Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (7): 1294-1302.doi: 10.3864/j.issn.0578-1752.2018.07.007

• PLANT PROTECTION • Previous Articles     Next Articles

Development of RT-LAMP Assay for Rapid Detection of Sweet potato feathery mottle virus (SPFMV)

JIANG ShanShan, FENG Jia, ZHANG Mei, WANG ShengJi, XIN ZhiMei, WU Bin, XIN XiangQi   

  1. Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Ji’nan 250100
  • Received:2017-09-29 Online:2018-04-01 Published:2018-04-01

Abstract: 【Objective】Sweet potato feathery mottle virus (SPFMV) is an important virus infecting sweet potato plants. The objective of this study is to establish a rapid and efficient method for the detection of SPFMV by using reverse transcription loop-mediated isothermal amplification (RT-LAMP) method. 【Method】Four specific RT-LAMP primers for SPFMV detection including SPFMV-FIP (5′-TAAGCGCGGCTGCCTTCATC-CATTCAACCACCCCTGCA-3′), SPFMV-BIP (5′-TCGGTTGTTTGGT TTGGACGGA-ATCAGTTGTCGTGTGCCTC-3′), SPFMV-F3 (5′-GAGTCTTGCGCGATATGCA-3′) and SPFMV-B3 (5′-ACCCC TCATTCCTAAGAGGT-3′) were designed by Primer Explorer V4 according to the nucleotide sequence of SPFMV coat protein (CP) gene in GenBank as well as two specific reverse transcription polymerase chain reaction (RT-PCR) primers for SPFMV detection including SPFMV-F (5′-TCTAATGAGAACACTGAATT-3′) and SPFMV-R (5′-TTGCACACCCCTCATTCCTAAG-3′). Different reaction conditions were optimized in the RT-LAMP in order to improve specificity and sensitivity of the detection, including the primers concentration ratios of F3/B3 to FIP/BIP (1﹕1, 1﹕2, 1﹕4, 1﹕6, 1﹕8 and 1﹕10), dNTPs concentrations (0.025, 0.125, 0.225, 0.325, 0.425, 0.525, 0.625, 0.725 and 0.825 mmol·L-1), Betaine concentrations (0.4, 0.7, 1.0, 1.3 and 1.6 mol·L-1), reaction temperatures (59, 61, 63, 65, 67 and 69℃) and reaction times (20, 30, 40, 50, 60, 70, 80 and 90 min). The best reaction conditions were confirmed according to the test results of agarose gel electrophoresis. The RT-LAMP products were identified by sequencing and enzyme analysis. The detection specificity of RT-LAMP was tested by using different RNA templates from SPFMV, Sweet potato virus C (SPVC), Sweet potato chlorotic stunt virus (SPCSV), Sweet potato virus 2 (SPV2), Sweet potato latent virus (SPLV), Sweet potato virus G (SPVG), Sweet potato chlorotic fleck virus (SPCFV) and leaf sample of healthy sweet potato plant. The sensitivities of RT-LAMP and RT-PCR for detecting SPFMV were compared by using ten-fold serially diluted RNA templates of SPFMV (including original RNA, 10-1, 10-2, 10-3, 10-4, 10-5, 10-6 and 10-7 dilutions). Finally, the optimized RT-LAMP and RT-PCR were used to detect the samples of SPFMV collected from Shandong Province. 【Result】The RT-LAMP rapid detection method of SPFMV was established and the optimal amplification was achieved by incubation of 0.8 µmol·L-1 SPFMV-FIP/SPFMV-BIP, 0.2 µmol·L-1 SPFMV-F3/SPFMV-B3, 0.325 mmol·L-1 dNTPs, 1 mol·L-1 Betaine with template RNA at 65℃ for 70 min. The specificity test showed that the RT-LAMP method established in this study could amplify the typical ladder-like bands only to the RNA carrying SPFMV. The lowest detectable RNA concentration of RT-LAMP was 121.6×10-4 ng·μL-1, while the lowest detectable RNA concentration of RT-PCR was 121.6×10-3 ng·μL-1, indicating that the sensitivity of RT-LAMP was 10 times higher than RT-PCR for detecting SPFMV. The optimized RT-LAMP method was applied to the detection of SPFMV in field samples and the results were consistent with the visual inspection of RT-LAMV products. It suggested that the RT-LAMP detection method could be applied to detect the SPFMV in the field.【Conclusion】The RT-LAMP established in this study has high sensitivity and speci?city, and is suitable for rapid detection of SPFMV in the field.

Key words: sweet potato; Sweet potato feathery mottle virus (SPFMV), RT-LAMP, detection

[1]    Clark C A, Davis J A, Abad J A, Cuellar W J, Fuentes S, Kreuze J F, Gibson R W, Mukasa S B, Tugume A K, Tairo F D, VALKONEN J P T. Sweetpotato viruses: 15 years of progress on understanding and managing complex diseases. Plant Disease, 2012, 96(2): 168-185.
[2]    姜珊珊, 谢礼, 吴斌, 辛相启, 陈剑平, 赵玖华. 山东甘薯主要病毒的鉴定及多样性分析. 植物保护学报, 2017, 44(1): 93-102.
JIANG S S, XIE L, WU B, XIN X Q, CHEN J P, ZHAO J H. Identification and genetic diversity analysis on sweet potato viruses in Shandong Province. Journal of Plant Protection, 2017, 44(1): 93-102. (in Chinese)
[3]    包改丽, 左瑞娟, 饶维力, LI Ru-Hui, 李凡.云南甘薯病毒的检测及主要病毒的多样性分析.微生物学通报, 2013, 40(2): 236-248.
BAO G L, ZUO R J, RAO W L, LI R H, LI F. Detection of sweet potato viruses in Yunnan and genetic diversity analysis of the common viruses. Microbiology China, 2013, 40(2): 236-248. (in Chinese)
[4]    Gutiérrez D L, Fuentes S, Salazar L F. Sweetpotato virus disease (SPVD): distribution, incidence, and effect on sweetpotato yield in Peru. Plant Disease, 2003, 87(3): 297-302.
[5]    Loebenstein G. Control of sweet potato virus diseases. Advances in Virus Research, 2015, 91: 33-45.
[6]    Moyer J W, Cali B B. Properties of sweet potato feathery mottle virus RNA and capsid protein. Journal of General Virology, 1985, 66(5): 1185-1189.
[7]    Souto E R, Sim J, Chen J, Valverde R A, Clark C A. Properties of strains of sweet potato feathery mottle virus and two newly recognized potyviruses infecting sweet potato in the United States.Plant Disease, 2003, 87(10): 1226-1232.
[8]    王升吉, 尚佑芬, 杨崇良, 李长松, 赵玖华, 路兴波, 孙红炜. 甘薯羽状斑驳病毒分子生物学研究概况. 山东农业大学学报 (自然科学版), 2001, 32(4): 539-543.
WANG S J, SHANG Y F, YANG C L, LI C S, ZHAO J H, LU X B, SUN H W. Research advances on molecular biology of sweet potato feathery mottle virus. Journal of Shandong Agricultural University (Natural Science), 2001, 32(4): 539-543. (in Chinese)
[9]    林林, 陈炯, 郑红英, 陈剑平. 甘薯羽状斑驳病毒分离物的基因组3′-末端序列测定与分析. 浙江农业学报, 2003, 15(4): 211-214.
LIN L, CHEN J, ZHENG H Y, CHEN J P. Determination and analysis of 3′-terminal genomic sequence of Sweet potato feathery mottle virus. Acta Agriculturae Zhejiangensis, 2003, 15(4): 211-214. (in Chinese)
[10]   张业辉, 张振臣, 蒋士君, 秦艳红, 张德胜, 乔奇, 王永江. 3种甘薯病毒多重RT-PCR检测方法的建立. 植物病理学报, 2010, 40(1): 95-98.
ZHANG Y H, ZHANG Z C, JIANG S J, QIN Y H, ZHANG D S, QIAO Q, WANG Y J. Development of a multiplex RT-PCR detection method for three sweet potato potyviruses. Acta Phytopathologica Sinica, 2010, 40(1): 95-98. (in Chinese)
[11]   许泳清, 李华伟, 刘中华, 邱永祥, 罗文彬, 纪荣昌, 汤浩, 邱思鑫, 余华. 甘薯羽状斑驳病毒(SPFMV) ELISA鉴定及RT-PCR检测方法的建立. 福建农业学报, 2013, 28(12): 1267-1272.
XU Y Q, LI H W, LIU Z H, QIU Y X, LUO W B, JI R C, TANG H, QIU S X, YU H. ELISA identification and development of RT-PCR detection of Sweet potato feathery mottle virus. Fujian Journal of Agricultural Sciences, 2013, 28(12): 1267-1272. (in Chinese)
[12]   王丽, 王振东, 乔奇, 秦艳红, 张德胜, 田雨婷, 王爽, 张立军, 张振臣. 甘薯羽状斑驳病毒实时荧光定量PCR检测方法的建立. 沈阳农业大学学报, 2013, 44(2): 129-135.
WANG L, WANG Z D, QIAO Q, QIN Y H, ZHANG D S, TIAN Y T, WANG S, ZHANG L J, ZHANG Z C. Development of real-time fluorescent quantitative PCR assay for detection of sweet potato feathery mottle virusin Chinese). Journal of Shenyang Agricultural University, 2013, 44(2): 129-135. (
[13]   卢会翔, 吕长文, 吴正丹, 罗凯, 尹旺, 杨航, 王季春, 张凯. 甘薯羽状斑驳病毒(SPFMV)和甘薯褪绿矮化病毒(SPCSV)荧光定量RT-PCR检测方法的建立. 中国农业科学, 2016, 49(1): 90-102.
LU H X, LÜ C W, WU Z D, LUO K, YIN W, YANG H, WANG J C, ZHANG K. Development of detection method for sweet potato feathery mottle virusin Chinese) (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV) through fluorescence quantitative RT-PCR. Scientia Agricultura Sinica, 2016, 49(1): 90-102. (
[14]   何海旺, 何虎翼, 谭冠宁, 刘义明, 何新民, 唐洲萍, 李丽淑, 王晖. 反向斑点杂交法快速检测甘薯羽状斑驳病毒和甘薯G病毒. 南方农业学报, 2014, 45(1): 43-48.
HE H W, HE H Y, TAN G N, LIU Y M, HE X M, TANG Z P, LI L S, WANG H. Detection of SPFMV and SPVG by using reverse dot blot hybridization system. Journal of southern agriculture, 2014, 45(1): 43-48. (in Chinese)
[15]   NotoMi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 2000, 28(12): e63.
[16]   Poon L L, Leung C S, Tashiro M, Chan K H, Wong B W, Yuen K Y, Guan Y, Peiris J S. Rapid detection of the severe acute respiratory syndrome (SARS) coronavirus by a loop-mediated isothermal amplification assay. Clinical Chemistry, 2004, 50(6): 1050-1052.
[17]   Uemura N, Makimura K, Onozaki M, Otsuka Y, Shibuya Y, Yazaki H, Kikuchi Y, Abe S, Kudoh S. Development of a loop-mediated isothermal amplification method for diagnosing Pneumocystis pneumonia. Journal of Medical Microbiology, 2008, 57(1): 50-57.
[18]   Ohtsuka K, Yanagawa K, Takatori K, Hara-Kudo Y. Detection of Salmonella enterica in naturally contaminated liquid eggs by loop-mediated isothermal amplification, and characterization of Salmonella isolates. Applied and Environmental Microbiology, 2005, 71(11): 6730-6735.
[19]   Suzuki R, Yoshikawa T, Ihira M, Enomoto Y, Inagaki S, Matsumoto K, Kato K, Kudo K, Kojima S, Asano Y. Development of the loop-mediated isothermal amplification method for rapid detection of cytomegalovirus DNA. Journal of Virological Methods, 2006, 132(1/2): 216-221.
[20]   Le D T, Netsu O, Uehara-Ichiki T, Shimizu T, Choi I R, Omura T, Sasaya T. Molecular detection of nine rice viruses by a reverse-transcription loop-mediated isothermal amplification assay. Journal of Virological Methods, 2010, 170(1/2): 90-93.
[21]   Zhang Z Y, Liu X J, Li D W, Yu J L, Han C G. Rapid detection of wheat yellow mosaic virusVirology Journal, 2011, 8: 550. by reverse transcription loop-mediated isothermal amplification.
[22]   周彤, 杜琳琳, 范永坚, 周益军. 水稻黑条矮缩病毒RT-LAMP快速检测方法的建立. 中国农业科学, 2012, 45(7): 1285-1292.
ZHOU T, DU L L, FAN Y J, ZHOU Y J. Development of a RT-LAMP assay for rapid detection of Rice black-streaked dwarf virus. Scientia Agricultura Sinica, 2012, 45(7): 1285-1292. (in Chinese)
[23]   Lee M S, Yang M J, Hseu Y C, Lai G H, Chang W T, Hsu Y H, Lin M K. One-step reverse transcription loop-mediated isothermal amplification assay for rapid detection of Cymbidium mosaic virus. Journal of Virological Methods, 2011, 173(1): 43-48.
[24]   Peng J, Shi M, Xia Z, Huang J, Fan Z F. Detection of cucumber mosaic virus isolates from banana by one-step reverse transcription loop-mediated isothermal amplification. Archives of Virology, 2012, 157(11): 2213-2217.
[25]   Fukuta S, Takeyama K, Suzuki M, Shichi A, Ichikawa K, Nakanishi H. Detection of Kyuri green mottle mosaic virus from soil by the immunocapture reverse transcription loop-mediated isothermal amplification reaction. Plant Pathology Journal, 2012, 11(2): 51-59.
[26]   Ju H J. Simple and rapid detection of potato leafroll virus by reverse transcription loop-mediated isothermal amplification. The Plant Pathology Journal, 2011, 27(4): 385-389.
[27]   乔奇, 张振臣, 秦艳红, 张德胜, 田雨婷, 王爽, 王永江. 甘薯褪绿矮化病毒西非株系RT-LAMP检测方法的建立. 中国农业科学, 2013, 46(18): 3939-3945.
QIAO Q, ZHANG Z C, QIN Y H, ZHANG D S, TIAN Y T, WANG S, WANG Y J. Detection of Sweet potato chlorotic stunt virus strain WA by reverse transcription loop-mediated isothermal amplification reaction. Scientia Agricultura Sinica, 2013, 46(18): 3939-3945. (in Chinese)
[28]   王永江, 周彦, 李中安, 苏华楠, 黄爱军, 唐科志, 周常勇. 柑橘衰退病毒RT-LAMP快速检测方法的建立. 中国农业科学, 2013, 46(3): 517-524.
WANG Y J, ZHOU Y, LI Z A, SU H N, HUANG A J, TANG K Z, ZHOU C Y. A RT-LAMP assay for detection of Citrus tristeza virus. Scientia Agricultura Sinica, 2013, 46(3): 517-524. (in Chinese)
[29]   Zhao L, Cheng J, Hao X, Tian X, Wu Y. Rapid detection of tobacco viruses by reverse transcription loop-mediated isothermal amplification. Archives of Virology, 2012, 157(12): 2291-2298.
[30]   李曼, 辛言言, 朱水芳, 李志红, 郭立新, 张永江. 棉花皱叶病毒LAMP检测方法的建立. 西北农业学报, 2014, 23(2): 85-91.
LI M, XIN Y Y, ZHU S F, LI Z H, GUO L X, ZHANG Y J. Detection of Cotton leaf crumple virus by loop-mediated isothermal amplification. Acta Agriculture Boreali-occidentalis Sinica, 2014, 23(2): 85-91. (in Chinese)
[31]   Clark C A, Hoy M W. Effects of common viruses on yield and quality of beauregard sweetpotato in Louisiana. Plant Disease, 2006, 90(1): 83-88.
[32]   Untiveros M, Fuentes S, Salazar L F. Synergistic interaction of Sweet potato chlorotic stunt virus (Crinivirus) with carla-, cucumo-, ipomo-, and potyviruses infecting sweet potato. Plant Disease, 2007, 91(6): 669-676.
[33]   NJERU R W, MBURU M W K, CHERAMGOI E, GIBSON R W, KIBURI Z M, OBUDHO E, YOBERA D. Studies on the physiological effects of viruses on sweet potato yield in Kenya. Annals of Applied Biology, 2004, 145(1): 71-76.
[34]   谢礼, 吕明芳, 王芳, 季志仙, 吴列洪, 严成其, 陈剑平. 甘薯羽状斑驳病毒和甘薯褪绿矮化病毒复合侵染甘薯引起的细胞病理学研究. 电子显微学报, 2013, 32(6): 485-491.
XIE L, LÜ M F, WANG F, JI Z X, WU L H, YAN C Q, CHEN J P. Cyto-pathology study of sweet potato induced by synergetic infection of Sweet potato feathery mottle virus and Sweet potato chlorotic stunt virus. Journal of Chinese Electron Microscopy Society, 2013, 32(6): 485-491. (in Chinese)
[1] ZHANG ShuangNa, LI ZhengNan, FAN XuDong, ZHANG ZunPing, REN Fang, HU GuoJun, DONG YaFeng. Establishment of RT-LAMP Assay for Detection of Apple chlorotic leaf spot virus (ACLSV) [J]. Scientia Agricultura Sinica, 2018, 51(9): 1706-1716.
[2] ZHANG Yong-jiang, XIN Yan-yan, LI Gui-fen, QIAN Yi-ke. Development of a RT-LAMP Assay for Detection of Grapevine virus A [J]. Scientia Agricultura Sinica, 2016, 49(1): 103-109.
[3] CHEN Liu, SHANG Qiao-xia, CHEN Xiao-yu, XING Dong-mei, RAN Ce, WEI Yan-min, ZHAO Xiao-yan, LIU Zheng-ping. Detection of Strawberry mild yellow edge virus by RT-LAMP [J]. Scientia Agricultura Sinica, 2015, 48(3): 613-520.
[4] WANG Yong-Jiang, ZHOU Yan, LI Zhong-An, SU Hua-Nan, HUANG Ai-Jun, TANG Ke-Zhi, ZHOU Chang-Yong. A RT-LAMP Assay for Detection of Citrus Tristeza Virus [J]. Scientia Agricultura Sinica, 2013, 46(3): 517-524.
[5] QIAO Qi, ZHANG Zhen-Chen, QIN Yan-Hong, ZHANG De-Sheng, TIAN Yu-Ting, WANG Shuang, WANG Yong-Jiang. Detection of Sweet potato chlorotic stunt virus Strain WA by Reverse Transcription Loop-Mediated Isothermal Ampli?cation Reaction [J]. Scientia Agricultura Sinica, 2013, 46(18): 3939-3945.
[6] ZHOU Tong, DU Lin-Lin, FAN Yong-Jian, ZHOU Yi-Jun. Development of a RT-LAMP Assay for Rapid Detection of Rice black-streaked dwarf virus [J]. Scientia Agricultura Sinica, 2012, 45(7): 1285-1292.
[7] XIN Ting,HOU Shao-hua,JIA Hong,GUO Xiao-yu,DING Jia-bo,LI Yan-peng,DING Min,ZHU Hong-fei
. Development of a Novel RT-LAMP Assay for Porcine Reproductive and Respiratory Syndrome Virus
[J]. Scientia Agricultura Sinica, 2010, 43(1): 185-191 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!