0578-1752.2016.15.017. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.15.017
[31]
IGLESIAS J, MEDINA I, BIANCHI F, CARERI M, MANGIA A, MUSCI M. Study of the volatile compounds useful for the characterisation of fresh and frozen-thawed cultured gilthead sea bream fish by solid-phase microextraction gas chromatography-mass spectrometry. Food Chemistry, 2009, 115(4): 1473-1478.

doi: 10.1016/j.foodchem.2009.01.076
[32]
朱文政, 严顺阳, 徐艳, 王秋玉, 张慢, 张慧敏, 周晓燕, 杨章平. 顶空固相微萃取-气质联用分析不同烹制时间红烧肉挥发性风味成分. 食品与发酵工业, 2021, 47(2): 247-253.
ZHU W Z, YAN S Y, XU Y, WANG Q Y, ZHANG M, ZHANG H M, ZHOU X Y, YANG Z P. Analysis of volatile flavor components of braised pork with different cooking time by SPME-GC-MS. Food and Fermentation Industries, 2021, 47(2): 247-253. (in Chinese)
[33]
孟凡冰, 刘达玉, 向茂德, 李云成, 王卫, 孙凤鸣, 谭馨怡. 不同卤制方法对白鹅腿肉品质及挥发性风味成分的影响. 食品工业科技, 2018, 39(5): 272-279.
MENG F B, LIU D Y, XIANG M D, LI Y C, WANG W, SUN F M, TAN X Y. Effects of different bittern process on volatile flavor compounds of white goose thigh. Science and Technology of Food Industry, 2018, 39(5): 272-279. (in Chinese)
[34]
强宇, 姜薇, 刘成江, 黄峰, 韩东, 张春晖. 风冷与冷藏过程中酱卤牛肉风味逸散行为研究. 中国农业科学, 2022, 55(16): 3224-3241. doi: 10.3864/j.issn.0578-1752.2022.16.013.

doi: 10.3864/j.issn.0578-1752.2022.16.013
QIANG Y, JIANG W, LIU C J, HUANG F, HAN D, ZHANG C H. Flavor escape behavior of stewed beef with soy sauce during air-cooling and refrigeration. Scientia Agricultura Sinica, 2022, 55(16): 3224-3241. doi: 10.3864/j.issn.0578-1752.2022.16.013. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.16.013
[35]
ZHANG L, HU Y Y, WANG Y, KONG B H, CHEN Q. Evaluation of the flavour properties of cooked chicken drumsticks as affected by sugar smoking times using an electronic nose, electronic tongue, and HS-SPME/GC-MS. LWT-Food Science and Technology, 2021, 140: 110764.

doi: 10.1016/j.lwt.2020.110764
[36]
WALLER G R, FEATHER M S. Maillard Reaction in Foods and Nutrition. Washington, D.C.: American Chemical Society, 1983.
[37]
ZANG M W, WANG L, ZHANG Z Q, ZHANG K H, LI D, LI X M, WANG S W, CHEN H Z. Changes in flavour compound profiles of precooked pork after reheating (warmed-over flavour) using gas chromatography-olfactometry-mass spectrometry with chromatographic feature extraction. International Journal of Food Science & Technology, 2020, 55(3): 978-987.
[38]
石泽雨, 孙志刚, 曹传爱, 孔保华, 夏秀芳, 陈倩, 刘骞. 关键工艺点对四喜丸子软罐头高温蒸煮异味形成的影响. 食品工业科技, 2023, 44(12): 62-72.
SHI Z Y, SUN Z G, CAO C A, KONG B H, XIA X F, CHEN Q, LIU Q. Effects of key process points on the formation of volatile components in soft canned braised pork balls in gravy. Science and Technology of Food Industry, 2023, 44(12): 62-72. (in Chinese)
[39]
FU L, DU L H, SUN Y Y, FAN X K, ZHOU C Y, HE J, PAN D D. Effect of lentinan on lipid oxidation and quality change in goose meatballs during cold storage. Foods, 2022, 11(7): 1055.

doi: 10.3390/foods11071055
[40]
常思盎, 惠腾, 刘毅, 邱保文, 戴瑞彤. 杀菌和复热工艺对黄焖鸡挥发性风味物质的影响. 肉类研究, 2018, 32(4): 20-26.
CHANG S A, HUI T, LIU Y, QIU B W, DAI R T. Effect of pasteurization and reheating on the volatile compounds of braised chicken product. Meat Research, 2018, 32(4): 20-26. (in Chinese)
[41]
YIN X Y, WEN R X, SUN F D, WANG Y, KONG B H, CHEN Q. Collaborative analysis on differences in volatile compounds of Harbin red sausages smoked with different types of woodchips based on gas chromatography-mass spectrometry combined with electronic nose. LWT-Food Science and Technology, 2021, 143: 111144.

doi: 10.1016/j.lwt.2021.111144
[42]
徐为民, 徐幸莲, 周光宏, 匡一峰, 王道营, 吴海虹. 风鹅加工过程中挥发性风味成分的变化. 中国农业科学, 2007, 40(10): 2309-2315. doi: 10.3321/j.issn:0578-1752.2007.10.026.

doi: 10.3321/j.issn:0578-1752.2007.10.026
XU W M, XU X L, ZHOU G H, KUANG Y F, WANG D Y, WU H H. Changes of volatile flavor compounds in dry-cured goose during processing. Scientia Agricultura Sinica, 2007, 40(10): 2309-2315. doi: 10.3321/j.issn.0578-1752.2007.10.026. (in Chinese)

doi: 10.3864/j.issn.0578-1752.at-2006-7141
[43]
张哲奇, 臧明伍, 张凯华, 李丹, 王守伟, 李笑曼, 薛丹丹. 关键工艺对粉蒸肉挥发性特征风味形成的影响. 食品科学, 2019, 40(4): 222-228.

doi: 10.7506/spkx1002-6630-20180727-324
ZHANG Z Q, ZANG M W, ZHANG K H, LI D, WANG S W, LI X M, XUE D D. Effect of key processing steps on formation of volatile flavor components in steamed pork with rice. Food Science, 2019, 40(4): 222-228. (in Chinese)

doi: 10.7506/spkx1002-6630-20180727-324
[44]
BI J C, LI Y, YANG Z, LIN Z Y, CHEN F S, LIU S X, LI C F. Effect of different cooking times on the fat flavor compounds of pork belly. Journal of Food Biochemistry, 2022, 46(8): e14184.
[45]
陈君玉, 孙渊, 饶雷, 赵靓, 王永涛, 李全宏, 吴晓蒙, 廖小军. 基于不同杀菌方式的红烧肉内脂质和挥发性成分的差异分析. 食品工业科技, 2022, 43(14): 345-353.
CHEN J Y, SUN Y, RAO L, ZHAO L, WANG Y T, LI Q H, WU X M, LIAO X J. Comparision of lipids and volatile flavor components in Chinese braised pork in brown sauce with different sterilization methods. Science and Technology of Food Industry, 2022, 43(14): 345-353. (in Chinese)
[46]
XU Y J, ZHANG D Q, CHEN R X, YANG X Y, LIU H, WANG Z Y, HUI T. Comprehensive evaluation of flavor in charcoal and electric- roasted Tamarix lamb by HS-SPME/GC-MS combined with electronic tongue and electronic nose. Foods, 2021, 10(11): 2676.

doi: 10.3390/foods10112676
[47]
于跃, 袁玉梅, 彭先杰, 郑连强, 冯治平, 肖夏, 袁先铃. 高温肉制品风味物质的形成机理及其影响因素. 保鲜与加工, 2020, 20(3): 210-216.
YU Y, YUAN Y M, PENG X J, ZHENG L Q, FENG Z P, XIAO X, YUAN X L. Formation mechanism and influencing factors of flavor substances in high-temperature meat products. Storage and Process, 2020, 20(3): 210-216. (in Chinese)
[48]
谭凤玲, 詹萍, 王鹏, 田洪磊. 基于感官评价及GC-MS结合OPLS-DA分析热杀菌对蟠桃汁呈香品质的影响. 中国农业科学, 2022, 55(12): 2425-2435. doi: https://doi.org/10.3864/j.issn.0578-1752.2022.12.013.

doi: 10.3864/j.issn.0578-1752.2022.12.013
TAN F L, ZHAN P, WANG P, TIAN H L. Effects of thermal sterilization on aroma quality of flat peach juice based on sensory evaluation and GC-MS combined with OPLS-DA. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435. doi: https://doi.org/10.3864/j.issn.0578-1752.2022.12.013. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.12.013
[1] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[2] ZHANG Fang,WEI ZhiSheng,WANG Peng,LI KaiXuan,ZHAN Ping,TIAN HongLei. Using Neural Network Coupled Genetic Algorithm to Optimize the SPME Conditions of Volatile Compounds in Korla Pear [J]. Scientia Agricultura Sinica, 2018, 51(23): 4535-4547.
[3] SONG Wei, HU WanJun, XU ZongJi, LIU Bing, FAN Yan, NI Yang, YANG HuiPing . Volatile Components of Main Indica Rice Cultivars from Hunan Province [J]. Scientia Agricultura Sinica, 2017, 50(2): 348-361.
[4] CUI KaiDi, HUANG XuePing, HE LeiMing, ZHAI YongBiao, MU Wei, LIU Feng. The Inhibition Effect of Microbial Volatile Compound Benzothiazole on Botrytis cinerea [J]. Scientia Agricultura Sinica, 2017, 50(19): 3714-3722.
[5] FANG Yong, WANG Hong-pan, PEI Fei, MA Ning, TANG Xiao-zhi, YANG Wen-jian, HU Qiu-hui. Effect of Extrusion on Digestion Properties and Volatile Compounds in Germinated Brown Rice Compounded of Flammulina velutipes Flour [J]. Scientia Agricultura Sinica, 2016, 49(23): 4606-4618.
[6] WANG Hai-bo, LI Lu, SU Xin-guo, ZHANG Zhao-qi, PANG Xue-qun. The Role of CBF Cold Response Pathway Gene in Heat Treatment-Induced Chilling Tolerance in Banana Fruits [J]. Scientia Agricultura Sinica, 2016, 49(14): 2763-2771.
[7] ZHANG Ke-kun, WANG Hai-bo, WANG Xiao-di, SHI Xiang-bin, WANG Bao-liang, ZHENG Xiao-cui, LIU Feng-zhi . Evolution of Volatile Compounds During the Berry Development of ‘Ruidu Xiangyu’ Grape [J]. Scientia Agricultura Sinica, 2015, 48(19): 3965-3978.
[8] YANG Xiao-Fan, GAO Yuan, HAN Mei-Mei, PENG Zhen-Xue, PAN Qiu-Hong. Accumulation Characteristics of Volatile Compounds in Wine Grape Berries Grown in High Altitude Regions of Yunnan [J]. Scientia Agricultura Sinica, 2014, 47(12): 2405-2416.
[9] QI Mu-Ge-Su-Du, GUO Zhuang, WANG Ji-Cheng, MENG He-Bi-Li-Ge, ZHANG He-Ping. 益生菌Lactobacillus casei Zhang对凝固型发酵乳质构和挥发性风味物质的影响 [J]. Scientia Agricultura Sinica, 2013, 46(3): 595-605.
[10] GUO Ya-Juan, DENG Yuan-Yuan, ZHANG Rui-Fen, ZHANG Ming-Wei, WEI Zhen-Cheng, TANG Xiao-Jun, ZHANG Yan. Comparison of Volatile Components from Different Varieties of Dried Litchi (Litchi chinensis Sonn.) [J]. Scientia Agricultura Sinica, 2013, 46(13): 2751-2768.
[11] WANG Hai-Bo, PANG Xue-Qun, HUANG Xue-Mei, ZHANG Zhao-Qi. The Role of Reactive Oxygen Species in Heat Treatment-Induced Chilling Tolerance in Banana Fruit [J]. Scientia Agricultura Sinica, 2012, 45(5): 936-942.
[12] LI Hong-Jun, HUANG Ye-Chuan, HE Zhi-Fei, LI Feng. Regression Analysis of Sensory Characteristics and Volatile Compounds in Pork Product During Cold-Storage [J]. Scientia Agricultura Sinica, 2012, 45(1): 142-152.
[13] . Effect of Microwave on Paddy Quality [J]. Scientia Agricultura Sinica, 2009, 42(1): 224-229 .
[14] YU QIAO Bi-jun XIE Yan ZHANG Hai-yan ZHOU Si-yi PAN. Study on Aroma Components in Fruit from Three Different Satsuma Mandarins Varieties [J]. Scientia Agricultura Sinica, 2008, 41(5): 1452-1458 .
[15] ,. [J]. Scientia Agricultura Sinica, 2004, 37(12): 1791-1796 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!