Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (21): 4650-4663.doi: 10.3864/j.issn.0578-1752.2021.21.014

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Different Drying Methods on Functional Components and Antioxidant Activity in Sweet Potato Leaves

ZHAO Shan1(),ZHONG LingLi1,QIN Lin1,HUANG ShiQun1,LI Xi1,ZHENG XingGuo1,LEI XinYu1,LEI ShaoRong1,GUO LingAn1,FENG JunYan2,*()   

  1. 1Institute of Agricultural Quality Standards and Testing Technology, Sichuan Academy of Agricultural Sciences/Security Risk Assessment Laboratory of Ministry of Agriculture (Chengdu), Chengdu 610066
    2Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610061;
  • Received:2021-02-25 Accepted:2021-05-14 Online:2021-11-01 Published:2021-11-09
  • Contact: JunYan FENG E-mail:zhaoshan11@126.com;junyanfeng@live.cn

Abstract:

【Objective】 This study was aimed to explore the effects of different drying methods on functional components content and antioxidant capacity of sweet potato leaves, which could provide a theoretical basis for optimize drying process and fully utilize sweet potato leaves in the future. 【Method】 The leaves of sweet potato varieties of Tainong 71 and Shengnan were dried using five drying methods, including steam drying combined with hot air drying (SD+HAD), vacuum freeze drying (VFD), hot air drying (HAD) at 60℃, 50℃ and 40℃. The effects of different drying methods on the functional components (total phenols, total flavonoids, caffeoylquinic acids, β-carotene, vitamin D3, vitamin E, ascorbic acid, vitamin B1, and vitamin B2), antioxidant capacity (using DPPH and ABTS + radical scavenging methods) and appearance color of sweet potato leaves (chlorophyll and color value) was evaluated, and the correlation between the functional components and the correlation between functional components and antioxidant activity were analyzed. 【Result】 Free phenolic acids detected in sweet potato leaves mainly included 5-O-caffeoylquinic acid, 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, caffeic acid, 3,5-di-O-caffeoylquinic acid, 3,4-di-O-caffeoylquinic acid and 4,5-di-O-caffeoylquinic acid. The effects of five drying methods on the functional components of sweet potato leaves were different. Under VFD, the total content of free phenolic acids in Tainong 71 leaves was the highest, reaching to 38.4 mg·g-1 DW, which was 25.6 times of that under 60℃ HAD. Total phenols, total flavonoids, ascorbic acid and caffeoylquinic acids showed small differences between VFD and SD+HAD, but which were significantly higher than those of 60℃, 50℃ and 40℃ HAD. The average total phenols (64.8 mg CAE·g-1 DW) and total flavonoids (6.5 mg RE·g-1 DW) content of the two materials under VFD were the highest, which were 1.7-5.3 times and 1.7-3.8 times of that under the three types of HADs, respectively. Vitamin C was well retained under VFD (175.3-441.1 mg/100 g DW), but it was extremely low (3.4-5.7 mg/100 g DW) in the three types of HADs. Vitamin D3 and α-tocopherol had the highest content in SD+HAD. The antioxidant activity of methanol extracts from sweet potato leaves was significantly different under different drying methods (P<0.05). VFD and SD+HAD had higher free radical scavenging rates, and which were significantly higher than that under HADs. Correlation analysis showed that there was a strong correlation between total phenols, total flavonoids, total caffeoylquinic acids, vitamin D3, and α-tocopherol (P<0.01). Furthermore, a significant correlation was found between the antioxidant capacity of sweet potato leaves and the contents of total phenols, total flavonoids and each caffeoylquinic acid (P<0.01). 【Conclusion】 VFD and SD+HAD could better retain the content of polyphenols, flavonoids, vitamin D3, α-tocopherol, ascorbic acid and other functional components in sweet potato leaves, which confered strong antioxidant capacity to dried sweet potato leaves. Compared with VFD, SD+HAD had the advantages of low cost and short time-consuming, so it was the preferred drying method to retain polyphenols and flavonoids in sweet potato during practical production.

Key words: sweet potato leaves, drying methods, functional components, antioxidant activity

Table 1

UPLC-MS/MS parameters for target compounds"

酚酸
Phenolic acid
保留时间
Retention time (min)
质荷比Mass-to-charge ratio (m/z) 锥孔电压
Cone voltage (V)
碰撞能量
Collision energy (eV)
母离子 Parent ion 子离子 Daughter ion
1-咖啡酰奎宁酸 1-CQA 2.99 353.10 191.03*, 84.92 16 20, 42
新绿原酸 5-CQA 3.77 352.95 190.96*, 178.93 30 20, 18
绿原酸 3-CQA 5.15 352.92 190.98*, 84.92 20 16, 42
隐绿原酸 4-CQA 5.51 352.95 172.95*, 178.93 14 16, 16
咖啡酸 Caffeic acid 6.38 178.91 134.92*, 78.88 24 14, 24
1,3-双咖啡酰奎宁酸 1,3-diCQA 7.19 515.16 353.11*, 179.00 12 18, 32
异绿原酸B 3,4-diCQA 12.87 515.02 172.95*, 353.04 8 26, 20
1,5-双咖啡酰奎宁酸 1,5-diCQA 12.89 515.16 191.03*, 353.11 10 30, 16
异绿原酸A 3,5-diCQA 13.26 514.96 353.04*, 190.97 32 18, 32
异绿原酸C 4,5-diCQA 13.96 514.96 353.04*, 172.95 4 18, 30

Fig. 1

The ion chromatograms of 10 kinds of phenolic acids"

Table 2

Content of phenolic acids in sweet potato leaves under different drying methods"

材料
Material
干燥方式
Drying method
酚酸 Phenolic acid (mg·g-1 DW)
新绿原酸
5-CQA
绿原酸
3-CQA
隐绿原酸
4-CQA
咖啡酸
CA
异绿原酸B
3,4-diCQA
异绿原酸A
3,5-diCQA
异绿原酸C
4,5-diCQA
总量
Total
台农71
Tainong 71
蒸干结合热风干燥
SD+HAD
3.45±0.12b 4.37±0.20b 2.15±0.10a 0.04±0.01b 6.05±0.32b 9.31±0.49b 4.38±0.32a 29.8±1.5b
真空冷冻干燥
VFD
3.87±0.08a 4.86±0.15a 2.09±0.06a 2.70±0.22a 7.50±0.25a 15.82±0.82a 1.51±0.05c 38.4±1.6a
60℃热风干燥
60℃ HAD
0.17±0.01e 0.22±0.03e 0.08±0.01d 0.01±0.00b 0.26±0.04e 0.59±0.07d 0.13±0.01d 1.5±0.2e
50℃热风干燥
50℃ HAD
0.55±0.02d 1.13±0.08d 0.30±0.01c 0.03±0.00b 2.01±0.13d 4.97±0.35c 1.36±0.10c 10.3±0.6d
40℃热风干燥
40℃ HAD
1.02±0.05c 1.53±0.05c 0.56±0.02b 0.04±0.01b 4.00±0.20c 5.64±0.49c 2.10±0.20b 14.9±1.0c
胜南
Shengnan
蒸干结合热风干燥
SD+HAD
1.67±0.03a 2.57±0.05b 1.11±0.02a 0.07±0.01b 4.58±0.15a 3.86±0.12b 4.10±0.05a 17.9±0.3a
真空冷冻干燥
VFD
1.25±0.02b 3.23±0.01a 0.57±0.00b 0.41±0.01a 2.30±0.10b 4.50±0.18a 1.26±0.02b 13.5±0.3b
60℃热风干燥
60℃ HAD
0.09±0.01e 0.15±0.01e 0.04±0.00e 0.01±0.00c 0.16±0.01e 0.30±0.01e 0.16±0.01e 0.9±0.0e
50℃热风干燥
50℃ HAD
0.14±0.00d 0.33±0.01d 0.08±0.00d 0.01±0.00c 0.52±0.01d 0.92±0.01d 0.57±0.01d 2.6±0.0d
40℃热风干燥
40℃ HAD
0.39±0.01c 0.86±0.01c 0.19±0.00c 0.01±0.00c 1.17±0.04c 1.50±0.09c 0.87±0.04c 5.0±0.2c

Fig. 2

Effects of different drying methods on the content of functional components in sweet potato leaves The different lowercase letters mean a significant difference (P<0.05). The same as below"

Table 3

Effects of different drying methods on color values of sweet potato leaves"

材料 Material 干燥方式 Drying method 亮度 Lightness (L*) 红绿值Redness/greenness (a*) 黄蓝值Yellowness/blueness (b*)
台农71
Tainong 71
蒸干结合热风干燥 SD+HAD 56.68±0.68b -4.41±0.05d 4.86±0.05e
真空冷冻干燥 VFD 57.07±0.05b -6.37±0.05b 12.62±0.06a
60℃热风干燥 60℃HAD 57.95±0.28a -3.47±0.08e 6.03±0.12d
50℃热风干燥 50℃HAD 55.79±0.14c -6.11±0.04c 10.17±0.08c
40℃热风干燥 40℃HAD 55.71±0.10c -7.02±0.01a 11.74±0.02b
胜南
Shengnan
蒸干结合热风干燥 SD+HAD 55.04±0.16b -4.02±0.05d 5.02±0.04d
真空冷冻干燥 VFD 56.32±0.53a -7.93±0.27a 12.41±0.47a
60℃热风干燥 60℃HAD 53.13±0.12c -4.06±0.04d 8.72±0.12b
50℃热风干燥 50℃HAD 53.37±0.14c -4.87±0.05c 8.13±0.09c
40℃热风干燥 40℃HAD 53.10±0.17c -6.15±0.07b 9.11±0.11b

Table 4

Correlation analysis of functional components in sweet potato leaves"

相关性
Correlation
总黄酮
Total flavonoids
总绿原酸
Total caffeoylquinic acids
β-胡萝卜素
β-carotene
维生素D3
Vitamin D3
α-生育酚
α-tocopherol
L(+)-抗坏血酸
L(+)-ascorbic acid
维生素B1
Vitamin B1
维生素B2
Vitamin B2
总酚 Total phenolic acids 0.961** 0.905** 0.034 0.574** 0.775** 0.640** -0.928** -0.485**
总黄酮 Total flavonoids 0.842** 0.125 0.477** 0.704** 0.741** -0.900** -0.433*
总绿原酸 Total caffeoylquinic acids 0.055 0.766** 0.773** 0.402* -0.809** -0.476**
β-胡萝卜素 β-carotene 0.387* 0.250 0.453** -0.033 0.331
维生素D3 Vitamin D3 0.733** 0.129 -0.517** -0.243
α-生育酚 α-tocopherol 0.342 -0.742** -0.328
L(+)-抗坏血酸 L(+)-ascorbic acid -0.560** 0.024
维生素B1 Vitamin B1 0.697**

Table 5

Principal component (PC) analysis of 8 functional components in sweet potato leaves"

指标 Index PC1 PC2 PC3
总酚 Total phenolic acids 0.967 -0.093 -0.120
总黄酮 Total flavonoids 0.946 0.001 -0.255
β-胡萝卜素 β-carotene 0.212 0.879 0.175
维生素D3 Vitamin D3 0.666 0.191 0.666
α-生育酚 α-tocopherol 0.844 0.078 0.353
L(+)-抗坏血酸 L(+)-ascorbic acid 0.639 0.467 -0.598
维生素B1 Vitamin B1 -0.953 0.225 0.088
维生素B2 Vitamin B2 -0.524 0.715 -0.084
特征值 Characteristic value 4.620 1.604 1.051
方差贡献率 Variance contribution rate (%) 57.746 20.053 13.137
累计方差贡献率 Cumulative variance contribution rate (%) 57.746 77.799 90.936

Fig. 3

Effects of drying methods on antioxidant capacity of methanol extracts from sweet potato leaves"

Table 6

Correlation analysis between antioxidant activity and contents of total phenols, flavonoids and chlorogenic acids in dried sweet potato leaves"

相关性 Correlation 总酚
Total phenolic acids
总黄酮
Total flavonoids
总绿原酸
Total caffeoylquinic acids
新绿原酸
5-CQA
绿原酸
3-CQA
隐绿原酸
4-CQA
咖啡酸
CA
异绿原酸A
3,5-diCQA
异绿原酸B
3,4-diCQA
异绿原酸C
4,5-diCQA
DPPH 0.989** 0.957** 0.925** 0.883** 0.948** 0.873** 0.553** 0.829** 0.921** 0.745**
ABTS+ 0.954** 0.931** 0.865** 0.797** 0.869** 0.774** 0.577** 0.818** 0.861** 0.635**
[1] 木泰华, 孙红男, 张苗, 王成, 陈井旺, 邓福明, 何伟忠, 李鹏高, 刘兴丽, 马梦梅, 梅新, 彭小燕, 王晓梅, 席丽莎, 熊志冬, 张燕燕. 甘薯深加工技术. 北京: 科学出版社, 2014.
MU T H, SUN H N, ZHANG M, WANG C, CHEN J W, DENG F M, HE W Z, LI P G, LIU X L, MA M M, MEI X, PENG X Y, WANG X M, XI L S, XIONG Z D, ZHANG Y Y. Sweet Potato Processing Technology. Beijing: Science Press, 2014. (in Chinese)
[2] 马代夫, 李强, 曹清河, 钮福祥, 谢逸萍, 唐君, 李洪民. 中国甘薯产业及产业技术的发展与展望. 江苏农业学报, 2012, 28(5):969-973.
MA D F, LI Q, CAO Q H, NIU F X, XIE Y P, TANG J, LI H M. Development and prospect of sweetpotato industry and its technologies in China. Jiangsu Journal of Agricultural Sciences, 2012, 28(5):969-973. (in Chinese)
[3] AN L V, FRANKOW-LINDBERG B E, LINDBERG J E. Effect of harvesting interval and defoliation on yield and chemical composition of leaves, stems and tubers of sweet potato (Ipomoea batatas L. (Lam.)) plant parts. Field Crops Research, 2003, 82(1):49-58.
doi: 10.1016/S0378-4290(03)00018-2
[4] JOHNSON M, PACE R D. Sweet potato leaves: Properties and synergistic interactions that promote health and prevent disease. Nutrition Reviews, 2010, 68(10):604-615.
doi: 10.1111/nure.2010.68.issue-10
[5] SUN H N, MU T H, XI L S, SONG Z. Effects of domestic cooking methods on polyphenols and antioxidant activity of sweet potato leaves. Journal of Agricultural and Food Chemistry, 2014, 62(36):8982-8989.
doi: 10.1021/jf502328d
[6] ISLAM S. Sweetpotato (Ipomoea batatas L.) leaf: Its potential effect on human health and nutrition. Journal of Food Science, 2006, 71(2):R13-R21.
doi: 10.1111/j.1365-2621.2006.tb08912.x
[7] ISLAM M S, YOSHIMOTO M, YAMAKAWA O. Distribution and physiological functions of caffeoylquinic acid derivatives in leaves of sweetpotato genotypes. Journal of Food Science, 2003, 68(1):111-116.
doi: 10.1111/jfds.2003.68.issue-1
[8] ISLAM M S, YOSHIMOTO M, YAHARA S, OKUNO S, ISHIGURO K, YAMAKAWA O. Identification and characterization of foliar polyphenolic composition in sweetpotato (Ipomoea batatas L.) genotypes. Journal of Agricultural and Food Chemistry, 2002, 50(13):3718-3722.
doi: 10.1021/jf020120l
[9] JUNG J K, LEE S U, KOZUKUE N, LEVIN C E, FRIEDMAN M. Distribution of phenolic compounds and antioxidative activities in parts of sweet potato (Ipomoea batata L.) plants and in home processed roots. Journal of Food Composition and Analysis, 2011, 24(1):29-37.
doi: 10.1016/j.jfca.2010.03.025
[10] 赵珊, 仲伶俐, 李曦, 雷欣宇, 郑幸果, 郭灵安, 雷绍荣, 周虹, 黄世群, 冯俊彦. 超高效液相色谱测定冷冻研磨甘薯植株中酚酸及其分布(英文). 食品科学, 2021, 42(12):222-232.
ZHAO S, ZHONG L L, LI X, LEI X Y, ZHENG X G, GUO L A, LEI S R, ZHOU H, HUANG S Q, FENG J Y. Determination of phenolic acids and their distribution in freeze-grinding sweetpotato plants by ultra-high performance liquid chromatography [J/OL]. Food Science, 2021, 42(12):222-232.
[11] 郭政铭, 杨静, 周成伟, 孙月娥, 王卫东. 甘薯茎叶生理功能与其加工利用. 食品安全质量检测学报, 2019, 10(24):8302-8307.
GUO Z M, YANG J, ZHOU C W, SUN Y E, WANG W D. Advances on physiological activities and processing utilization of sweet potato stems and leaves. Journal of Food Safety & Quality, 2019, 10(24):8302-8307. (in Chinese)
[12] KORUS A. Effect of pre-treatment and drying methods on the content of minerals, B-group vitamins and tocopherols in kale (Brassica oleracea L. var. Acephala) leaves. Journal of Food Science and Technology, 2021. http://doi.org/10.2007/513197-021-05012-9 .
[13] GARCIA L M, CECCANTI C, NEGRO C, DE BELLIS L, INCROCCI L, PARDOSSI A, GUIDI L. Effect of drying methods on phenolic compounds and antioxidant activity of Urtica dioica L. leaves. Horticulturae, 2021, 7(1):10.
doi: 10.3390/horticulturae7010010
[14] YU Q, LI J W, FAN L P. Effect of drying methods on the microstructure, bioactivity substances, and antityrosinase activity of Asparagus stems. Journal of Agricultural and Food Chemistry, 2019, 67(5):1537-1545.
doi: 10.1021/acs.jafc.8b05993
[15] LEWICKI P P. Design of hot air drying for better foods. Trends in Food Science & Technology, 2006, 17(4):153-163.
[16] VASHISTH T, SINGH R K, PEGG R B. Effects of drying on the phenolics content and antioxidant activity of muscadine pomace. LWT - Food Science and Technology, 2011, 44(7):1649-1657.
[17] CAPECKA E, MARECZEK A, LEJA M. Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chemistry, 2005, 93(2):223-226.
doi: 10.1016/j.foodchem.2004.09.020
[18] CHAN E W C, LIM Y Y, WONG S K, LIM K K, TAN S P, LIANTO F S, YONG M Y. Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 2009, 113(1):166-172.
doi: 10.1016/j.foodchem.2008.07.090
[19] HARGUINDEGUY M, FISSORE D. On the effects of freeze-drying processes on the nutritional properties of foodstuff: A review. Drying Technology, 2020, 38(7):846-868.
doi: 10.1080/07373937.2019.1599905
[20] HONEST K, ZHUOYAN H, LEI Z, MOLIN Z. Effect of steam blanching and drying on phenolic compounds of litchi pericarp. Molecules, 2016, 21(6):729.
doi: 10.3390/molecules21060729
[21] PRIECINA L, KARKLINA D, KINCE T. The impact of steam- blanching and dehydration on phenolic, organic acid composition, and total carotenoids in celery roots. Innovative Food Science & Emerging Technologies, 2018, 49(5):192-201.
[22] ROSLAN A S, ISMAIL A, ANDO Y, AZLAN A. Effect of drying methods and parameters on the antioxidant properties of tea (Camellia sinensis) leaves. Food Production, Processing and Nutrition, 2020, 2(1):8.
doi: 10.1186/s43014-020-00022-0
[23] 司金金, 辛丹丹, 王晓芬, 寇莉萍. 干燥方式对红薯叶粉品质特性的影响. 西北农林科技大学学报(自然科学版), 2018, 46(6):129-136, 154.
SI J J, XIN D D, WANG X F, KOU L P. Effect of drying methods on quality characteristics of sweet potato leaf powder. Journal of Northwest A &F University (Natural Science Edition), 2018, 46(6):129-136, 154. (in Chinese)
[24] 宋振, 木泰华, 孙红男, 席利莎. 不同干燥方法对甘薯茎叶粉营养及功能特性的影响及其品质评价指标的筛选. 食品科技, 2014, 39(11):163-169.
doi: 10.1590/fst.29217
SONG Z, MU T H, SUN H N, XI L S. Effect of different drying methods on nutritional and functional properties of sweet potato leaf powder and the screening on evaluating indicators. Food Science and Technology, 2014, 39(11):163-169. (in Chinese)
doi: 10.1590/fst.29217
[25] JENG T L, LAI C C, LIAO T C, LIN S Y, SUNG J M. Effects of drying on caffeoylquinic acid derivative content and antioxidant capacity of sweet potato leaves. Journal of Food and Drug Analysis, 2015, 23(4):701-708.
doi: 10.1016/j.jfda.2014.07.002
[26] ZHENG W, CLIFFORD M N. Profiling the chlorogenic acids of sweet potato (Ipomoea batatas) from China. Food Chemistry, 2008, 106(1):147-152.
doi: 10.1016/j.foodchem.2007.05.053
[27] FU Z F, TU Z C, ZHANG L, WANG H, WEN Q H, HUANG T. Antioxidant activities and polyphenols of sweet potato ( Ipomoea batatas L.) leaves extracted with solvents of various polarities. Food Bioscience, 2016, 15:11-18.
doi: 10.1016/j.fbio.2016.04.004
[28] DO Q D, ANGKAWIJAYA A E, TRAN-NGUYEN P L, HUYNH L H, SOETAREDJO F E, ISMADJI S, JU Y H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food & Drug Analysis, 2014, 22(3):296-302.
[29] 赵珊, 仲伶俐, 周虹, 李曦, 雷欣宇, 黄世群, 郑幸果, 冯俊彦, 雷绍荣, 郭灵安. 超高效液相色谱-串联质谱法鉴定和分析稻米中酚酸类化合物的组成及分布. 中国农业科学, 2020, 53(3):612-631.
ZHAO S, ZHONG L L, ZHOU H, LI X, LEI X Y, HUANG S Q, ZHENG X G, FENG J Y, LEI S R, GUO L G. Identification and analysis of phenolic acids in rice using ultra-high performance liquid chromatography-tandem mass spectrometry. Scientia Agricultura Sinica, 2020, 53(3):612-631. (in Chinese)
[30] SHARMA O P, BHAT T K. DPPH antioxidant assay revisited. Food Chemistry, 2009, 113(4):1202-1205.
doi: 10.1016/j.foodchem.2008.08.008
[31] 罗牡康, 贾栩超, 张瑞芬, 刘磊, 董丽红, 池建伟, 白亚娟, 张名位. 杨桃的酚类成分含量及其生物可及性与抗氧化活性. 中国农业科学, 2020, 53(7):1459-1472.
LUO M K, JIA X C, ZHANG R F, LIU L, DONG L H, CHI J W, BAI Y J, ZHANG M W. Phenolic content, bioavailability and antioxidant activity of carambola. Scientia Agricultura Sinica, 2020, 53(7):1459-1472. (in Chinese)
[32] SASAKI K, OKI T, KAI Y M, NISHIBA Y, OKUNO S. Effect of repeated harvesting on the content of caffeic acid and seven species of caffeoylquinic acids in sweet potato leaves. Bioscience, Biotechnology, and Biochemistry, 2015, 79(8):1308-1314.
doi: 10.1080/09168451.2015.1025032
[33] CHU Y H, CHANG C L, HSU H F. Flavonoid content of several vegetables and their antioxidant activity. Journal of the Science of Food and Agriculture, 2000, 80(5):561-566.
doi: 10.1002/(SICI)1097-0010(200004)80:5&lt;&gt;1.0.CO;2-Q
[34] LUO C Y, WANG X X, GAO G, WANG L, LI Y X, SUN C J. Identification and quantification of free, conjugate and total phenolic compounds in leaves of 20 sweetpotato cultivars by HPLC-DAD and HPLC-ESI-MS/MS. Food Chemistry, 2013, 141(3):2697-2706.
doi: 10.1016/j.foodchem.2013.05.009
[35] HUANG Z, WANG B, EAVES D H, SHIKANY J M, PACE R D. Phenolic compound profile of selected vegetables frequently consumed by African Americans in the southeast United States. Food Chemistry, 2007, 103(4):1395-1402.
doi: 10.1016/j.foodchem.2006.10.077
[36] 李云聪, 牛志平, 徐美利, 田洪, 高伟. 甜叶菊与其他植物中绿原酸类成分对比分析. 中国食品添加剂, 2021, 32(1):1-6.
LI Y C, NIU Z P, XU M L, TIAN H, GAO W. Comparative analysis of chlorogenic acids in Stevia and other plants. China Food Additives, 2021, 32(1):1-6. (in Chinese)
[37] RUENROENGKLIN N, SUN J, SHI J, XUE S J, JIANG Y M. Role of endogenous and exogenous phenolics in litchi anthocyanin degradation caused by polyphenol oxidase. Food Chemistry, 2009, 115(4):1253-1256.
doi: 10.1016/j.foodchem.2009.01.040
[38] 李晓英, 薛梅, 樊汶樵, 罗洁. 不同干燥方式对蓝莓叶中酚类物质及其抗氧化活性的影响. 中国农业科学, 2018, 51(13):2570-2578.
LI X Y, XUE M, FAN W Q, LUO J. Analysis of phenolic compounds and antioxidant activities of blueberry leaves from different drying methods. Scientia Agricultura Sinica, 2018, 51(13):2570-2578. (in Chinese)
[39] 邓媛元, 汤琴, 张瑞芬, 张雁, 刘磊, 魏振承, 马永轩, 张名位. 不同干燥方式对苦瓜营养与品质特性的影响. 中国农业科学, 2017, 50(2):362-371.
DENG Y Y, TANG Q, ZHANG R F, ZHANG Y, LIU L, WEI Z C, MA Y X, ZHANG M W. Effects of different drying methods on the nutrition and physical properties of Momordica charantia. Scientia Agricultura Sinica, 2017, 50(2):362-371. (in Chinese)
[40] MBONDO N N, OWINO W O, AMBUKO J, SILA D N. Effect of drying methods on the retention of bioactive compounds in African eggplant. Food Science & Nutrition, 2018, 6(4):814-823.
[41] 胡皓, 宋红坤, 王继良, 林涛, 刘兴勇, 邵金良. 高效液相色谱法同时测定咖啡中6种绿原酸. 食品安全质量检测学报, 2018, 9(7):1634-1643.
HU H, SONG H K, WANG J L, LIN T, LIU X Y, SHAO J L. Determination of 6 kinds of chlorogenic acid by high performance liquid chromatography. Journal of Food Safety & Quality, 2018, 9(7):1634-1643. (in Chinese)
[42] 张欣. 多酚化合物抗氧化性的化学—生物学研究[D]. 哈尔滨: 东北农业大学, 2008.
ZHANG X. Chemical and biological study on antioxidant and capacity of polyphenols[D]. Harbin: Northeast Agricultural University, 2008. (in Chinese)
[43] 傅玉凡, 杨春贤, 赵亚特, 赵文婷, 刘小强, 曾令江, 廖志华, 张启堂. 不同叶菜型甘薯品种茎尖绿原酸含量及清除DPPH·能力. 中国农业科学, 2010, 43(23):4814-4822.
FU Y F, YANG C X, ZHAO Y T, ZHAO W T, LIU X Q, ZENG L J, LIAO Z H, ZHANG Q T. Chlorogenic acid contents in shoot-tips of different vegetable-use sweetpotato varieties and their DPPH- scavenging capacities. Scientia Agricultura Sinica, 2010, 43(23):4814-4822. (in Chinese)
[1] HOU ChengLi,HUANG CaiYan,ZHENG XiaoChun,LIU WeiHua,YANG Qi,ZHANG DeQuan. Changes of Antioxidant Activity and Its Possible Mechanism in Tan Sheep Meat in Different Postmortem Time [J]. Scientia Agricultura Sinica, 2021, 54(23): 5110-5124.
[2] LI Jie,JIA XuChao,ZHANG RuiFen,LIU Lei,CHI JianWei,HUANG Fei,DONG LiHong,ZHANG MingWei. Isolation, Structural Characterization and Antioxidant Activity of Black Sesame Melanin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2477-2492.
[3] YU Jing,ZHANG WeiXing,MA LanTing,XU BaoHua. Effect of Dietary α-Linolenic Acid Levels on Physiological Function of Apis mellifera ligustica Worker Bee Larvae [J]. Scientia Agricultura Sinica, 2019, 52(13): 2368-2378.
[4] LI XiaoYing, XUE Mei, FAN WenQiao, LUO Jie. Analysis of Phenolic Compounds and Antioxidant Activities of Blueberry Leaves from Different Drying Methods [J]. Scientia Agricultura Sinica, 2018, 51(13): 2570-2578.
[5] LIU Yu, LIU ShengYu, LU JuanFang, YU QingFan, XI WanPeng. Evaluation of Flavor Quality and Antioxidant Capacity of Apple Fruits from Three Xinjiang Red-Flesh Lines [J]. Scientia Agricultura Sinica, 2017, 50(8): 1495-1504.
[6] DENG YuanYuan, TANG Qin, ZHANG RuiFen, ZHANG Yan, WEI ZhenCheng, LIU Lei, MA YongXuan, ZHANG MingWei. Effects of Different Drying Methods on the Nutrition and Physical Properties of Momordica charantia [J]. Scientia Agricultura Sinica, 2017, 50(2): 362-371.
[7] . Effects of Different Drying Methods on Quality Changes during Processing and Storage of Tremella fuciformis [J]. Scientia Agricultura Sinica, 2016, 49(6): 1163-1172.
[8] TIAN Ping-ping, LI Ren-zhou, JIAN Yong-jian, LI Jian-ming, WANG Jie. Analysis of Antioxidative Functional Components from Walnut Green Rind and Its Antioxidation Stability [J]. Scientia Agricultura Sinica, 2016, 49(3): 543-553.
[9] DONG Li-hong, ZHANG Rui-fen, XIAO Juan, DENG Yuan-yuan, ZHANG Yan, LIU Lei, HUANG Fei, WEI Zhen-cheng, ZHANG Ming-wei. Separation and Antioxidant Activity of Different Phenolic Compound Fractions from Litchi Pulp [J]. Scientia Agricultura Sinica, 2016, 49(20): 4004-4015.
[10] NI Wei-ru, WANG An-ran, HE Xi-yan, XU Jin, WU Shu-jing, CHEN Xue-sen, MAO Zhi-quan, SHEN Xiang. Effects of After-Reap Soil on Physiological Indexes and Leaf Antioxidant Activity of the Different Apple Cultivars With the Same Rootstock [J]. Scientia Agricultura Sinica, 2016, 49(18): 3597-3607.
[11] LAI Ting, LIU Lei, ZHANG Ming-wei, ZHANG Rui-fen, ZHANG Yan, WEI Zhen-cheng, DENG Yuan-yuan. Effect of Lactic Acid Bacteria Fermentation on Phenolic Profiles and Antioxidant Activity of Dried Longan Flesh [J]. Scientia Agricultura Sinica, 2016, 49(10): 1979-1989.
[12] HU Li, WANG Jin-zhi, ZHANG Chun-hui, TANG Chun-hong, DU Gui-hong, LI Xia, LI Chun-hong. Characteristics of Maillard Reaction Products from Enzymatic Hydrolysate of Chicken Bone Extract as Influenced by pH and Temperature [J]. Scientia Agricultura Sinica, 2015, 48(18): 3689-3700.
[13] YIN Cheng-Miao, ZHANG Xian-Fu, HU Yan-Li, SHEN Xiang, CHEN Xue-Sen, WU Shu-Jing, MAO Zhi-Quan. Effect of Different Concentrations of Organic Matter Fermentation Fluid on the Young Apple Tree Leaf Photosynthesis Fluorescent Parameters and Root Antioxidant Activity Under Replant Conditions [J]. Scientia Agricultura Sinica, 2014, 47(9): 1847-1857.
[14] LIU Qin, ZHANG Wei-Na, ZHU Yuan-Yuan, HU Qiu-Hui. Comparison of the Constitutions, Distribution, and Antioxidant Activities of Polyphenols from Different Varieties of Tartary Buckwheat Seed Produced from Different Regions of China [J]. Scientia Agricultura Sinica, 2014, 47(14): 2840-2852.
[15] LI Sheng-Yu, LI Da, ZHAO Yu-Juan, ZHANG Xue, HUANG Li, ZHAO Yu-Jian, YANG Zhen-Nai. Protective Effect of Lactobacillus plantarum C88 on H2O2-Induced Oxidative Stress in Caco-2 Cells [J]. Scientia Agricultura Sinica, 2013, 46(3): 606-613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!