Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (22): 4628-4637.doi: 10.3864/j.issn.0578-1752.2025.22.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Exogenous Brassinolide Alleviates the Inhibitory Effect of SPVD on Sweet Potato Storage Roots Germination

DU TaiFeng(), ZHOU YuanYuan, QIN Zhen, LI AiXian, WANG QingMei, ZHANG LiMing, HOU FuYun()   

  1. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100
  • Received:2025-04-21 Accepted:2025-06-17 Online:2025-11-16 Published:2025-11-21
  • Contact: HOU FuYun

Abstract:

【Objective】This study aimed to elucidate the mechanisms by which exogenous brassinolide (BR) alleviates the inhibitory effects of sweet potato virus disease (SPVD) complex on storage roots germination in sweet potato, so as to provide the theoretical insights for mitigating SPVD impacts on sweet potato seedling production. 【Method】SPVD-infected ‘Jishu 25’ storage roots were subjected to seed soaking treatments with varying BR concentrations (0.1, 0.5 and 1.0 μmol·L-1) or brassinazole (BRZ, 0.1 μmol·L-1). Germination kinetics, soluble sugar content, antioxidant enzyme activities (SOD, POD and CAT), reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) content, and expression levels of BR biosynthesis genes (CYP85A1 and CYP90D1) were quantified to characterize BR/BRZ-induced alterations in cellular redox homeostasis and transcriptional regulation. 【Result】SPVD significantly suppressed storage roots germination. 7 d, 14 d, and 28 d after seedling cultivation, the storage roots of sweet potato infected with SPVD germinate later, and the number and quality of seedlings were reduced. During germination initiation stage (7-14 d): Lower BR concentrations (0.1-0.5 μmol·L-1) enhanced quality of germination, elevated soluble sugar content, upregulated antioxidant enzyme activities, reduced ROS and MDA accumulation, and stimulated CYP85A1 and CYP90D1 expression. BRZ treatment exacerbated germination inhibition, suppressed antioxidant defenses, and increased oxidative damage. During the period of rapid germination (21-28 d), 0.1 μmol·L-1 BR sustained germination promotion, reduced soluble sugar content, maintained high antioxidant activity, minimized oxidative stress, and further amplified BR biosynthetic genes expression. BRZ consistently impaired germination, antioxidant capacity, and BR genes expression. 【Conclusion】The germination of sweet potato storage roots infected with SPVD was significantly inhibited. The appropriate concentration of BR (0.1 μmol·L-1) significantly alleviated the inhibition of SPVD on sweet potato storage roots germination by activating the antioxidant defense system, optimizing the dynamic balance of sugar metabolism, and enhancing the expression of endogenous BR synthesis genes.

Key words: sweet potato, storage root germination, brassinolide, SPVD

Table 1

Primer sequence of SPVD detection"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
IbActin-F CTGGTGTTATGGTTGGGATGG
IbActin-R GGGGTGCCTCGGTAAGAAG
SPFMV-F GACTGATATGAGTCTTGCGCGRTATGCG
SPFMV-R TGTGCCTCTCCGTATCYTCTTCTTGCGT
SPCSV-F CCCAACGTGTTTATCTATTACTAAGAGTGG
SPCSV-R AATACTGGGGAGCTATCTTACGTTTGA

Table 2

Primer sequence of qRT-PCR"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
CYP85A1-F GCAGCTATCCGAGGAGCATT
CYP85A1-R GCTGTGTTCTGAGCCTAGCA
CYP90D1-F ATCTCCCTTTGGGCAACCTG
CYP90D1-R TCTCTGGGCGGTCAGAGTAA

Fig. 1

Detection of SPVD in sweet potato storage roots"

Fig. 2

Germination of infected and uninfected SPVD sweet potato storage roots at different seedling stages"

Table 3

Effect of BR on sweet potato storage roots germination"

育苗时间 Seedling days 处理Treatment 出苗数量 Germination quantity (plant/kg) 出苗质量 Germination quality (g·kg-1)
育苗后14 d
14 d after seedling
CK 9.61±3.16c 3.94±0.64c
T1 39.89±4.23a 13.65±1.08a
T2 18.70±7.18b 6.34±1.73b
T3 8.95±1.83c 1.60±1.15d
T4 8.20±1.90c 0.35±0.06d
育苗后21 d
21 d after seedling
CK 25.20±10.81b 33.12±5.95b
T1 49.01±5.49a 63.82±5.92a
T2 34.97±12.73ab 39.38±7.50b
T3 32.34±2.36ab 34.39±5.37b
T4 28.94±7.31b 20.73±3.44c
育苗后28 d
28 d after seedling
CK 58.15±5.29b 76.52±15.09c
T1 84.38±5.24a 120.40±7.12a
T2 85.54±10.22a 94.99±3.41b
T3 50.51±17.15b 41.25±6.89d
T4 15.20±4.33c 16.17±3.75e

Fig. 3

Effect of BR on sweet potato storage roots germination"

Fig. 4

BR and BRZ seed soaking affect the soluble sugar content in sweet potato"

Fig. 5

BR and BRZ seed soaking affects the content of ROS and the activity of antioxidant enzymes in sweet potato"

Fig. 6

BR and BRZ seed soaking affects the expression of key genes involved in BR synthesis"

[1]
李强, 赵海, 靳艳玲, 朱金城, 马代夫. 中国甘薯产业助力国家粮食安全的分析与展望. 江苏农业学报, 2022, 38(6): 1484-1491.
LI Q, ZHAO H, JIN Y L, ZHU J C, MA D F. Analysis and perspectives of sweetpotato industry contributing to national food security in China. Jiangsu Journal of Agricultural Sciences, 2022, 38(6): 1484-1491. (in Chinese)
[2]
王庆美, 张立明, 王建军, 王大箴. 块根主要营养成分对甘薯品种萌芽性的影响. 山东农业科学, 1998, 30(1): 9-11.
WANG Q M, ZHANG L M, WANG J J, WANG D Z. Influence of main nutrients in storage root on budding of sweetpotato. Shandong Agricultural Sciences, 1998, 30(1): 9-11. (in Chinese)
[3]
张振臣. 我国甘薯脱毒种薯种苗繁育存在的问题及建议. 植物保护, 2020, 46(6): 10-13.
ZHANG Z C. Problems and suggestions for breeding of virus-free sweet potato seeds in China. Plant Protection, 2020, 46(6): 10-13. (in Chinese)
[4]
赵付枚, 王爽, 田雨婷, 乔奇, 王永江, 张德胜, 张振臣. 甘薯病毒病发生关键因素研究. 中国农业科学, 2021, 54(15): 3232-3240. doi: 10.3864/j.issn.0578-1752.2021.15.008.
ZHAO F M, WANG S, TIAN Y T, QIAO Q, WANG Y J, ZHANG D S, ZHANG Z C. An investigation into key factors influencing the occurrence of virus disease in sweet potato. Scientia Agricultura Sinica, 2021, 54(15): 3232-3240. doi: 10.3864/j.issn.0578-1752.2021.15.008. (in Chinese)
[5]
CLARK C A, DAVIS J A, ABAD J A, CUELLAR W J, FUENTES S, KREUZE J F, GIBSON R W, MUKASA S B, TUGUME A K, TAIRO F D, VALKONEN J P T. Sweetpotato viruses: 15 years of progress on understanding and managing complex diseases. Plant Disease, 2012, 96(2): 168-185.
[6]
王爽, 刘顺通, 乔奇, 张德胜, 秦艳红, 张振臣. 甘薯病毒病害SPVD抗性鉴定方法及产量损失估计. 植物保护学报, 2014, 41(2): 176-181.
WANG S, LIU S T, QIAO Q, ZHANG D S, QIN Y H, ZHANG Z C. Methodology for identification of disease resistance of sweet potato cultivars to sweet potato virus disease and yield loss estimation. Journal of Plant Protection, 2014, 41(2): 176-181. (in Chinese)
[7]
ARITUA V, ADIPALA E, CAREY E E, GIBSON R W. The incidence of sweet potato virus disease and virus resistance of sweet potato grown in Uganda. Annals of Applied Biology, 1998, 132(3): 399-411.
[8]
张新新, 王旭芳, 林坚淳, 余竟成, 黄立飞, 董章勇. 甘薯毁灭性病毒病害(SPVD)的研究进展. 中国农学通报, 2019, 35(1): 118-126.
ZHANG X X, WANG X F, LIN J C, YU J C, HUANG L F, DONG Z Y. Sweetpotato virus diseases(SPVD): Research progress. Chinese Agricultural Science Bulletin, 2019, 35(1): 118-126. (in Chinese)
[9]
FRIDMAN Y, SAVALDI-GOLDSTEIN S. Brassinosteroids in growth control: how, when and where. Plant Science, 2013, 209: 24-31.
[10]
CUELLAR W J, KREUZE J F, RAJAMÄKI M L, CRUZADO K R, UNTIVEROS M, VALKONEN J P T. Elimination of antiviral defense by viral RNase III. PNAS, 2009, 106(25): 10354-10358.
[11]
ZHOU Q L, ZHANG Y J, HUANG Y D, LI Y M, HE S L, YANG H K, LIU L S, WANG M. Effect of SPVD on sweet potato yield formation. Agricultural Science & Technology, 2014, 15(9): 1446.
[12]
ZHANG K, LU H X, WAN C F, TANG D B, ZHAO Y, LUO K, LI S X, WANG J C. The spread and transmission of sweet potato virus disease (SPVD) and its effect on the gene expression profile in sweet potato. Plants, 2020, 9(4): 492.
[13]
SHAHZAD B, TANVEER M, ZHAO C, REHMAN A, CHEEMA S A, SHARMA A, HE S, REHMAN S U, DONG Z R. Role of 24- epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxicology and Environmental Safety, 2018, 147: 935-944.
[14]
RAJEWSKA I, TALAREK M, BAJGUZ A. Brassinosteroids and response of plants to heavy metals action. Frontiers in Plant Science, 2016, 7: 629.
[15]
HASAN S A, HAYAT S, AHMAD A. Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere, 2011, 84(10): 1446-1451.
[16]
ZHU T, DENG X G, ZHOU X, ZHU L S, ZOU L J, LI P X, ZHANG D W, LIN H H. Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. Scientific Reports, 2016, 6: 35392.
[17]
IBAÑEZ C, DELKER C, MARTINEZ C, BÜRSTENBINDER K, JANITZA P, LIPPMANN R, LUDWIG W, SUN H Q, JAMES G V, KLECKER M, GROSSJOHANN A, SCHNEEBERGER K, PRAT S, QUINT M. Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1. Current Biology, 2018, 28(2): 303-310.e3.
[18]
NAKASHITA H, YASUDA M, NITTA T, ASAMI T, FUJIOKA S, ARAI Y, SEKIMATA K, TAKATSUTO S, YAMAGUCHI I, YOSHIDA S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. The Plant Journal, 2003, 33(5): 887-898.
[19]
DENG X G, ZHU T, PENG X J, XI D H, GUO H Q, YIN Y H, ZHANG D W, LIN H H. Role of brassinosteroid signaling in modulating Tobacco mosaic virus resistance in Nicotiana benthamiana. Scientific Reports, 2016, 6: 20579.
[20]
ZHANG D W, DENG X G, FU F Q, LIN H H. Induction of plant virus defense response by brassinosteroids and brassinosteroid signaling in Arabidopsis thaliana. Planta, 2015, 241(4): 875-885.
[21]
XIA X J, WANG Y J, ZHOU Y H, TAO Y, MAO W H, SHI K, ASAMI T, CHEN Z X, YU J Q. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiology, 2009, 150(2): 801-814.
[22]
TERAKADO J, FUJIHARA S, GOTO S, KURATANI R, SUZUKI Y, YOSHIDA S, YONEYAMA T. Systemic effect of a brassinosteroid on root nodule formation in soybean as revealed by the application of brassinolide and brassinazole. Soil Science and Plant Nutrition, 2005, 51(3): 389-395.
[23]
HOU F Y, XIE B T, QIN Z, LI A X, DONG S X, ZHANG H Y, DUAN W X, ZHANG L M, WANG Q M. Sweetpotato leaf curl virus decreased storage root yield and quality of edible sweetpotato in China. Agronomy Journal, 2020, 112(5): 3948-3962.
[24]
MU D W, FENG N J, ZHENG D F, ZHOU H, LIU L, CHEN G J, MU B M. Physiological mechanism of exogenous brassinolide alleviating salt stress injury in rice seedlings. Scientific Reports, 2022, 12: 20439.
[25]
PARK C H, PARK Y J, YOUN J H, ROH J, KIM S K. Brassinosteroids and salicylic acid mutually enhance endogenous content and signaling to show a synergistic effect on pathogen resistance in Arabidopsis thaliana. Journal of Plant Biology, 2023, 66(2): 181-192.
[26]
VARDHINI B V, ANJUM N A. Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Frontiers in Environmental Science, 2015, 2: 67.
[27]
周全卢, 张玉娟, 黄迎冬, 李育明, 何素兰, 杨洪康, 刘莉莎, 王梅. 甘薯病毒病复合体(SPVD)对甘薯产量形成的影响. 江苏农业学报, 2014, 30(1): 42-46.
ZHOU Q L, ZHANG Y J, HUANG Y D, LI Y M, HE S L, YANG H K, LIU L S, WANG M. Effect of sweet potato virus disease(SPVD) on sweet potato yield formation. Jiangsu Journal of Agricultural Sciences, 2014, 30(1): 42-46. (in Chinese)
[28]
李燃, 田雨婷, 赵付枚, 李春奇, 张振臣. SPCSV和SPFMV协生互作对甘薯生理及细胞病理学变化的影响. 植物病理学报, 2025, 55(2): 203-211.
LI R, TIAN Y T, ZHAO F M, LI C Q, ZHANG Z C. Effects of synergism between SPCSV and SPFMV on physiological and cytopathological changes of sweet potato. Acta Phytopathologica Sinica, 2025, 55(2): 203-211. (in Chinese)
[29]
JIANG P, WAN Z Y, WANG Z X, LI S S, SUN Q Q. Dynamic QTL analysis for activity of antioxidant enzymes and malondialdehyde content in wheat seed during germination. Euphytica, 2013, 190(1): 75-85.
[30]
SÉBASTIEN D, JEAN R. Consequences of oxidative stress on plant glycolytic and respiratory metabolism. Frontiers in Plant Science, 2019, 10: 166.
[31]
CAO X H, WEI Y N, SHEN B D, LIU L C, MAO J. Interaction of the transcription factors BES1/BZR1 in plant growth and stress response. International Journal of Molecular Sciences, 2024, 25(13): 6836.
[32]
李玉洁, 王宁, 孟亚依, 海雪, 邢会贤, 柳洪鹃, 史春余, 司成成. 甘薯萌芽性与贮藏期块根内源激素变化及淀粉代谢的关系. 热带作物学报, 2024, 45(2): 362-369.
LI Y J, WANG N, MENG Y Y, HAI X, XING H X, LIU H J, SHI C Y, SI C C. Endogenous hormone content and starch metabolism of storage roots during storage and its relationship with germination in sweet potato. Chinese Journal of Tropical Crops, 2024, 45(2): 362-369. (in Chinese)
[33]
LLAVE C. Dynamic cross-talk between host primary metabolism and viruses during infections in plants. Current Opinion in Virology, 2016, 19: 50-55.
[34]
AKBAR S, YAO W, QIN L F, YUAN Y, POWELL C A, CHEN B S, ZHANG M Q. Comparative analysis of sugar metabolites and their transporters in sugarcane following sugarcane mosaic virus (SCMV) infection. International Journal of Molecular Sciences, 2021, 22(24): 13574.
[35]
SHALITIN D, WANG Y, OMID A, GAL-ON A, WOLF S. Cucumber mosaic virus movement protein affects sugar metabolism and transport in tobacco and melon plants. Plant, Cell & Environment, 2002, 25(8): 989-997.
[36]
杨慧杰, 原向阳, 郭平毅, 董淑琦, 张丽光, 温银元, 宋喜娥, 王宏富. 油菜素内酯对阔世玛胁迫下谷子叶片光合荧光特性及糖代谢的影响. 中国农业科学, 2017, 50(13): 2508-2518. doi: 10.3864/j.issn.0578-1752.2017.13.010.
YANG H J, YUAN X Y, GUO P Y, DONG S Q, ZHANG L G, WEN Y Y, SONG X E, WANG H F. Effects of brassinolide on photosynthesis, chlorophyll fluorescence characteristics and carbohydrates metabolism in leaves of foxtail millet(Setaria italica) under sigma broad stress. Scientia Agricultura Sinica, 2017, 50(13): 2508-2518. doi: 10.3864/j.issn.0578-1752.2017.13.010. (in Chinese)
[37]
纪秀娥, 史留功, 胡春红, 郭彤. 油菜素内酯对小麦、玉米种子萌发的影响. 江苏农业科学, 2014, 42(9): 88-89.
JI X E, SHI L G, HU C H, GUO T. Effects of brassinolide on seed germination of wheat and maize. Jiangsu Agricultural Sciences, 2014, 42(9): 88-89. (in Chinese)
[38]
XU F, XI Z M, ZHANG H, ZHANG C J, ZHANG Z W. Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera ‘Cabernet Sauvignon’ berries during véraison. Plant Physiology and Biochemistry, 2015, 94: 197-208.
[39]
CASTLE J, SZEKERES M, JENKINS G, BISHOP G J. Unique and overlapping expression patterns of Arabidopsis CYP85 genes involved in brassinosteroid C-6 oxidation. Plant Molecular Biology, 2005, 57(1): 129-140.
[40]
SHIMADA Y, FUJIOKA S, MIYAUCHI N, KUSHIRO M, TAKATSUTO S, NOMURA T, YOKOTA T, KAMIYA Y, BISHOP G J, YOSHIDA S. Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiology, 2001, 126(2): 770-779.
[41]
LI G D, YAO X Z, CHEN Z, TIAN X Y, LU L T. The overexpression of Oryza sativa L. CYP85A1 promotes growth and biomass production in transgenic trees. International Journal of Molecular Sciences, 2023, 24(7): 6480.
[42]
ENOKI S, TANAKA K, MORIYAMA A, HANYA N, MIKAMI N, SUZUKI S. Grape cytochrome P450 CYP90D1 regulates brassinosteroid biosynthesis and increases vegetative growth. Plant Physiology and Biochemistry, 2023, 196: 993-1001.
[43]
MAO J P, ZHANG D, LI K, LIU Z, LIU X J, SONG C H, LI G F, ZHAO C P, MA J J, HAN M Y. Effect of exogenous Brassinolide (BR) application on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis. Plant Growth Regulation, 2017, 82(3): 391-401.
[44]
侯夫云, 董顺旭, 解备涛, 李爱贤, 王庆美. 排种密度对甘薯块根萌芽特性的影响. 植物生理学报, 2017, 53(5): 849-856.
HOU F Y, DONG S X, XIE B T, LI A X, WANG Q M. Effect of root density on germination characteristics of sweetpotato. Plant Physiology Journal, 2017, 53(5): 849-856. (in Chinese)
[45]
宋佳乐, 刘洋洋, 司增志. 甘薯萌芽特性及抑芽技术研究进展. 现代农业科技, 2023(4): 32-35, 39.
SONG J L, LIU Y Y, SI Z Z. Research progress on sprouting characteristics and sprout inhibition technology of sweet potato. Modern Agricultural Science and Technology, 2023(4): 32-35, 39. (in Chinese)
[1] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[2] ZHENG Yu, CHEN Yi, TI JinSong, SHI LongFei, XU XiaoBo, LI YuLin, GUO Rui. Evaluation of Carbon Footprint and Economic Benefit of Different Tobacco Rotation Patterns [J]. Scientia Agricultura Sinica, 2025, 58(4): 733-747.
[3] CHEN YongXian, CHEN RuiJiang, DU YiZhi, ZHU JunJie, CHEN WanXia, ZHAO ZiHan, WANG JiChun, DU Kang, ZHANG Kai. Screening and Identification of Drought-Tolerant Sweet Potato Germplasm Resources [J]. Scientia Agricultura Sinica, 2025, 58(2): 214-237.
[4] WANG YongJiang, QIAO Qi, WANG Shuang, ZHAO FuMei, TIAN YuTing, ZHANG DeSheng, ZHANG ZhenChen. Establishment and Application of RT-RPA-LFD Detection Method for Sweet Potato Chlorotic Stunt Virus WA Strain [J]. Scientia Agricultura Sinica, 2024, 57(14): 2781-2790.
[5] WANG YueNing, DAI HongJun, HE Yan, WEI Qiang, GUO XueLiang, LIU Yan, YIN MengTing, WANG ZhenPing. Regulation Mechanism of Brassinolide on Anthocyanins Synthesis and Fruit Quality in Wine Grapes Under High Temperature Stress Based on Transcriptome Analysis [J]. Scientia Agricultura Sinica, 2023, 56(6): 1139-1153.
[6] TANG Wei, ZHANG ChengLing, YANG DongJing, MA JuKui, CHEN JingWei, GAO FangYuan, XIE YiPing, SUN HouJun. Complete Genomic Sequence Characteristics and Establishment of qPCR Detection Technique of Sweet Potato Virus E in China [J]. Scientia Agricultura Sinica, 2023, 56(20): 4010-4020.
[7] ZHAO Shan,ZHONG LingLi,QIN Lin,HUANG ShiQun,LI Xi,ZHENG XingGuo,LEI XinYu,LEI ShaoRong,GUO LingAn,FENG JunYan. Effects of Different Drying Methods on Functional Components and Antioxidant Activity in Sweet Potato Leaves [J]. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663.
[8] ZHAO FuMei,WANG Shuang,TIAN YuTing,QIAO Qi,WANG YongJiang,ZHANG DeSheng,ZHANG ZhenChen. An Investigation into Key Factors Influencing the Occurrence of Virus Disease in Sweet Potato [J]. Scientia Agricultura Sinica, 2021, 54(15): 3232-3240.
[9] WANG JinQiang,LI SiPing,LIU Qing,LI Huan. Mechanism of Spraying Growth Regulators to Alleviate Drought Stress of Sweet Potato [J]. Scientia Agricultura Sinica, 2020, 53(3): 500-512.
[10] QIN YanHong,WANG YongJiang,WANG Shuang,QIAO Qi,TIAN YuTing,ZHANG DeSheng,ZHANG ZhenChen. Complete Nucleotide Sequence Analysis and Genetic Characterization of the Sweet potato feathery mottle virus O and RC Strains Isolated from China [J]. Scientia Agricultura Sinica, 2020, 53(11): 2207-2218.
[11] XU Shu,LI Ling,ZHANG SiMeng,CAO RuXia,CHEN LingLing,CUI Peng,Lü ZunFu,WU LieHong,LU GuoQuan. Evaluation of Genotype Differences of Cold Tolerance of Sweet Potato Seedlings by Subordinate Function Value Analysis [J]. Scientia Agricultura Sinica, 2019, 52(17): 2929-2938.
[12] JIANG ShanShan, FENG Jia, ZHANG Mei, WANG ShengJi, XIN ZhiMei, WU Bin, XIN XiangQi. Development of RT-LAMP Assay for Rapid Detection of Sweet potato feathery mottle virus (SPFMV) [J]. Scientia Agricultura Sinica, 2018, 51(7): 1294-1302.
[13] LI HuaWei, LIU ZhongHua, ZHANG Hong, XU YongQing, LI GuoLiang, LIN ZhaoMiao, QIU YongXiang, LUO WenBin, JI RongChang, TANG Hao, QIU SiXin. Mining and Characterization of MicroRNAs Associated with Pathogenicity by Different Sweet Potato Viruses [J]. Scientia Agricultura Sinica, 2018, 51(11): 2094-2105.
[14] WU Yang, GAO HuiChun, ZHANG BiXian, ZHANG HaiLing, WANG QuanWei, LIU XinLei, LUAN XiaoYan, MA YanSong. Effects of 24-Brassinolide on the Fertility, Physiological Characteristics and Cell Ultra-Structure of Soybean Under Saline-Alkali Stress [J]. Scientia Agricultura Sinica, 2017, 50(5): 811-821.
[15] WANG ShunYi, LIU Qing, SHI YanXi, LI Huan. Interactive Effects of Nitrogen and Potassium on Photosynthesis Product Distribution and Accumulation of Sweet Potato [J]. Scientia Agricultura Sinica, 2017, 50(14): 2706-2716.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!