Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (20): 4010-4020.doi: 10.3864/j.issn.0578-1752.2023.20.007

• PLANT PROTECTION • Previous Articles     Next Articles

Complete Genomic Sequence Characteristics and Establishment of qPCR Detection Technique of Sweet Potato Virus E in China

TANG Wei(), ZHANG ChengLing, YANG DongJing, MA JuKui, CHEN JingWei, GAO FangYuan, XIE YiPing, SUN HouJun()   

  1. Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area/Institute of Sweet Potato, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, Jiangsu
  • Received:2023-06-29 Accepted:2023-08-11 Online:2023-10-16 Published:2023-10-31
  • Contact: SUN HouJun

Abstract:

【Objective】Sweet potato virus E (SPVE) is a novel virus infecting Ipomoea batatas. The objectives of this study are to determine the complete genomic sequence of SPVE Xuzhou isolate (SPVE-XZ) in China, analyze the genomic sequence characteristics of SPVE-XZ, and develop the quantitative PCR (qPCR) assay for the specific detection of SPVE. This study will provide theoretical basis and technical support for the detection, monitoring and controlling SPVE in China. 【Method】The complete genomic sequence of SPVE-XZ was obtained by using small RNA deep sequencing, combined with RT-PCR and RACE technologies. The sequence alignment and phylogenetic relationship analysis of SPVE-XZ were performed by using software MegAlign and MEGA11. The primers of qPCR for rapid detection of SPVE were designed, and the qPCR detection method for SPVE was established by optimizing the annealing temperature and primer concentration. The specificity and sensitivity of the qPCR were determined. The developed qPCR technology was used to detect sweet potato samples collected from Jiangsu Province and Shandong Province. 【Result】The complete genomic sequence of SPVE-XZ was 10 919 nt, excluding the 3′-terminal poly (A) tail, containing the typical open reading frame of 10 560 nt in length and encoding a putative large polyprotein of 3 519 amino acids. The 5′UTR and 3′UTR of SPVE-XZ were 129 and 230 nt, respectively. PISPO and PIPO were produced with the frameshift in P1 and P3, respectively. Genomic sequence analysis showed that the genomic nucleotide sequence identity between SPVE-XZ and Korean SPVE-GS isolate was 98.6%, and the amino acid sequence identity of polyprotein between them was 98.5%. Phylogenetic trees were constructed based on the coat protein gene sequences and polyprotein amino acid sequence using the neighbor-joining method. The result showed that SPVE-XZ was clustered with SPVE-GS in these phylogenetic analyses. The established qPCR method could detect SPVE specifically, however sweet potato virus 2 (SPV2), sweet potato virus C (SPVC), sweet potato virus G (SPVG), sweet potato feathery mottle virus (SPFMV), sweet potato chlorotic stunt virus (SPCSV), sweet potato latent virus (SPLV), sweet potato chlorotic fleck virus (SPCFV), cucumber mosaic virus (CMV) could not be detected in this qPCR system. The lowest sensitivity of the qPCR was 3.12×102 copies/μL and it was 100 times that of conventional RT-PCR. SPVE was detected in 1 sample of 6 samples collected from Shandong Province and 13 samples of 52 samples collected from Jiangsu Province by using the established qPCR detection method. 【Conclusion】The complete genome sequence of SPVE-XZ is 10 919 nt. The genome structure of SPVE-XZ is consistent with SPVE-GS reported in Korean. The established qPCR detection system for SPVE is specific and highly sensitive, which can be used for the rapid detection of SPVE.

Key words: Ipomoea batatas, sweet potato virus E (SPVE), complete genomic sequence, phylogenetic analysis, qPCR detection

Table 1

Primers used for SPVE complete genomic sequence amplification"

引物名称
Primer name
序列
Sequence (5′-3′)
片段大小
Length (bp)
退火温度
TM (℃)
备注
Note
SPVE-F1 CAATACAACACAACAAAAATCAAAG 1708 58 基因组扩增Genome amplification
SPVE-R1 GAAATCCTCCCACTCTCCATA 58 基因组扩增Genome amplification
SPVE-F2 ATTCAAAAGGTGGAATCTGA 1803 55 基因组扩增Genome amplification
SPVE-R2 CACATAGCAATACCCATCTTTC 56 基因组扩增Genome amplification
SPVE-F3 TTTGCCAATTACTTCGATATT 2745 54 基因组扩增Genome amplification
SPVE-R3 CCCTGCATCAATTAAGAGG 50 基因组扩增Genome amplification
SPVE-F4 AACTGCTGACAATATTCTCGTATAC 2776 52 基因组扩增Genome amplification
SPVE-R4 AAGGTCAAATAACATGCATTTC 50 基因组扩增Genome amplification
SPVE-F5 TAGTGAAAAATGGGTCTTAGATAGA 2529 50 基因组扩增Genome amplification
SPVE-R5 GACAACATAAGTAGATTTTAAAGGC 55 基因组扩增Genome amplification
SPVE-F6 CAATTCGACAACACCCGCT ~400 56 3′RACE
M4T GTTTTCCCAGTCACGACTTTTTTTTTTTTTTTT 3′RACE
SPVE-InR ATGGAGTTGTGCGAGCATAAC ~400 55 5′RACE
SPVE-OutR GTCTCTTCAGCCTCTTCCC 55 5′RACE
QT CCAGTGAGCAGAGTGACGAGGA CTCGAGCTCAAGCTTTTTTTTTTTTTTTTT 5′RACE
QO CCAGTGAGCAGAGTGACG 5′RACE

Fig. 1

Small RNA reads hot spot map of SPVE genomic sequence The horizontal axis represents the relative position along the SPVE-GS genome. The vertical axis represents the number of small RNAs reads mapped to the SPVE-GS genomic (red) or antigenomic (blue) sequence"

Fig. 2

Phylogenetic trees of SPVE constructed based on nucleotide sequences of the cp (A) and amino acid sequences of polyprotein (B) Phylogenetic trees were constructed using the NJ method in MEGA 11 program. The bootstrap values lower than 70% are not shown"

Fig. 3

CT values under different temperatures"

Fig. 4

Amplification curves and CT values under different primer concentrations"

Fig. 5

Specificity test of SPVE qPCR primer"

Fig. 6

Standard curve of qPCR"

Fig. 7

The sensitivity test of qPCR (A) and conventional PCR (B) The plasmid from 3.12×107 to 3.12×100 copies/μL;M:DL 1000 marker"

[1]
马代夫, 刘庆昌, 张立明. 中国甘薯. 南京: 江苏凤凰科学技术出版社, 2021.
MA D F, LIU Q C, ZHANG L M. Sweetpotato in China. Nanjing: Jiangsu Phoenix Science and Technology Press, 2021. (in Chinese)
[2]
TAIRO F, MUKASA S B, JONES R A, KULLAYA A, RUBAIHAYO P R, VALKONEN J P T. Unravelling the genetic diversity of the three main viruses involved in sweet potato virus disease (SPVD), and its practical implications. Molecular Plant Pathology, 2005, 6(2): 199-211.

doi: 10.1111/j.1364-3703.2005.00267.x pmid: 20565651
[3]
JO Y, KIM S M, CHOI H, YANG J W, LEE B C, CHO W K. Sweet potato viromes in eight different geographical regions in Korea and two different cultivars. Scientific Reports, 2020, 10(1): 2588.

doi: 10.1038/s41598-020-59518-x pmid: 32054944
[4]
CLARK C A, DAVIS J A, ABAD J A, CUELLAR W J, FUENTES S, KREUZE J F, GIBSON R W, MUKASA S B, TUGUME A K, TAIRO F D, VALKONEN J P T. Sweetpotato viruses: 15 years of progress on understanding and managing complex diseases. Plant Disease, 2012, 96(2): 168-185.

doi: 10.1094/PDIS-07-11-0550 pmid: 30731810
[5]
WANG Y, QIN Y, WANG S, ZHANG D, TIAN Y, ZHAO F, WANG Y, LV H, QIAO Q, ZHANG Z. Species and genetic variability of sweet potato viruses in China. Phytopathology Research, 2021, 3: 20.

doi: 10.1186/s42483-021-00097-8
[6]
WANG Q, ZHANG L, WANG B, YIN Z, FENG C, WANG Q. Sweetpotato viruses in China. Crop Protection, 2010, 29(2): 110-114.

doi: 10.1016/j.cropro.2009.11.002
[7]
XIE Y P, XING J Y, LI X Y, WANG X, SUN H J, ZHAO Y Q, ZHANG C L, MA D F. Survey of sweetpotato viruses in China. Acta Virologica, 2013, 57(1): 81-84.

pmid: 23530828
[8]
GUTIÉRREZ D L, FUENTES S, SALAZAR L F. Sweetpotato virus disease (SPVD): Distribution, incidence, and effect on sweetpotato yield in Peru. Plant Disease, 2003, 87(3): 297-302.

doi: 10.1094/PDIS.2003.87.3.297 pmid: 30812764
[9]
QIN Y, ZHANG Z, QIAO Q, ZHANG D, TIAN Y, WANG Y, WANG S. Complete genome sequences of two sweet potato chlorotic stunt virus isolates from China. Genome Announcements, 2013, 1(3): e00218-13.
[10]
秦艳红, 渠瑞娜, 乔奇, 王爽, 张德胜, 王永江, 田雨婷, 张振臣. 甘薯病毒C中国分离物全基因组序列测定及比较分析. 植物病理学报, 2018, 48(3): 324-329.
QIN Y H, QU R N, QIAO Q, WANG S, ZHANG D S, WANG Y J, TIAN Y T, ZHANG Z C. The complete nucleotide sequence of a Chinese isolate of sweet potato virus C and its comparative analysis with other isolates. Acta Phytopathologica Sinica, 2018, 48(3): 324-329. (in Chinese)
[11]
李嘉莹, 沈文涛, 庹德财, 朱国鹏, 黎小瑛, 言普, 周鹏. 甘薯羽状斑驳病毒海南分离物全基因组序列克隆及分析. 分子植物育种, 2020, 18(8): 2445-2451.
LI J Y, SHEN W T, TUO D C, ZHU G P, LI X Y, YAN P, ZHOU P. Complete genome sequencing and analysis of sweet potato feathery mottle virus (SPFMV) isolate from Hainan. Molecular Plant Breeding, 2020, 18(8): 2445-2451. (in Chinese)
[12]
马俊丰, 李小宇, 张春雨, 周雪平, 王永志. 甘薯G病毒吉林分离物的全基因组序列测定与分析. 植物保护, 2020, 46(3): 57-61, 69.
MA J F, LI X Y, ZHANG C Y, ZHOU X P, WANG Y Z. Complete genome sequencing and analysis of sweet potato virus G isolate from Jilin, China. Plant Protection, 2020, 46(3): 57-61, 69. (in Chinese)
[13]
秦艳红, 乔奇, 王爽, 张德胜, 王永江, 田雨婷, 张振臣. 甘薯病毒2中国分离物全基因组序列克隆及遗传进化分析. 植物病理学报, 2020, 50(4): 505-508.
QIN Y H, QIAO Q, WANG S, ZHANG D S, WANG Y J, TIAN Y T, ZHANG Z C. Complete nucleotide sequence and phylogenetic analysis of the sweet potato virus 2 isolated from China. Acta Phytopathologica Sinica, 2020, 50(4): 505-508. (in Chinese)
[14]
秦艳红, 王永江, 王爽, 乔奇, 田雨婷, 张德胜, 张振臣. 甘薯羽状斑驳病毒O株系和RC株系中国分离物全基因组序列分析及其遗传特征. 中国农业科学, 2020, 53(11): 2207-2218. doi: 10.3864/j.issn. 0578-1752.2020.11.007.
QIN Y H, WANG Y J, WANG S, QIAO Q, TIAN Y T, ZHANG D S, ZHANG Z C. Complete nucleotide sequence analysis and genetic characterization of the sweet potato feathery mottle virus O and RC strains isolated from China. Scientia Agricultura Sinica, 2020, 53(11): 2207-2218. doi: 10.3864/j.issn.0578-1752.2020.11.007. (in Chinese)
[15]
LI F, ZUO R, ABAD J, XU D, BAO G, LI R. Simultaneous detection and differentiation of four closely related sweet potato potyviruses by a multiplex one-step RT-PCR. Journal of Virological Methods, 2012, 186(1/2): 161-166.

doi: 10.1016/j.jviromet.2012.07.021
[16]
卢会翔, 吕长文, 吴正丹, 罗凯, 尹旺, 杨航, 王季春, 张凯. 甘薯羽状斑驳病毒(SPFMV)和甘薯褪绿矮化病毒(SPCSV)荧光定量RT-PCR检测方法的建立. 中国农业科学, 2016, 49(1): 90-102. doi: 10.3864/j.issn.0578-1752.2016.01.008.
LU H X, C W, WU Z D, LUO K, YIN W, YANG H, WANG J C, ZHANG K. Development of detection method for sweet potato feathery mottle virus (SPFMV) and sweet potato chlorotic stunt virus (SPCSV) through fluorescence quantitative RT-PCR. Scientia Agricultura Sinica, 2016, 49(1): 90-102. doi: 10.3864/j.issn.0578- 1752.2016.01.008. (in Chinese)
[17]
姜珊珊, 冯佳, 张眉, 王升吉, 辛志梅, 吴斌, 辛相启. 甘薯羽状斑驳病毒RT-LAMP快速检测方法的建立. 中国农业科学, 2018, 51(7): 1294-1302. doi: 10.3864/j.issn.0578-1752.2018.07.007.
JIANG S S, FENG J, ZHANG M, WANG S J, XIN Z M, WU B, XIN X Q. Development of RT-LAMP assay for rapid detection of sweet potato feathery mottle virus (SPFMV). Scientia Agricultura Sinica, 2018, 51(7): 1294-1302. doi: 10.3864/j.issn.0578-1752.2018.07.007. (in Chinese)
[18]
TANG W, YANG D, MA J, CHEN J, XIE Y, SUN H, ZHANG C. Development of a dual RT-RPA detection for sweet potato feathery mottle virus and sweet potato chlorotic stunt virus. Molecular and Cellular Probes, 2022, 65: 101846.

doi: 10.1016/j.mcp.2022.101846
[19]
LIU Q, ZHANG Z, QIAO Q, QIN Y, ZHANG D, TIAN Y, WANG S, WANG Y. Complete genome sequence of a novel monopartite begomovirus infecting sweet potato in China. Virus Genes, 2013, 47(3): 591-594.

doi: 10.1007/s11262-013-0982-3 pmid: 24057883
[20]
LIU Q, ZHANG Z, LI J, QIAO Q, QIN Y, ZHANG D, TIAN Y, WANG S, WANG Y. Complete genome sequence of a novel monopartite begomovirus infecting sweet potato in China. Archives of Virology, 2014, 159(6): 1537-1540.

doi: 10.1007/s00705-013-1958-2 pmid: 24378821
[21]
OLSPERT A, CHUNG B Y, ATKINS J F, CARR J P, FIRTH A E. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. EMBO Reports, 2015, 16(8): 995-1004.

doi: 10.15252/embr.201540509
[22]
MINGOT A, VALLI A, RODAMILANS B, LEÓN D S, BAULCOMBE D C, GARCÍA J A, LÓPEZ-MOYA J J, SIMON A. The P1N-PISPO trans-frame gene of sweet potato feathery mottle potyvirus is produced during virus infection and functions as an RNA silencing suppressor. Journal of Virology, 2016, 90(7): 3543-3557.

doi: 10.1128/JVI.02360-15
[23]
UNTIVEROS M, OLSPERT A, ARTOLA K, FIRTH A E, KREUZE J F, VALKONEN J P. A novel sweet potato potyvirus open reading frame (ORF) is expressed via polymerase slippage and suppresses RNA silencing. Molecular Plant Pathology, 2016, 17(7): 1111-1123.

doi: 10.1111/mpp.12366 pmid: 26757490
[24]
CHUNG B Y, MILLER W A, ATKINS J F, FIRTH A E.An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(15): 5897-5902.
[25]
陈炯, 陈剑平. Potyvirus属成员基因组全序列的简并引物PCR和RACE扩增方法. 病毒学报, 2002, 18(4): 371-374.
CHEN J, CHEN J P. Determination of genome sequence of potyviruses by degenerated PCR and RACE methods. Chinese Journal of Virology, 2002, 18(4): 371-374. (in Chinese)
[26]
SCOTTO-LAVINO E, DU G, FROHMAN M A. 5′ end cDNA amplification using classic RACE. Nature Protocols, 2006, 1(6): 2555-2562.

doi: 10.1038/nprot.2006.480
[27]
TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.

doi: 10.1093/molbev/msab120 pmid: 33892491
[28]
XU C, SUN X, TAYLOR A, JIAO C, XU Y, CAI X, WANG X, GE C, PAN G, WANG Q, FEI Z, WANG Q. Diversity, distribution, and evolution of tomato viruses in China uncovered by small RNA sequencing. Journal of Virology, 2017, 91(11): e00173-17.
[29]
汤亚飞, 裴凡, 李正刚, 佘小漫, 于琳, 蓝国兵, 邓铭光, 何自福. 基于小RNA深度测序技术鉴定侵染广东辣椒的病毒种类. 中国农业科学, 2019, 52(13): 2256-2267. doi: 10.3864/j.issn.0578-1752.2019. 13.006.
TANG Y F, PEI F, LI Z G, SHE X M, YU L, LAN G B, DENG M G, HE Z F. Identification of viruses infecting peppers in Guangdong by small RNA deep sequencing. Scientia Agricultura Sinica, 2019, 52(13): 2256-2267. doi: 10.3864/j.issn.0578-1752.2019.13.006. (in Chinese)
[30]
ROY A, CHOUDHARY N, GUILLERMO L M, SHAO J, GOVINDARAJULU A, ACHOR D, WEI G, PICTON D D, LEVY L, NAKHLA M K, HARTUNG J S, BRLANSKY R H. A novel virus of the genus Cilevirus causing symptoms similar to citrus leprosis. Phytopathology, 2013, 103(5): 488-500.

doi: 10.1094/PHYTO-07-12-0177-R
[31]
JIA A, YAN C, YIN H, SUN R, XIA F, GAO L, ZHANG Y, LI Y. Small RNA and transcriptome sequencing of a symptomatic peony plant reveals mixed infections with novel viruses. Plant Disease, 2021, 105(12): 3816-3828.

doi: 10.1094/PDIS-01-21-0007-RE pmid: 34156278
[32]
KREUZE J F, PEREZ A, UNTIVEROS M, QUISPE D, FUENTES S, BARKER I, SIMON R. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses. Virology, 2009, 388(1): 1-7.

doi: 10.1016/j.virol.2009.03.024 pmid: 19394993
[33]
GALLIE D R, WALBOT V. Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation. Nucleic Acids Research, 1992, 20(17): 4631-4638.

doi: 10.1093/nar/20.17.4631
[34]
GAO B, CUI X W, LI X D, ZHANG C Q, MIAO H Q. Complete genomic sequence analysis of a highly virulent isolate revealed a novel strain of sugarcane mosaic virus. Virus Genes, 2011, 43(3): 390-397.

doi: 10.1007/s11262-011-0644-2 pmid: 21833715
[35]
KOKKINOS C D, CLARK C A. Interactions among sweet potato chlorotic stunt virus and different potyviruses and potyvirus strains infecting sweetpotato in the United States. Plant Disease, 2006, 90(10): 1347-1352.

doi: 10.1094/PD-90-1347 pmid: 30780944
[36]
ROHOŽKOVÁ J, NAVRÁTIL M. P 1 peptidase - A mysterious protein of family Potyviridae. Journal of Biosciences, 2011, 36(1): 189-200.

doi: 10.1007/s12038-011-9020-6
[37]
SOUMOUNOU Y, LALIBERTÉ J F. Nucleic acid-binding properties of the P1 protein of turnip mosaic potyvirus produced in Escherichia coli. Journal of General Virology, 1994, 75(10): 2567-2573.

doi: 10.1099/0022-1317-75-10-2567
[38]
PRUSS G, GE X, SHI X M, CARRINGTON J C, BOWMAN VANCE V. Plant viral synergism: The potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. The Plant Cell, 1997, 9(6): 859-868.

doi: 10.1105/tpc.9.6.859
[39]
GIBSON R, MPEMBE I, ALICAI T, CAREY E, MWANGA R, SEAL S, VETTEN H. Symptoms, aetiology and serological analysis of sweet potato virus disease in Uganda. Plant Pathology, 1998, 47(1): 95-102.

doi: 10.1046/j.1365-3059.1998.00196.x
[40]
孙晓辉, 潘睿婧, 刘永光, 王丹, 石朝鹏, 乔宁, 孙作文, 竺晓平. 甜瓜黄斑病毒SYBR GreenⅠ实时荧光定量PCR方法. 植物病理学报, 2023, 53(1): 119-125.
SUN X H, PAN R J, LIU Y G, WANG D, SHI Z P, QIAO N, SUN Z W, ZHU X P. SYBR Green I quantitative real-time PCR for melon yellow spot virus. Acta Phytopathologica Sinica, 2023, 53(1): 119-125. (in Chinese)
[1] SHAO Zhen, DIAO YouXiang. Investigation and Analysis of Nucleic Acid Detection Results of Viral Viruses in Large-Scale Goose Farms [J]. Scientia Agricultura Sinica, 2023, 56(10): 2021-2034.
[2] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[3] XIE HaiKun, JIAO Jian, FAN XiuCai, ZHANG Ying, JIANG JianFu, SUN HaiSheng, LIU ChongHuai. Assembling and Characteristic Analysis of the Complete Chloroplast Genome of Vitis vinifera cv. Cabernet Sauvignon from High-Throughput Sequencing Data [J]. Scientia Agricultura Sinica, 2017, 50(9): 1655-1665.
[4] WANG Lin, LI XinFeng, XU YuMei, CHANG YinDong, WANG JianMing. Analysis of Population Distribution and Genetic Variation of Plant Pathogenic Fusarium in Shanxi Province [J]. Scientia Agricultura Sinica, 2017, 50(10): 1802-1816.
[5] WANG Ye, HAN Lei, DONG Jie, HUANG JiaXing, WU Jie. Identification and Characteristics of Odorant Receptors in Bumblebee, Bombus lantschouensis [J]. Scientia Agricultura Sinica, 2017, 50(10): 1904-1913.
[6] SUN Ming-yue, ZHOU Jun, TAN Qiu-ping, FU Xi-ling, CHEN Xiu-de, LI Ling, GAO Dong-sheng. Analysis of Basic Leucine Zipper Genes and Their Expression During Bud Dormancy in Apple (Malus×domestica) [J]. Scientia Agricultura Sinica, 2016, 49(7): 1325-1345.
[7] WU Xiang-yang, CHENG Chao-ze, Lü Gao-qiang, WANG Xin-yu. Identification and Characterization of the AQP Gene Family in Sesame [J]. Scientia Agricultura Sinica, 2016, 49(10): 1844-1858.
[8] XU Hui-yang, XU Bang-feng, CHEN Yan, SUI Jin-yu, YANG Huan-liang, YIN Hang, YANG Da-wei, QIAO Chuan-ling, CHEN Hua-lan. Phylogenetic Analysis and Molecular Characteristics of an H1N1 Subtype Swine Influenza Virus [J]. Scientia Agricultura Sinica, 2015, 48(15): 3071-3078.
[9] ZHAO Qing-qing, LI Qun-hui, ZHU Jie, ZHONG Lei, LIU Jing-jing, GU Min, WANG Xiao-quan, LIU Wen-bo, LIU Xiu-fan. Genome Sequencing and Genetic Analysis of H4N8 Subtype Avian Influenza Virus Isolated from Duck [J]. Scientia Agricultura Sinica, 2015, 48(15): 3040-3049.
[10] GE Song, JIANG Wan, HE Sheng-hu, YU Yong-tao, ZHANG Lei-lei, GUO Shu-qiang, WANG Jing. Isolation and Identification of Dermatophytes from Beef Cattle in Ningxia [J]. Scientia Agricultura Sinica, 2015, 48(14): 2876-2883.
[11] GONG Xiao-Dong-1, ZHANG Xiao-Yu-1, TIAN Lan-1, WANG Xing-Yi-1, LI Po-2, ZHANG Pan-1, WANG Yue-1, FAN Yong-Shan-3, HAN Jian-Min-1, GU Shou-Qin-1, DONG Jin-Gao-1. Genome-Wide Identification MAPK Superfamily and Establishment of the Model of MAPK Cascade Pathway in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2014, 47(9): 1715-1724.
[12] YAN Wei1, SHEN Zhong-yuan, TANG Xu-dong, XU Li, LI Qian-long, XIAO Sheng-yan, YUE Ya-jie, FU Xu-liang. Sequencing and Phylogenetic Analysis of the RPB1 Gene of Nosema sp. PA [J]. Scientia Agricultura Sinica, 2014, 47(23): 4736-4744.
[13] AN Hai-Shan-1, YANG Ke-Qiang-1, 2 . Sequence Analysis of NBS-Type RGAs and Their Relationship with Anthracnose Resistance in Walnut [J]. Scientia Agricultura Sinica, 2014, 47(2): 344-356.
[14] ZENG Ji-Wu, JIANG Bo, WU Bo, ZHONG Yun, CHENG Chun-Zhen, MU Hong-Na, GAN Lian-Sheng, PENG Cheng-Ji, ZHONG Guang-Yan, YI Gan-Jun. Morphological and Molecular Studies on a Wild Citrus ‘Longmen Xiangcheng’ [J]. Scientia Agricultura Sinica, 2014, 47(2): 334-343.
[15] ZHOU Zhe, ZHANG Cai-Xia, ZHANG Li-Yi, WANG Qiang, LI Wu-Xing, TIAN Yi, CONG Pei-Hua. Bioinformatics and Expression Analysis of the LysM Gene Family in Apple [J]. Scientia Agricultura Sinica, 2014, 47(13): 2602-2612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!