Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (17): 2929-2938.doi: 10.3864/j.issn.0578-1752.2019.17.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Evaluation of Genotype Differences of Cold Tolerance of Sweet Potato Seedlings by Subordinate Function Value Analysis

XU Shu1,LI Ling1,ZHANG SiMeng1,CAO RuXia1,CHEN LingLing1,CUI Peng1,Lü ZunFu1,WU LieHong2,LU GuoQuan()   

  1. 1 College of Agriculture and Food Science, Zhejiang A&F University, Hangzhou 311300
    2 The Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021
  • Received:2019-03-29 Accepted:2019-05-24 Online:2019-09-01 Published:2019-09-10
  • Contact: GuoQuan LU E-mail:lugq10@zju.edu.cn

Abstract:

【Objective】 It is of great significance to explore the low temperature tolerance mechanism of sweet potato seedlings and identify the key factors affecting the low temperature tolerance of the seedlings for evaluation and screening of cold tolerance genetic resources of the seedlings and research on the mechanism of low temperature tolerance of sweet potatoes.【Method】 In order to investigate the cold tolerance of different varieties of sweet potato seedlings, 30 varieties of sweet potato seedlings were selected and tested under low temperature conditions of 4℃ in this study, their physiological indexes and antioxidant enzyme indexes were measured so as to observe the effects of low temperature stress on physiological characteristics of sweet potato seedlings. The low temperature tolerant sweet potato varieties were screened by the subordinate function analysis of the physiological characteristics of sweet potato seedlings.【Result】 Great difference of the physiological indexes of 30 different genotypes of sweet potato seedlings were found under low temperature stress. After low temperature stress the relative electrical conductivity and proline contents of all sweet potato seedlings were increased to different extents. The relative conductivity of Sushu 16 changed the most, up to 40.16%, and the most increased proline content was Liaoshu 15 up to 3.66 μg·g -1 FW; malondialdehyde (MDA), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), Ascorbate peroxidase (APX) showed an upward trend; among the 30 varieties of potato seedlings, the most significant change in MDA content was Suyu 303; the SOD activity of all sweet potato seedlings increased, and the most variable SOD activity was Yushu 17. The change before and after stress was as high as 27.59 U·g -1 FW, but Ningzishu 1, Shangxuzi 1 and Ziluolan seedlings were in a state of wilting and death, and the change of SOD activity showed a negative value; the POD activity of all potato seedlings showed an upward trend. The highest change in POD activity was Gan 10-20, up to 29.21 U·(g·min) -1, and the change of POD content in Ziluolan was negative; the highest increase in CAT activity was Hongxiangjiao; The change of APX activity showed an upward trend, and the potato 25, Hongxiangjiao and Longzishu 6 greatest change, Pu 32, Shangshu 8, Ziluolan the minimum change; proline content is increased up to Liao 15, up to 3.66, It is 1.5 times that of Shangxuzi 1. Correlation analysis of physiological indexes of sweet potato seedlings showed that relative conductivity and MDA content were negatively correlated with cold tolerance of sweet potato seedlings. SOD, POD, CAT and APX activities were positively correlated with cold tolerance of sweet potato seedlings, proline content and cold tolerance of sweet potato seedlings. Sexuality is positively correlated.【Conclusion】 Comprehensive conductivity and antioxidant enzymes and proline indicators, according to membership function analysis. Different varieties of sweet potatoes were different in low temperature resistance. At the temperature of 4℃, the order of low temperature resistance of all sweet potatoes was: Longshu515>Gan10-20>Nanshu010>Hongxiangjiao>Guangshu87>Sushu8>Yushu17>Longzishu6>Yanshu25>Zheshu13>Yizhi138>Sweet potato 166-7>Qingzishu2>Xushu55-2>Liaoshu19>Liaoshu15>Longshu14>Xushu22>Shangshu19>Pushu32>Ningzishu2>Longshu9>Shangshu8>Xuzishu8>Hongdong>Sushu16>Taiwanyingou>Shangxuzishu1>Suyu303>Ziluolan.

Key words: sweet potato, low temperature stress, antioxidant, proline, membership function analysis

Table 1

Membership values of different genotypes of sweet potato seedlings"

品种
Variety.
电导率
Conductivity
丙二醛
Malondialdehyde
超氧化物歧化酶
Superoxide dismutase
过氧化物酶
Peroxidase
过氧化氢酶
Catalase
抗坏血酸过氧化酶
Aseorbate peroxidase
脯氨酸
Proline
平均值
Average
龙薯515 Longshu 515 0.89 0.88 0.54 0.72 0.65 0.29 0.87 0.69
赣10-20 Gan 10-20 1.00 0.73 0.20 1.00 0.56 0.14 0.63 0.61
南薯010 Nanshu 010 0.95 0.81 0.30 0.23 1.00 0.21 0.57 0.58
红香蕉 Hongxiangjiao 0.87 0.38 0.11 0.80 0.14 0.86 0.91 0.58
广薯87 Guangshu 87 0.86 0.73 0.26 0.25 0.37 0.54 1.00 0.57
苏薯8号 Sushu 8 1.00 0.66 0.72 0.19 0.21 0.14 0.97 0.56
渝薯17 Yushu 17 0.88 0.80 0.61 0.18 0.07 0.50 0.79 0.55
龙紫薯6号 Longzishu 6 0.71 1.00 0.27 0.75 0.05 0.54 0.48 0.54
烟薯25 Yanshu 25 0.71 0.66 0.27 0.15 0.26 1.00 0.46 0.50
浙薯13 Zheshu 13 0.75 0.70 1.00 0.15 0.03 0.29 0.31 0.46
遗字138 Yizi 138 0.63 0.76 0.12 0.24 0.05 0.68 0.63 0.44
甘薯166-7 Ganshu 166-7 0.75 0.87 0.27 0.18 0.08 0.50 0.34 0.43
秦紫薯2号 Qinzishu 2 0.72 0.79 0.44 0.15 0.16 0.18 0.17 0.37
徐薯55-2 Xushu 55-2 0.60 0.65 0.49 0.31 0.02 0.07 0.32 0.35
辽薯19 Liaoshu 19 0.73 0.31 0.20 0.49 0.03 0.14 0.57 0.35
辽薯15 Liaoshu 15 0.57 0.47 0.26 0.38 0.39 0.07 0.25 0.34
龙薯14 Longshu 14 0.71 0.58 0.30 0.23 0.08 0.29 0.20 0.34
徐薯22 Xushu 22 0.47 0.42 0.12 0.14 0.07 0.39 0.69 0.33
商薯19 Shangshu 19 0.53 0.74 0.32 0.31 0.05 0.04 0.28 0.32
普薯32 Pushu 32 0.35 0.63 0.46 0.18 0.04 0.00 0.53 0.31
宁紫薯2号 Ningzishu 2 0.69 0.74 0.20 0.17 0.01 0.18 0.20 0.31
龙薯9号 Longshu 9 0.70 0.64 0.12 0.17 0.10 0.29 0.14 0.31
商薯8号 Shangshu 8 0.79 0.62 0.44 0.19 0.02 0.00 0.04 0.30
徐紫薯8号 Xuzishu 8 0.49 0.36 0.41 0.17 0.15 0.07 0.33 0.28
红东 Hongdong 0.60 0.59 0.12 0.12 0.00 0.18 0.17 0.25
苏薯16 Sushu 16 0.00 0.43 0.30 0.19 0.10 0.43 0.32 0.25
台湾英沟 Taiwanyinggou 0.59 0.31 0.12 0.47 0.08 0.18 0.00 0.25
商徐紫1号 Shangxuzi 1 0.41 0.18 0.30 0.19 0.17 0.18 0.12 0.22
苏渝303 Suyu 303 0.51 0.00 0.27 0.29 0.07 0.11 0.19 0.20
紫罗兰 Ziluolan 0.45 0.03 0.05 0.00 0.45 0.04 0.18 0.17

Fig. 1

Phenotypic changes of six representative sweet potato seedlings before and after low temperature stress A: Before low temperature stress; B: After low temperature stress"

Fig. 2

Physiological changes of different sweet potato seedlings under low temperature stress A: Conductivity; B: Malondialdehyde; C: Superoxide dismutase; D: Peroxidase; E: Catalase; F: Aseorbate peroxidase; G: Pro. Different lower-case letters indicated significant difference at P<0.05. 1-30: Sushu 8, Zheshu 13, Yushu 17, Pushu 32, Yanshu 25, Xushu 22, Yizi 138, Shangshu 19, Longshu 9, Sushu 16, Ningzishu 2, Shangxuzi 1, Sweetpotato166-7, Shangshu 8, Guangshu 87, Hongxiangjiao, Taiwanyinggou, Suyu 303, Longshu 14, Hongdong, Liaoshu 19, Gan10-20,Nanshu010, Ziluolan, Longzishu 6, Xushu55-2, Qingzishu 2, Xuzishu 8, Liaoshu 15, Longshu 515 "

Table 2

Correlation analysis of physiological indexes of sweet potato seedlings"

电导率
Conductivity
丙二醛
Malondialdehyde
超氧化物歧化酶
Superoxide dismutase
过氧化物酶
Peroxidase
过氧化氢酶
Catalase
抗坏血酸过氧化酶
Aseorbate peroxidase
丙二醛Malondialdehyde
超氧化物歧化酶Superoxide dismutase
过氧化物酶Peroxidase
过氧化氢酶Catalase
抗坏血酸过氧化酶
Aseorbate peroxidase
脯氨酸Pro
0.307*
-0.338**

-0.290*
-0.315*
-0.143

-0.283*

-0.121

0.092
-0.067
-0.036

0.096



-0.049
-0.067
0.111

0.051




-0.315*
0.263*

0.242





-0.018

0.182







0.340**
[1] 刘静妍, 施怡婷, 杨淑华 . CBF: 平衡植物低温应答与生长发育的关键.植物学报, 2017(6):689-698.
LIU J Y, SHI Y T, YANG S H . CBF: The key to balance the low temperature response and growth of plants.Chinese Journal of Plant Science, 2017(6):689-698. (in Chinese)
[2] 潘瑞识, 董愚得 . 植物生理学. 北京: 高等教育出版社, 1995: 322-328
PAN R Z, DONG Y D . Plant Physiology. Beijing: Higher Education Press, 1995: 322-328. (in Chinese)
[3] 李利霞 . 植物低温伤害恢复过程中的膜脂分子组成变化[D]. 北京: 中国科学院研究生院, 2010.
LI L X . Changes in membrane lipid molecular composition during plant low temperature injury recovery[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2010. (in Chinese)
[4] 黄兰 . 紫甘薯抗寒特性及组织培养研究[D]. 南昌: 南昌大学, 2012.
HUANG L . Study on the cold resistance and tissue culture of purple sweet potato[D]. Nanchang: Nanchang University, 2012. (in Chinese)
[5] 解则义, 李洪民, 马代夫, 陈天娇, 韩永华, 李宗芸 . 低温胁迫影响甘薯贮藏的研究进展. 植物生理学报, 2017,53(5):758-767.
XIE Z Y, LI H M, MA D F, CHEN T J, HAN Y H, LI Z Y . Research progress of low temperature stress on sweet potato storage. Chinese Journal of Plant Physiology, 2017,53(5):758-767. (in Chinese)
[6] 杨舒贻, 陈晓阳, 惠文凯, 任颖, 马玲 . 逆境胁迫下植物抗氧化酶系统响应研究进展. 福建农林大学学报(自然科学版), 2005,45(5):481-489.
YANG S Y, CHEN X Y, HUI W K, REN Y, MA L . Progress in the response of plant antioxidant enzyme system under stress. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2005,45(5):481-489. (in Chinese)
[7] 黄湛, 陈友荣, 冯祖虾, 谢春生 . 广东甘薯品种耐寒性鉴定及其生理研究. 中国农业科学, 1987,20(3):56-59.
HUANG Z, CHEN Y R, FENG Z X, XIE C S . Cold tolerance identification and physiological study of sweet potato varieties in Guangdong. Scientia Agricultura Sinica, 1987,20(3):56-59. (in Chinese)
[8] XIE Z Y, ZHOU Z L, LI H M, YU J, JIANG J, TANG Z, MA D, ZHANG B, HAN Y, LI Z . High throughput sequencing identifies chilling responsive genes in sweetpotato (Ipomoea batatas Lam.) during storage. Genomics, 2018: S0888-7543(18)30300-8.
[9] JIA X, JUN Y, DUAN X G, JIANG Y M, ZHANG P . Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biology, 2014,14(1):208-221.
[10] HODGES D M, DELONG J M, FORNEY C F, PRANGE R K . Improving the thiobarbituric acid-reactive-substances assay for estimating lipidperoxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999,207:604-611.
[11] RAO L, PEREZ D, WHITE E . Lamin proteolysis facilitates nuclear events during apoptosis. The Journal of Cell Biology, 1996,135(6):1441-1455.
[12] BATES L, WALDREN R, TEARE I . Rapid determination of free proline for water stress studies. Plant Soil, 1973,39:205-207.
[13] ENONOWIEZ A K. Biochemical and Cellular Mechanisms of Stress Tolerance in Plants. Berlin: Spring-verlag Press, 1994: 381-414.
[14] 任军, 黄志霖, 曾立雄, 施征 . 低温胁迫下植物生理反应机理研究进展. 世界林业研究, 2013,26(6):15-20.
REN J, HUANG Z L, ZENG L X, SHI Z . Research progress on plant physiological response mechanism under low temperature stress. World Forestry Research, 2013,26(6):15-20. (in Chinese)
[15] LYONS J M . Chilling injury in plants. Annual Review of Plant Physiology, 1973,24(3):445-466
[16] 李文明, 魏一粟, 钱燕萍, 田如男 . 5种酢浆草属植物对低温胁迫的生理响应及抗寒性评价. 东北林业大学学报, 2017(7):28-33.
LI W M, WEI Y S, QIAN Y P, TIAN R N . Physiological response and cold resistance evaluation of five species of oxalis to low temperature stress.Journal of Northeast Forestry University, 2017(7):28-33. (in Chinese)
[17] 黄秋凤, 罗兴录, 王春莲, 赖兴丽, 韦春柳 . 低温胁迫对木薯幼苗生理特性的影响. 中国农学通报, 2010,26(17):172-177.
HUANG Q F, LUO X L, WANG C L, LAI X L, WEI C L . Effects of low temperature stress on physiological characteristics of cassava seedlings. Chinese Agricultural Science Bulletin, 2010,26(17):172-177. (in Chinese)
[18] 欧文军, 罗秀芹, 李开绵 . 低温胁迫对木薯组培苗叶片若干代谢生理指标的影响. 热带作物学报, 2015,36(4):706-712.
OU W J, LUO X Q, LI K M . Effects of low temperature stress on some metabolic physiological indexes of cassava seedlings. Journal of Tropical Crops, 2015,36(4):706-712. (in Chinese)
[19] 王福琴, 侯夫云, 秦桢, 李爱贤, 董顺旭, 王庆美, 张立明 . 甘薯耐非生物胁迫的分子生物学研究进展. 基因组学与应用生物学, 2015(1):221-226.
WANG F Q, HOU F Y, QIN Z, LI A X, DONG S X, WANG Q M, ZHANG L M . Advances in molecular biology of abiotic stress resistance in sweet potato.Genomics and Applied Biology, 2015(1):221-226. (in Chinese)
[20] SZABADOS L, SAVOURÉ A . Proline: A multifunctional amino acid. Trends in Plant Science, 2010,15(2):89-97.
[21] 赵慧, 赵一博, 郭江波, 辛翠花 . 植物耐受低温胁迫研究进展. 种子, 2017(5):47-50.
ZHAO H, ZHAO Y B, GUO J B, XIN C H . Research progress on low temperature stress tolerance of plants.Seeds, 2017(5):47-50. (in Chinese)
[22] 陈京, 谈锋 . 甘薯苗期离体叶片对水分胁迫的适应能力. 植物生理学报, 1994(4):269-271.
CHEN J, TAN F . Adaptability ofin vitro leaves to water stress in sweet potato seedling stage. Acta Physiologica Sinica, 1994(4):269-271. (in Chinese)
[23] 汪本勤, 陈曦, 向成斌 . SOD活性增高的拟南芥晚花突变体具有增强的非生物胁迫耐受性. 植物学通报, 2007,24(5):572-580.
WANG B Q, CHEN X, XIANG C B . Arabidopsis thaliana late flower mutants with increased SOD activity have enhanced abiotic stress tolerance. Chinese Journal of Botany, 2007,24(5):572-580. (in Chinese)
[24] RUBIO M C, JAMES E K, CLEMENTE M R, BUCCIARELLI B, FEDOROVA M, VANCE CP, BECANA M . Localization of superoxide dismutases and hydrogen peroxide in legume root nodules. Molecular Plant-Microbe Interactions, 2004,17(12):1294-1305.
[25] 陈禹兴, 付连双, 王晓楠, 李卓夫 . 低温胁迫对冬小麦恢复生长后植株细胞膜透性和丙二醛含量的影响. 东北农业大学学报, 2010,41(10):10-16.
CHEN Y X, FU L S, WANG X N, LI Z F . Effects of low temperature stress on cell membrane permeability and malondialdehyde content of winter wheat after restoration and growth. Journal of Northeast Agricultural University, 2010,41(10):10-16. (in Chinese)
[26] 郭慧, 李树杏, 孙平勇, 邓华凤 . 不同基因型水稻苗期抗氧化系统对低温胁迫的响应. 植物科学学报, 2019,37(1):63-69.
GUO H, LI S X, SUN P Y, DENG H F . Response of antioxidant system in different genotypes of rice at seedling stage to low temperature stress. Chinese Journal of Plant Science, 2019,37(1):63-69. (in Chinese)
[27] 夏民旋, 王维, 袁瑞, 邓粉妮, 沈法富 . 超氧化物歧化酶与植物抗逆性. 分子植物育种, 2015,13(11):2633-2646.
XIA M X, WANG W, YUAN R, DENG F N, SHEN F F . Superoxide dismutase and plant stress resistance. Molecular Plant Breeding, 2015,13(11):2633-2646. (in Chinese)
[28] 冯坤, 郑青松, 俞佳虹 . 超氧化物歧化酶的遗传特征及其在植物抗逆性中的研究进展. 分子植物育种, 2017(11):201-208.
FENG K, ZHENG Q S, YU J H . Genetic characteristics of superoxide dismutase and its research progress in plant stress resistance.Molecular Plant Breeding, 2017(11):201-208. (in Chinese)
[29] PARKS S Y, RYU S H, KWON H Y, LEE S J, KIM S G, KWAK S . Differential expression of six novel peroxidase cDNAs from cell cultures of sweetpotato in response to stress. Molecular Genetics and Genomics, 2003,269(4):542-552.
[30] 何学利 . 植物体内的保护酶系统. 现代农业科技, 2010,2010(10):37-38.
HE X L . Protective enzyme system in plants. Modern Journal of Agricultural Science and Technology, 2010,2010(10):37-38. (in Chinese)
[31] 李春燕, 陈思思, 徐雯, 李东升, 顾骁, 朱新开, 郭文善, 封超年 . 苗期低温胁迫对扬麦16叶片抗氧化酶和渗透调节物质的影响. 作物学报, 2011,37(12):2293-2298.
doi: 10.3724/SP.J.1006.2011.02293
LI C Y, CHEN S S, XU W, LI D S, GU X, ZHU X K, GUO W S, FENG C N . Effects of low temperature stress on antioxidant enzymes and osmotic adjustment substances in leaves of Yangmai 16. Acta Agronomica Sinica, 2011,37(12):2293-2298. (in Chinese)
doi: 10.3724/SP.J.1006.2011.02293
[32] 崔强旺, 曹子怡, 贾光红, 熊梅, 覃华勇, 周日秀, 聂明建 . 低温胁迫对4个菜用甘薯品种生理生化特性的影响. 分子植物育种, 2018(17):5804-5811.
CUI Q W, CAO Z Y, JIA G H, XIONG M, QIN H Y, ZHOU R X, NIE M J . Effects of low temperature stress on physiological and biochemical characteristics of four vegetable sweet potato cultivars.Molecular Plant Breeding, 2018(17):5804-5811. (in Chinese)
[1] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[2] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[3] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[4] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[5] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[6] ZiHan FAN,YaYin LUO,HuaYe XIONG,YuWen ZHANG,FuRong KANG,YuHeng WANG,Jie WANG,XiaoJun SHI,YueQiang ZHANG. Effect of Nitrification on Ammonium Toxicity to Citrus in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(18): 3600-3612.
[7] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[8] XIAO LiuJun,LIU LeiLei,QIU XiaoLei,TANG Liang,CAO WeiXing,ZHU Yan,LIU Bing. Testing the Responses of Low Temperature Stress Routine to Low Temperature Stress at Jointing and Booting in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(3): 504-521.
[9] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[10] HOU ChengLi,HUANG CaiYan,ZHENG XiaoChun,LIU WeiHua,YANG Qi,ZHANG DeQuan. Changes of Antioxidant Activity and Its Possible Mechanism in Tan Sheep Meat in Different Postmortem Time [J]. Scientia Agricultura Sinica, 2021, 54(23): 5110-5124.
[11] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[12] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[13] ZHAO Shan,ZHONG LingLi,QIN Lin,HUANG ShiQun,LI Xi,ZHENG XingGuo,LEI XinYu,LEI ShaoRong,GUO LingAn,FENG JunYan. Effects of Different Drying Methods on Functional Components and Antioxidant Activity in Sweet Potato Leaves [J]. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663.
[14] JIN Rong,LIU Ming,ZHAO Peng,ZHANG QiangQiang,ZHANG AiJun,TANG ZhongHou. IbMKP6, A Mitogen-Activated Protein Kinase, Confers Low Temperature Tolerance in Sweetpotato [J]. Scientia Agricultura Sinica, 2021, 54(20): 4265-4273.
[15] YAN ZhenHua,LIU DongYao,JIA XuCun,YANG Qin,CHEN YiBo,DONG PengFei,WANG Qun. Maize Tassel Development, Physiological Traits and Yield Under Heat and Drought Stress During Flowering Stage [J]. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!