Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (14): 2781-2790.doi: 10.3864/j.issn.0578-1752.2024.14.007

• PLANT PROTECTION • Previous Articles     Next Articles

Establishment and Application of RT-RPA-LFD Detection Method for Sweet Potato Chlorotic Stunt Virus WA Strain

WANG YongJiang(), QIAO Qi, WANG Shuang, ZHAO FuMei, TIAN YuTing, ZHANG DeSheng, ZHANG ZhenChen()   

  1. Institute of Plant Protection, Henan Academy of Agricultural Sciences/Henan Key Laboratory of Crop Pest Control/IPM Key Laboratory in Southern Part of North China, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002
  • Received:2024-02-28 Accepted:2024-04-20 Online:2024-07-16 Published:2024-07-24
  • Contact: ZHANG ZhenChen

Abstract:

【Objective】 This study aims to establish a novel technique for detecting the west African strain of sweet potato chlorotic stunt virus (SPCSV-WA) by combining reverse transcriptase recombinase polymerase amplification and lateral flow dipstick (RT-RPA-LFD).【Method】 Primers and probes with good amplification results and strong specificity were designed and screened on the basis of the conserved sequences of the SPCSV-WA coat protein gene and heat shock protein gene. Then, the conditions such as primer and probe concentrations, amplification system, temperature, and reaction time were optimized to detect SPCSV-WA using RT-RPA-LFD. This method was used to detect common viruses on sweet potato such as the east African strain of sweet potato chlorotic stunt virus (SPCSV-EA), sweet potato feathery mottle virus (SPFMV), sweet potato latent virus (SPLV) and sweet potato virus G (SPVG) to verify the specificity. Total RNA from SPCSV-infected sweet potato leaves was diluted in a 10-fold gradient, and RT-PCR and RT-RPA-LFD were performed to compare the sensitivity of the two methods. Field sweet potato samples and test tube seedling samples were subjected to RT-RPA, RT-RPA-LFD, and RT-PCR detection to validate the practicality of the method.【Result】 The RT-RPA-LFD detection method for SPCSV-WA was established using the optimal primer CSV357F/R and the CSV-CP-Probe (47 bp). The working concentrations of the primer and probe were 0.2 and 0.06 μmol·L-1, respectively. The reaction conditions were set to 42 ℃ for 5 min. This method could specifically detect SPCSV-WA and had no cross-reaction with other common viruses on sweet potato. The RT-RPA-LFD could detect viruses up to 10-4 dilution, whereas RT-PCR could only detect up to 10-3 dilution, making the sensitivity of RT-RPA-LFD 10 times higher than that of RT-PCR. Of the 22 field-gathered sweet potato samples tested by RT-PCR, RT-RPA, and RT-RPA-LFD, 11 positive samples were consistently found across the three methods. The testing results of 28 test tube seedling samples showed that RT-PCR and RT-RPA-LFD consistently detected five positive samples.【Conclusion】 The RT-RPA-LFD detection method for SPCSV-WA has been established and it is characterized by its speed, simplicity, specificity, sensitivity, and visibility. This method can be used for testing virus-free test tube seedling samples of sweet potato as well as for on-site rapid detection of field sweet potato samples in basic level units.

Key words: west African strain of sweet potato chlorotic stunt virus (SPCSV-WA), reverse transcriptase recombinase polymerase amplification (RT-RPA), lateral flow dipstick (LFD), rapid detection, sweet potato

Table 1

Primers used in this study"

体系
System
编号
Number
引物名称
Primer name
引物和探针序列
Primer and probe sequence (5′-3′)
大小
Size (bp)
来源
<BOLD>S</BOLD>ource
RT-RPA
C1 CSV170F ATGGCTGATAGCACTAAAGTCGAAGAGAAGAAC 170 本试验This study
CSV170R GTAAGAATACCACTRGTTARCTCCATATCTC
C2 CSV216F GRCTTCCAACTATACTCTTTCCCGT 216 本试验This study
CSV216R GATATTATGTCAAAGAGTCAAGAGGATG
C3 CSV237F GGCRTGGGCAAATCAGAGTACGTCCGAAAAGAAT 237 本试验This study
CSV237R TTTCGCCTGYAAATGGTAATCGGGTTTAACAATAC
C4 CSV253F TTTGGGAAGACGAGATATGGAGYTAACTAGTGGT 253 本试验This study
CSV253R TTTCGGACGTACTCTGATTTGCCCATGCCTGW
C5 SCV259F YGGCTAGTTTGGGAAGACGAGATATGGAGYTAA 259 本试验This study
CSV259R TCGGACGTACTCTGATTTGCCCAYGCCTGW
C6 CSV357F [6-Fam]-TTTGGGAAGACGAGATATGGAGYTAACYAGTG 357 本试验This study
CSV357R Biotin-GGCATGTTAGRTTGAATATGGTTTATGAAGTTGT
CSV-CP-Probe [6-Fam]-CAGATATTATGTCAAAGAGTCAAGAGGAT[THF] AGTTTAAGCGTCATATG-C3Spacer
C7 CSV405F CGGRTCGGARTTTACYCCMACGTGTYGTCYRTYA 405 本试验This study
CSV405R CCKAACGATTCACATACAGACTTCATAAACATYC
C8 CSV313F WCAGGCRTGGGCAAATCAGAGTACGTCCGAAAA 313 本试验This study
CSV313R CTGCGGTTGTCGCCAAATCATTACCTCTCATG
RT-PCR CP-F ATGGCTGATAGCACTAAAGTCGA 774 文献[7] Reference [7]
CP-R TCAACAGTGAAGACCTGTTCCAG
SPCSV-EA-SPSP1-T7 TAATACGACTCACTATAATGRMTACTGRCAAAGTAAACGATG 791 文献[10] Reference [10]
SPCSV-EA-SPSP4 TCAACAGTGAAGACCRGYACCRGTCAA
SPVG-P5-T7 TAATACGACTCACTATAACTGAATTCTCYRCTGAAGARAYATAYGATGC 1017 文献[28] Reference [28]
SPVG-P3 ACTAAGCTTTTACTGCACACCCCTCATACC
SPLV-P5-T7 TAATACGACTCACTATAGCCGAY GAAACCATCMTCGAT 1093 文献[29] Reference [29]
SPLV-P3 GTCTC Y GGTATAAGACG

Table 2

Combinations of the reaction system"

编号
Number
引物和探针反应浓度
Concentration of primer and probe (μmol·L-1)
镁离子浓度
Concentration of Mg2+ (μmol·L-1)
A CSV357F (2×10-1)/CSV357R (2×10-1)+CSV-CP-Probe (6×10-2) 2.10×104
B CSV357F-fam (2×10-1)/CSV357R (2×10-1) 2.10×104
C CSV357F (4×10-1)/CSV357R (4×10-1)+CSV-CP-Probe (8×10-2) 1.68×104
D CSV357F-fam (2×10-1)/CSV357R (2×10-1) 1.68×104
E CSV357F (2×10-1)/CSV357R (2×10-1)+CSV-CP-Probe (6×10-2) 1.68×104
F CSV357F (1.6×10-1)/CSV357R (1.6×10-1)+CSV-CP-Probe (6×10-2) 1.68×104

Fig. 1

RT-RPA primer pairs screening for SPCSV-WA detection"

Fig. 2

Screening of primers and probes concentration"

Fig. 3

Screening of RT-RPA-LFD reaction time for SPCSV-WA detection"

Fig. 4

Screening of RT-RPA-LFD reaction temperature for SPCSV-WA detection"

Fig. 5

Sensitivity of RT-RPA-LFD (A) and RT-PCR (B) for SPCSV-WA detection"

Fig. 6

RT-RPA-LFD specificity for SPCSV-WA detection"

Fig. 7

SPCSV detection results of field sweet potato samples"

[1]
李强, 赵海, 靳艳玲, 朱金城, 马代夫. 中国甘薯产业助力国家粮食安全的分析与展望. 江苏农业学报, 2022, 38(6): 1484-1491.
LI Q, ZHAO H, JIN Y L, ZHU J C, MA D F. Analysis and perspectives of sweet potato industry contributing to national food security in China. Jiangsu Journal of Agricultural Sciences, 2022, 38(6): 1484-1491. (in Chinese)
[2]
王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54(3): 483-492. doi: 10.3864/j.issn.0578-1752.2021.03.003.
WANG X, LI Q, CAO Q H, MA D F. Current status and future prospective of sweet potato production and seed industry in China. Scientia Agricultura Sinica, 2021, 54(3): 483-492. doi: 10.3864/j.issn.0578-1752.2021.03.003. (in Chinese)
[3]
CLARK C A, DAVIS J A, ABAD J A, CUELLAR W J, FUENTES S, KREUZE J F, GIBSON R W, MUKASA S B, TUGUME A K, TAIRO F D, VALKONEN J P T. Sweet potato viruses: 15 years of progress on understanding and managing complex diseases. Plant Disease, 2012, 96(2): 168-185.
[4]
罗勤川, 唐伟, 孙厚俊, 马居奎, 杨冬静, 陈晶伟, 王芳, 谢逸萍, 张成玲. 江苏甘薯上常见病毒种类鉴定及多样性分析. 江西农业学报, 2022, 34(7): 70-75.
LUO Q C, TANG W, SUN H J, MA J K, YANG D J, CHEN J W, WANG F, XIE Y P, ZHANG C L. Pathogen identification and diversity analysis of sweet potato viruses in Jiangsu Province. Acta Agriculturae Jiangxi, 2022, 34(7): 70-75. (in Chinese)
[5]
WANG Y J, QIN Y H, WANG S, ZHANG D S, TIAN Y T, ZHAO F M, WANG Y Z, LV H, QIAO Q, ZHANG Z C. Species and genetic variability of sweet potato viruses in China. Phytopathology Research, 2021, 3: 20.
[6]
赵付枚, 王爽, 田雨婷, 乔奇, 王永江, 张德胜, 张振臣. 甘薯病毒病发生关键因素研究. 中国农业科学, 2021, 54(15): 3232-3240. doi: 10.3864/j.issn.0578-1752.2021.15.008.
ZHAO F M, WANG S, TIAN Y T, QIAO Q, WANG Y J, ZHANG D S, ZHANG Z C. An investigation into key factors influencing the occurrence of virus disease in sweet potato. Scientia Agricultura Sinica, 2021, 54(15): 3232-3240. doi: 10.3864/j.issn.0578-1752.2021.15.008. (in Chinese)
[7]
QIN Y H, WANG L, ZHANG Z C, QIAO Q, ZHANG D S, TIAN Y T, WANG S, WANG Y J, YAN Z L. Complete genomic sequence and comparative analysis of the genome segments of sweet potato chlorotic stunt virus in China. PLoS ONE, 2014, 9(8): e106323.
[8]
HOYER U, MAISS E, JELKMANN W, LESEMANN D E, VETTEN H J. Identification of the coat protein gene of a sweet potato sunken vein closterovirus isolate from Kenya and evidence for a serological relationship among geographically diverse closterovirus isolates from sweet potato. Phytopathology, 1996, 86(7): 744-750.
[9]
ARITUA V, BARG E, ADIPALA E, GIBSON R W, VETTEN H J. Further evidence for limited genetic diversity among east African isolates of sweet potato chlorotic stunt virus. Journal of Phytopathology, 2008, 156: 181-189.
[10]
QIAO Q, ZHANG Z C, QIN Y H, ZHANG D S, TIAN Y T, WANG Y J. First report of sweet potato chlorotic stunt virus infecting sweet potato in China. Plant Disease, 2011, 95(3): 356.
[11]
张振臣, 乔奇, 秦艳红, 张德胜, 田雨婷. 我国发现由甘薯褪绿矮化病毒和甘薯羽状斑驳病毒协生共侵染引起的甘薯病毒病害. 植物病理学报, 2012, 42(3): 328-333.
ZHANG Z C, QIAO Q, QIN Y H, ZHANG D S, TIAN Y T. First evidence for occurrence of sweet potato virus disease (SPVD) caused by dual infection of sweet potato feathery mottle virus and sweet potato chlorotic stunt virus in China. Acta Phytopathologica Sinica, 2012, 42(3): 328-333. (in Chinese)
[12]
BEDNAREK R, DAVID M, FUENTES S, KREUZE J, FEI Z J. Transcriptome analysis provides insights into the responses of sweet potato to sweet potato virus disease (SPVD). Virus Research, 2021, 295: 198293.
[13]
MUKASA S B, RUBAIHAYO P R, VALKONEN J P T. Incidence of viruses and virus like diseases of sweetpotato in Uganda. Plant Disease, 2003, 87: 329-335.

doi: 10.1094/PDIS.2003.87.4.329 pmid: 30831824
[14]
肖海峻, 孟利前, 陈梦然, 杨春林. 甘薯褪绿矮化病毒的RT-PCR检测技术构建. 分子植物育种, 2017, 15(7): 2896-2900.
XIAO H J, MENG L Q, CHEN M R, YANG C L. Application of RT-PCR detection method for sweet potato chlorotic stunt virus. Molecular Plant Breeding, 2017, 15(7): 2896-2900. (in Chinese)
[15]
王丽, 王振东, 乔奇, 秦艳红, 张德胜, 田雨婷, 王爽, 张立军, 张振臣. 甘薯褪绿矮化病毒西非株系实时荧光定量PCR检测方法的建立及应用. 植物病理学报, 2014, 44(5): 461-468.
WANG L, WANG Z D, QIAO Q, QIN Y H, ZHANG D S, TIAN Y T, WANG S, ZHANG L J, ZHANG Z C. Development and application of a real-time PCR method for detection of west African strain of sweet potato chlorotic stunt virus. Acta Phytopathologica Sinica, 2014, 44(5): 461-468. (in Chinese)
[16]
王爽, 田雨婷, 乔奇, 秦艳红, 张德胜, 张振臣. 侵染甘薯的菜豆金色花叶病毒属病毒和甘薯褪绿矮化病毒多重PCR检测方法的建立与应用. 植物保护学报, 2018, 45(6): 1427-1428.
WANG S, TIAN Y T, QIAO Q, QIN Y H, ZHANG D S, ZHANG Z C. Development and application of multiplex PCR method for detection of sweepoviruses and sweet potato chlorotic stunt virus in sweet potato. Journal of Plant Protection, 2018, 45(6): 1427-1428. (in Chinese)
[17]
乔奇, 张振臣, 秦艳红, 张德胜, 田雨婷, 王爽, 王永江. 甘薯褪绿矮化病毒西非株系RT-LAMP检测方法的建立. 中国农业科学, 2013, 46(18): 3939-3945. doi: 10.3864/j.issn.0578-1752.2013.18.025.
QIAO Q, ZHANG Z C, QIN Y H, ZHANG D S, TIAN Y T, WANG S, WANG Y J. Detection of sweet potato chlorotic stunt virus strain WA by reverse transcription loop-mediated isothermal amplification reaction. Scientia Agricultura Sinica, 2013, 46(18): 3939-3945. doi: 10.3864/j.issn.0578-1752.2013.18.025. (in Chinese)
[18]
TANG W, YANG D J, MA J K, CHEN J W, XIE Y P, SUN H J, ZHANG C L. Development of a dual RT-RPA detection for sweet potato feathery mottle virus and sweet potato chlorotic stunt virus. Molecular and Cellular Probes, 2022, 65: 101846.
[19]
PIEPENBURG O, WILLIAMS C H, STEMPLE D L, ARMES N A. DNA detection using recombination proteins. PLoS Biology, 2006, 4(7): e204.
[20]
王帅, 杨艳歌, 吴占文, 李红娜, 李涛, 孙冬梅, 袁飞. 重组酶聚合酶扩增、重组酶介导等温扩增及酶促重组等温扩增技术在食源性致病菌快速检测中的研究进展. 食品科学, 2023, 44(9): 297-305.
WANG S, YANG Y G, WU Z W, LI H N, LI T, SUN D M, YUAN F. A review of the application of recombinase polymerase amplification, recombinase-aided amplification and enzymatic recombinase amplification in rapid detection of foodborne pathogens. Food Science, 2023, 44(9): 297-305. (in Chinese)

doi: 10.7506/spkx1002-6630-20220526-322
[21]
马志敏, 许建建, 段玉, 王春庆, 苏越, 张琦, 宾羽, 周常勇, 宋震. 柑橘黄化脉明病毒 RT-RPA 检测方法的建立. 中国农业科学, 2021, 54(15): 3241-3249. doi: 10.3864/j.issn.0578-1752.2021.15.009.
MA Z M, XU J J, DUAN Y, WANG C Q, SU Y, ZHANG Q, BIN Y, ZHOU C Y, SONG Z. Establishment of RT-RPA for citrus yellow vein clearing virus (CYVCV) detection. Scientia Agricultura Sinica, 2021, 54(15): 3241-3249. doi: 10.3864/j.issn.0578-1752.2021.15.009. (in Chinese)
[22]
黄涛, 李丹丹, 高慎阳, 贾宁. 猪瘟病毒核酸RT-RPA-LFD快速检测方法的建立. 兽医导刊, 2021(3): 115-118.
HUANG T, LI D D, GAO S Y, JIA N. Rapid detection of classical swine fever virus nucleic acid by RT-RPA-LFD. Veterinary Orientation, 2021(3): 115-118. (in Chinese)
[23]
张阳, 徐聪灵, 孙涛. 基于RPA-LFD的寨卡病毒检测方法的建立与评价. 中国口岸科学技术, 2022, 4(2): 14-18.
ZHANG Y, XU C L, SUN T. Establishment and evaluation of detection method for zika virus based on RPA-LFD. China Port Science and Technology, 2022, 4(2): 14-18. (in Chinese)
[24]
张阳, 孙涛, 徐聪林, 周冲. 登革病毒逆转录重组酶聚合酶扩增-测流层析试纸条检测方法的建立与评价. 口岸卫生控制, 2019, 24(3): 30-34.
ZHANG Y, SUN T, XU C L, ZHOU C. Establish and evaluation of a method for detection of dengue virus reverse transcriptase polymerase amplification and flow chromatography strip. Port Health Control, 2019, 24(3): 30-34. (in Chinese)
[25]
梁辉. 流行性乙型脑炎RT-RPA-LFD检测方法的建立与评价[D]. 广州: 华南农业大学, 2016.
LIANG H. Establishment and evaluation of RT-RPA-LFD method for rapid and simple detection of JEV[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese)
[26]
张淼源, 卢佩珊, 李佳宁, 李佳乐, 郑炜欣, 欧阳岁东. 重组酶聚合酶侧流层析技术检测新冠病毒核酸快速诊断方法的初步建立. 中国人兽共患病学报, 2022, 38(7): 577-581.
ZHANG M Y, LU P S, LI J N, LI J L, ZHENG W X, OUYANG S D. Preliminary establishment of a rapid diagnosis method for detecting SARS-CoV-2 nucleic acid through recombinase polymerase amplification combined with a lateral flow dipstick. Chinese Journal of Zoonoses, 2022, 38(7): 577-581. (in Chinese)
[27]
申世凯, 曾婷, 乔兴华, 陈力, 任杰群, 周彦. 柑橘衰退病毒RT-RPA-LFD可视化检测方法的建立及应用. 果树学报, 2023, 40(12): 2652-2660.
SHEN S K, ZENG T, QIAO X H, CHEN L, REN J Q, ZHOU Y. Establishment and development of RT-RPA-LFD visualization assay for rapid detection of citrus tristeza virus. Journal of Fruit Science, 2023, 40(12): 2652-2660. (in Chinese)
[28]
付振艳, 张振臣. 甘薯病毒G(SPVG)外壳蛋白基因的克隆、表达及其抗血清的制备. 中国农学通报, 2007, 23(1): 38-41.
FU Z Y, ZHANG Z C. Cloning, expression in E. coli of coat protein gene of sweet potato virus G and preparation of its antiserum. Chinese Agricultural Science Bulletin, 2007, 23(1): 38-41. (in Chinese)
[29]
黄玉娜, 张振臣. 甘薯潜隐病毒外壳蛋白基因的克隆、表达及其抗血清的制备. 植物病理学报, 2007, 37(3): 255-259.
HUANG Y N, ZHANG Z C. Cloning, expression of coat protein gene of sweet potato latent virus in E. coli and preparation of antiserum. Acta Phytopathologica Sinica, 2007, 37(3): 255-259. (in Chinese)
[30]
谢锦. 基于重组酶聚合酶扩增的马铃薯病毒等温检测体系的建立和应用[D]. 武汉: 华中农业大学, 2023.
XIE J. Establishment and application of an isothermal detection system for potato virus based on recombinase polymerase amplification[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese)
[31]
LILLIS L, LEHMAN D, SINGHAL M C, CANTERA J, SINGLETON J, LABARRE P, TOYAMA A, PIEPENBURG O, PARKER M, WOOD R, OVERBAUGH J, BOYLE D S. Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA. PLoS ONE, 2014, 9(9): e108189.
[32]
ROHRMAN B A, RICHARDS-KORTUM R R. A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab on a Chip, 2012, 12(17): 3082-3088.

doi: 10.1039/c2lc40423k pmid: 22733333
[33]
LUTZ S, WEBER P, FOCKE M, FALTIN B, HOFFMANN J, MÜLLER C, MARK D, ROTH G, MUNDAY P, ARMES N, PIEPENBURG O, ZENGERLE R, VON STETTEN F. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab on a Chip, 2010, 10(7): 887-893.

doi: 10.1039/b921140c pmid: 20300675
[1] TANG Wei, ZHANG ChengLing, YANG DongJing, MA JuKui, CHEN JingWei, GAO FangYuan, XIE YiPing, SUN HouJun. Complete Genomic Sequence Characteristics and Establishment of qPCR Detection Technique of Sweet Potato Virus E in China [J]. Scientia Agricultura Sinica, 2023, 56(20): 4010-4020.
[2] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[3] DUAN Yu,XU JianJian,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Detection of Citrus Leaf Blotch Virus by Reverse Transcription- Recombinase Polymerase Amplification (RT-RPA) [J]. Scientia Agricultura Sinica, 2021, 54(9): 1904-1912.
[4] ZHAO Shan,ZHONG LingLi,QIN Lin,HUANG ShiQun,LI Xi,ZHENG XingGuo,LEI XinYu,LEI ShaoRong,GUO LingAn,FENG JunYan. Effects of Different Drying Methods on Functional Components and Antioxidant Activity in Sweet Potato Leaves [J]. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663.
[5] MA ZhiMin,XU JianJian,DUAN Yu,WANG ChunQing,SU Yue,ZHANG Qi,BIN Yu,ZHOU ChangYong,SONG Zhen. Establishment of RT-RPA for Citrus Yellow Vein Clearing Virus (CYVCV) Detection [J]. Scientia Agricultura Sinica, 2021, 54(15): 3241-3249.
[6] ZHAO FuMei,WANG Shuang,TIAN YuTing,QIAO Qi,WANG YongJiang,ZHANG DeSheng,ZHANG ZhenChen. An Investigation into Key Factors Influencing the Occurrence of Virus Disease in Sweet Potato [J]. Scientia Agricultura Sinica, 2021, 54(15): 3232-3240.
[7] HUI YuanYuan,PENG HaiShuai,WANG BiNi,ZHANG FuXin,LIU YuFang,JIA Rong,REN Rong. Research Progress of Food-Borne Pathogen Detection Based on Electrochemical and Optical Aptasensors [J]. Scientia Agricultura Sinica, 2021, 54(11): 2419-2433.
[8] WANG JinQiang,LI SiPing,LIU Qing,LI Huan. Mechanism of Spraying Growth Regulators to Alleviate Drought Stress of Sweet Potato [J]. Scientia Agricultura Sinica, 2020, 53(3): 500-512.
[9] QIN YanHong,WANG YongJiang,WANG Shuang,QIAO Qi,TIAN YuTing,ZHANG DeSheng,ZHANG ZhenChen. Complete Nucleotide Sequence Analysis and Genetic Characterization of the Sweet potato feathery mottle virus O and RC Strains Isolated from China [J]. Scientia Agricultura Sinica, 2020, 53(11): 2207-2218.
[10] XU Shu,LI Ling,ZHANG SiMeng,CAO RuXia,CHEN LingLing,CUI Peng,Lü ZunFu,WU LieHong,LU GuoQuan. Evaluation of Genotype Differences of Cold Tolerance of Sweet Potato Seedlings by Subordinate Function Value Analysis [J]. Scientia Agricultura Sinica, 2019, 52(17): 2929-2938.
[11] JIANG ShanShan, FENG Jia, ZHANG Mei, WANG ShengJi, XIN ZhiMei, WU Bin, XIN XiangQi. Development of RT-LAMP Assay for Rapid Detection of Sweet potato feathery mottle virus (SPFMV) [J]. Scientia Agricultura Sinica, 2018, 51(7): 1294-1302.
[12] LI HuaWei, LIU ZhongHua, ZHANG Hong, XU YongQing, LI GuoLiang, LIN ZhaoMiao, QIU YongXiang, LUO WenBin, JI RongChang, TANG Hao, QIU SiXin. Mining and Characterization of MicroRNAs Associated with Pathogenicity by Different Sweet Potato Viruses [J]. Scientia Agricultura Sinica, 2018, 51(11): 2094-2105.
[13] WANG ShunYi, LIU Qing, SHI YanXi, LI Huan. Interactive Effects of Nitrogen and Potassium on Photosynthesis Product Distribution and Accumulation of Sweet Potato [J]. Scientia Agricultura Sinica, 2017, 50(14): 2706-2716.
[14] ZHANG Yi, WANG Hong-yun, NIU Fu-xiang, SUN Jian, XU Fei, ZHU Hong, YUE Rui-xue. Identification of Purple Sweet Potato Color of Cultivar Ningzi No. 1 by HPLC-QTOF/MS and Its Effect on Preventing Obesity in High-Fat-Diet-Treated Rats [J]. Scientia Agricultura Sinica, 2016, 49(9): 1787-1802.
[15] CUI Shan-shan, MU Tai-hua, SUN Hong-nan, ZHANG Miao, CHEN Jing-wang. Effects of NaCl Concentration and pH Value on the Emulsifying Properties of Sweet Potato Peptides [J]. Scientia Agricultura Sinica, 2016, 49(9): 1778-1786.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!