Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (19): 3872-3889.doi: 10.3864/j.issn.0578-1752.2025.19.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Response of Maize Photosynthetic Production Capacity in Saline- Alkaline Soil to Organic Fertilizer Application Rates Under Differential Tillage Practices

LI YueQi1(), MA ZhongHua1, SU Ming1, LIU Hao1, MA FengLan1, MA XiaoYing1, LI Tao1, LI QingYun1, ZHANG Dan1, LIU JiLi2, WU Na1()   

  1. 1 College of Agriculture, Ningxia University, Yinchuan 750021
    2 College of Ecology and Environment, Ningxia University, Yinchuan 750021
  • Received:2025-03-21 Accepted:2025-08-01 Online:2025-10-01 Published:2025-10-10
  • Contact: WU Na

Abstract:

【Objective】Aiming at the problems of soil degradation and crop productivity limitation in saline-alkaline land in the Yinhuang Irrigation Area of Ningxia, this study aimed to investigate the effects of vertical deep rotary tillage with organic fertilizer on the production capacity of maize (Zea mays L.) in terms of photosynthesis material, so as to provide the theoretical basis for maize production in saline-alkaline land in the area.【Method】This study was conducted in Pingluo, Ningxia, China, in 2021-2022. The maize cultivar Xianyu 1225 was used as the test material, and a split-zone experimental design was adopted, with the main zone being the tillage method (DT, vertical deep rotary tillage; TF, conventional tillage), and the subzones being the organic fertilizer dosage (M0, no fertilization; M1, 0.75×104 kg·hm-2; M2, 1.50×104 kg·hm-2; M3, 2.25×104 kg·hm-2). The photosynthesis and fluorescence parameters of maize leaves, dry matter accumulation and transport as well as the composition of maize yields at the maturity stage were measured at 10, 25, 60, 75, 95, and 120 d after seedling emergence, and the changes in the indexes of maize photosynthetic material production in the presence of the interactions between different tillage and organic fertilizer were analyzed, and then the effects of the tillage-fertilizer measures on the dry matter production of maize in saline and alkaline land were investigated.【Result】(1) Compared with TF combined with M2, DT combined with M2 significantly increased the leaf area index (LAI) and photosynthetic potential (LAD), as well as photosynthetic and fluorescence parameters. Specifically, it enhanced: net photosynthetic rate (Pn) by 8.4%-35.0%, stomatal conductance (Gs) by 7.7%-19.8%, maximum photochemical efficiency of PSII (Fv/Fm) by 7.7%-17.1%, and potential maximum photosynthetic capacity of PSII (Fv/Fo) by 10.0%-30.3%. (2) DT combined with M2 significantly increased the maximum DMA rate (Gmax) and mean DMA rate (Gmean), while optimally controlling the time to reach Gmax (Tmax) and active duration of DMA (D). It also enhanced the contribution rate of post-anthesis DMA to grain yield, which was conducive to high yield formation. (3) Correlation and principal component analysis (PCA) revealed that maize yield and Gmean showed significant or highly significant positive correlations with LAD, Pn, Gs, Fv/Fm and ABS/RC. Furthermore, the comprehensive PCA scores for organic fertilizer rates under both tillage practices consistently ranked as M2>M3>M1>M0.【Conclusion】Vertical deep rotary tillage combined with organic fertilizer at 1.50×104 kg·hm-2 (DT+M2) effectively enhanced LAI and LAD in maize grown on saline-alkali soil, optimized its photosynthetic and fluorescence characteristics, and significantly improved dry matter accumulation and translocation traits, thereby promoting crop yield. This treatment was recommended as a saline-alkali soil improvement measure for the Ningxia Yellow River Irrigation District.

Key words: maize, tillage practices, organic fertilizer application rates, photosynthetic and fluorescence characteristics, dry matter accumulation and translocation characteristics, yield

Table 1

Basic properties of tested soils"

年份
Year
全盐
Total salt content
(g·kg-1)
pH 有机质
Organic matter
(g·kg-1)
全氮
Total N
(g·kg-1)
全磷
Total P
(g·kg-1)
碱解氮
Alkali-hydrolyzed N
(mg·kg-1)
速效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1 )
2021 2.76 8.68 14.20 0.77 0.58 30.29 22.00 214.27
2022 2.31 7.98 17.28 0.88 0.67 35.67 25.76 234.76

Fig. 1

Effects of different tillage practices with organic fertilizer on LAI of maize in saline-alkaline soil"

Fig. 2

Effects of different tillage practices with organic fertilizer on total photosynthetic potential of maize in saline soil"

Fig. 3

Effects of different tillage practices with organic fertilizer on net photosynthetic rate and stomatal conductance of maize leaves in saline-alkaline soil"

Fig. 4

Effects of different tillage practices with organic fertilizer on intercellular CO2 concentration and transpiration rate of maize leaves in saline-alkaline soil"

Fig. 5

Effects of different tillage practices with organic fertilizer on Fv/Fm and Fv/Fo of maize leaves in saline-alkaline soil"

Fig. 6

Effects of different tillage practices with organic fertilizer on ABS/RC and PI of maize leaves in saline soil"

Fig. 7

Effects of different tillage practices with organic fertilizer on dry matter accumulation of maize monocultures in saline land"

Table 2

Effect of organic fertilizer dosing on dry matter accumulation parameters of maize in saline soil under different tillage practices"

年份
Year
耕作方式
Farming
practice
处理
Treatment
方程拟合参数 Parameter of equation 决定
系数
R2
干物质积累参数 Dry matter accumulation parameter
A B K Tmax
(d)
Wmax
(g·g-1)
Gmax (g·g-1·d-1) D
(d)
Gmean (g·g-1·d-1)
2021 TF M0 598.93 46.25 0.040 0.9933 95.85 299.47 5.99 150.78 2.84
M1 555.06 66.79 0.048 0.9966 87.53 277.53 6.66 133.31 3.03
M2 590.02 340.46 0.076 0.9934 76.71 295.01 11.20 105.63 4.30
M3 544.67 211.29 0.069 0.9975 77.58 272.34 9.33 109.43 3.78
DT M0 515.86 65.72 0.048 0.9971 87.20 257.93 6.18 132.97 2.82
M1 541.16 40.96 0.045 0.9934 82.50 270.58 6.09 131.33 2.93
M2 630.76 401.58 0.085 0.9949 70.53 315.38 13.40 96.38 5.07
M3 595.84 508.09 0.085 0.9966 75.07 297.92 12.66 99.15 4.68
2022 TF M0 589.70 40.93 0.039 0.9920 95.18 294.85 5.75 151.52 2.77
M1 541.61 40.96 0.045 0.9934 82.50 270.81 6.09 131.33 2.93
M2 554.16 131.20 0.068 0.9954 71.72 277.08 9.42 104.03 3.98
M3 519.60 121.12 0.066 0.9952 72.68 259.80 8.57 105.97 3.65
DT M0 546.42 264.61 0.079 0.9993 70.61 273.21 10.79 98.42 4.25
M1 586.04 216.38 0.080 0.9991 67.21 293.02 11.72 94.68 4.70
M2 656.40 166.94 0.081 0.9992 63.18 328.20 13.29 90.31 5.48
M3 645.30 149.34 0.073 0.9984 68.58 322.65 11.78 98.68 4.91

Table 3

Effects of organic fertilizer distribution on dry matter accumulation and translocation of maize under different tillage practices"

年份Year 耕作
方式Farming practices
有机肥
施用量
Organic fertilizer application rate
花前干物
质积累量
Dry matter accumulation before flowering
(g/plant)
花后干物
质积累量
Dry matter accumulation after flowering
(g/plant)
花前干物
质积累率
Dry matter accumulation rate before flowering
(%)
花后干物
质积累率
Dry matter accumulation rate after flowering
(%)
干物质
转运量
Dry matter transport (g/plant)
干物质
转运率
Dry matter transport rate
(%)
花前干物质
积累贡献率 Contribution
rate of dry matter accumulation before flowering (%)
花后干物质
积累贡献率 Contribution rate of dry matter accumulation after flowering
(%)
2021 TF M0 182.47b 249.87a 41.95a 143.30a 26.54a 19.74b 13.43a 86.57a
M1 173.73b 279.83a 38.32a 161.09a 33.07a 24.40a 13.50a 86.50a
M2 238.93a 314.63a 43.44a 133.02a 31.26a 17.74b 10.46a 89.54a
M3 243.13a 276.23a 47.43a 117.18a 31.36a 16.66b 12.21a 87.79a
DT M0 230.42c 241.03ab 48.91b 104.61a 25.04b 15.90a 10.35b 89.65a
M1 306.26b 192.78b 61.41a 62.99b 33.05a 15.21ab 12.22a 87.78b
M2 398.01a 222.66ab 64.18a 56.11b 34.20a 11.36b 9.85b 90.15a
M3 298.10b 271.57a 52.48b 91.39a 30.88a 13.02bc 10.83ab 89.17ab
2022 TF M0 187.67d 245.56a 43.33b 131.30a 28.15c 21.04a 17.71a 82.29a
M1 224.13c 237.10a 48.57a 77.42b 31.10bc 22.83a 14.66a 85.34a
M2 295.68a 228.03a 56.48c 57.27c 36.87a 20.87a 13.76a 86.24a
M3 251.84b 232.38a 51.99d 77.95b 32.55b 17.31b 13.51a 86.49a
DT M0 371.45c 166.33c 69.10a 44.83b 28.23b 17.57a 11.77ab 88.23ab
M1 391.31b 187.36bc 67.66ab 47.94ab 34.53a 15.91ab 13.18a 86.82b
M2 424.12a 213.78ab 66.49ab 50.44ab 34.81a 11.88c 10.68b 89.32a
M3 397.86b 223.48a 64.04b 56.34a 32.36ab 13.74bc 11.58ab 88.42ab
方差分析 ANOVA
年份Year (Y) ** ** ** ** NS NS NS NS
耕作方式
Farming practices (F)
** ** ** ** NS ** ** **
有机肥施用量
Organic fertilizer application rate (M)
** NS ** ** ** ** NS NS
Y×F ** NS NS NS NS NS NS NS
Y×M NS NS NS NS NS NS NS NS
F×M NS ** ** NS NS ** NS *
Y×F×M ** * ** ** NS NS NS NS

Fig. 8

Effects of different tillage practices with organic fertilizer on maize yield in saline land"

Table 4

Correlation analysis between dry matter accumulation parameters and physiological indicators under deep vertical rotary tillage with organic fertilizer application"

干物质积累
参数及产量
Dry matter accumulation parameters
and yield
生理特性指标及产量 Indicators of physiological characteristics and yield
叶面积
指数
Leaf area index
光合势 Photosynthetic potential 净光合速率
Net photosynthetic rate
蒸腾速率 Stomatal conductance 气孔导度 Stomatal conductance 胞间CO2
浓度 Intercellular CO2 concentration
PS潜在
最大光
合能力 Fv/Fo
PSⅡ最
大光化
学效率 Fv/Fm
PSⅡ光能
捕获效率 ABS/RC
光合机构
性能综合
参数
PI
产量
Yield
Tmax -1.00** -0.99** -0.99** -0.98* -1.00** -0.99** -1.00** -0.99** -0.96** -0.94NS -0.96*
Wmax 0.96* 0.97* 0.99** 0.91NS 0.97** 0.97* 0.99** 0.96* 1.00** 0.86NS -0.99**
Gmax 0.96* 0.92NS 0.96* 0.87NS 0.95* 0.96* 0.96* 0.96* 0.99** 0.85NS 0.98*
D -0.93NS -0.98* -0.97* -0.89NS -0.96* -0.97* -0.97* -0.96* -0.99** -0.87NS -0.84NS
Gmean 0.94NS 0.96* 0.98* 0.91NS 0.97* 0.98* 0.98* 0.97* 1.00** 0.88NS 0.96*
产量 Yield 0.96* 0.98* 0.99** 0.92NS 0.96* 0.94NS 0.93NS 0.96* 0.96* 0.97* 1.00**

Fig. 9

Comprehensive evaluation of photosynthetic characteristics and yield of maize by different tillage practices with organic fertilizers"

[1]
徐鹏程, 冷翔鹏, 刘更森, 宋长年, 房经贵. 盐碱土改良利用研究进展. 江苏农业科学, 2014, 42(5): 293-298.
XU P C, LENG X P, LIU G S, SONG C N, FANG J G. Research progress on improvement and utilization of saline-alkali soil. Jiangsu Agricultural Sciences, 2014, 42(5): 293-298. (in Chinese)
[2]
刘嘉斌, 田军仓, 赵广兴, 张萌, 王金鹏. 不同砂滤料配比对宁夏引黄灌区盐碱地暗管排水非全流过滤的影响. 东北农业大学学报, 2023, 54(3): 61-70.
LIU J B, TIAN J C, ZHAO G X, ZHANG M, WANG J P. Effects of different ratios of sand filter media on non-full flow filtration of subsurface drainage in Yellow River irrigation area of Ningxia. Journal of Northeast Agricultural University, 2023, 54(3): 61-70. (in Chinese)
[3]
王长军, 李凤霞, 吴霞. 不同有机物料对银北灌区盐碱地土壤养分含量及氮有效性的影响. 现代农业科技, 2021(23): 141-142, 153.
WANG C J, LI F X, WU X. Effects of different organic materials on soil nutrient content and nitrogen availability in saline alkali land of Yinbei irrigation area. Modern Agricultural Science and Technology, 2021(23): 141-142, 153. (in Chinese)
[4]
孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响. 作物学报, 2024, 50(9): 2383-2395.

doi: 10.3724/SP.J.1006.2024.43001
SUN Z H, REN H, WANG H Z, WANG Z Q, YAO H Y, XIN A M, ZHAO B, ZHANG J W, REN B Z, LIU P. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil. Acta Agronomica Sinica, 2024, 50(9): 2383-2395. (in Chinese)
[5]
刘昊, 麻仲花, 刘威帆, 万猛虎, 马风兰, 吴娜, 刘吉利. 不同耕作方式配施有机肥对盐碱地玉米根际土壤微生物群落的影响. 中国生态农业学报(中英文), 2025, 33(1): 25-39.
LIU H, MA Z H, LIU W F, WAN M H, MA F L, WU N, LIU J L. Effects of different tillage practices with organic fertilizers on rhizosphere soil microbial communities of maize in saline-alkali soils. Chinese Journal of Eco-Agriculture, 2025, 33(1): 25-39. (in Chinese)
[6]
王嘉男, 谢军红, 李玲玲, 王林林, 康彩睿, 郭喜军, 彭正凯, 王进斌, Zechariah Effa. 有机肥替代化肥对陇中旱农区玉米光合特性及产量的影响. 甘肃农业大学学报, 2020, 55(4): 29-36, 42.
WANG J N, XIE J H, LI L L, WANG L L, KANG C R, GUO X J, PENG Z K, WANG J B, EFFA Z. Effects of replacing of chemical fertilizer with organic fertilizer on photosynthetic characteristics and yield of maize in rainfed farming areas of central Gansu, China. Journal of Gansu Agricultural University, 2020, 55(4): 29-36, 42. (in Chinese)
[7]
刘战东, 张凯, 黄超, 孙景生. 不同耕作和灌溉方式对玉米光合特性的影响. 水土保持学报, 2019, 33(4): 213-220.
LIU Z D, ZHANG K, HUANG C, SUN J S. Effects of different tillage and irrigation methods on photosynthetic characteristics of maize. Journal of Soil and Water Conservation, 2019, 33(4): 213-220. (in Chinese)
[8]
李磊, 王晶, 朱志明, 樊丽琴, 吴霞. 氮肥减施与有机肥/秸秆配施对盐碱地土壤肥力指标及玉米产量的影响. 土壤通报, 2020, 51(4): 928-935.
LI L, WANG J, ZHU Z M, FAN L Q, WU X. Effects of Nitrogen Fertilizer Reduction Combined with Organic fertilizer/Straw on soil Fertility Index and Maize Yield in Saline-Alkali land. Chinese Journal of Soil Science, 2020, 51(4): 928-935. (in Chinese)
[9]
王淑敏. 玉米秸秆还田条件下小麦栽培及施肥管理措施探究. 农家参谋, 2024(25): 45-46.
WANG S M. Study on wheat cultivation and fertilization management measures under the condition of returning corn stalks to fields. The Farmers Consultant, 2024(25): 45-46. (in Chinese)
[10]
关劼兮, 陈素英, 邵立威, 张玉铭, 张喜英, 路杨, 闫宗正. 华北典型区域土壤耕作方式对土壤特性和作物产量的影响. 中国生态农业学报(中英文), 2019, 27(11): 1663-1672.
GUAN J X, CHEN S Y, SHAO L W, ZHANG Y M, ZHANG X Y, LU Y, YAN Z Z. Soil tillage practices affecting the soil characteristics and yield of winter wheat and summer maize in North China. Chinese Journal of Eco-Agriculture, 2019, 27(11): 1663-1672. (in Chinese)
[11]
王通明, 陈伟, 潘文杰, 姚娟, 韦克苏, 陈波, 刘川, 董博, 宗学凤, 王三根. 有机肥和化肥对烟叶气体交换、叶绿素荧光特性及叶绿体超微结构的影响. 植物营养与肥料学报, 2015, 21(2): 517-526.
WANG T M, CHEN W, PAN W J, YAO J, WEI K S, CHEN B, LIU C, DONG B, ZONG X F, WANG S G. Differences of leaf gas exchange traits, chlorophyll fluorescence characteristics and chloroplast ultrastructure of Nicotianatabacum L.K 326 under organic fertilization and chemical fertilization. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 517-526. (in Chinese)
[12]
WANG W, LI M Y, ZHOU R, MO F, KHAN A, BATOOL A, ZHANG W, LU J S, ZHU Y, WANG B Z, YANG Y M, WANG J, TAO X P, XIONG Y C. Leaf senescence, nitrogen remobilization, and productivity of maize in two semiarid intercropping systems. European Journal of Agronomy, 2023, 150: 126943.
[13]
马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应. 作物学报, 2020, 46(10): 1617-1627.

doi: 10.3724/SP.J.1006.2020.03002
MA Z B, DONG X R, TANG H H, YAN P, LU L, WANG Q Y, FANG M Y, WANG Q, DONG Z Q. Effect of tetramethyl glutaric acid on summer maize photosynthesis characteristics. Acta Agronomica Sinica, 2020, 46(10): 1617-1627. (in Chinese)
[14]
苏明, 康建宏, 吴宏亮, 周甜, 洪自强, 李翻过, 张正珍. 旱地马铃薯花后高温胁迫下施氮对干物质积累、氮素利用及产量的影响. 农业资源与环境学报, 42(3): 716-729.
SU M, KANG J H, WU H L, ZHOU T, HONG Z Q, LI F G, ZHANG Z Z. Effects of nitrogen application on dry matter accumulation, nitrogen utilization and yield under high temperature stress after flowering in dryland potatoes. Journal of Agricultural Resources and Environment, 42(3): 716-729. (in Chinese)
[15]
秦文利, 智健飞, 谢楠, 张立锋, 刘忠宽, 刘振宇, 冯伟, 潘璇, 代云霞. 绿肥部分替代化肥对玉米干物质积累与产量形成的影响. 中国农业科学, 2024, 57(13): 2549-2567. doi:10.3864/j.issn.0578-1752.2024.13.005.
QIN W L, ZHI J F, XIE N, ZHANG L F, LIU Z K, LIU Z Y, FENG W, PAN X, DAI Y X. Effects of partial replacement of chemical fertilizers with green manure on dry matter accumulation and yield formation of maize. Scientia Agricultura Sinica, 2024, 57(13): 2549-2567.doi:10.3864/j.issn.0578-1752.2024.13.005. (in Chinese)
[16]
李雪霏, 刘明, 张卫建, 齐华, 张振平, 宋振伟, 于吉琳, 吴亚男. 不同深松方式与氮肥运筹对玉米生长发育及光合特性的影响. 玉米科学, 2013, 21(1): 120-124.
LI X F, LIU M, ZHANG W J, QI H, ZHANG Z P, SONG Z W, YU J L, WU Y N. Effect of different deep loosening modes and nitrogen fertilizer supply way on growth and photosynthetic characteristics in maize. Journal of Maize Sciences, 2013, 21(1): 120-124. (in Chinese)
[17]
邓永晟, 张敏, 李伟, 刘勇军, 彭曙光, 田峰, 张仲文, 章程, 江智敏, 陈金, 粟戈璇, 邓小华. 垂直深旋耕对植烟土壤理化性状和烤烟生长的影响. 中国烟草科学, 2020, 41(6): 30-36.
DENG Y S, ZHANG M, LI W, LIU Y J, PENG S G, TIAN F, ZHANG Z W, ZHANG C, JIANG Z M, CHEN J, SU G X, DENG X H. Effects of deep vertical rotary tillage on physicochemical properties of tobacco-planting soil and growth of flue-cured tobacco. Chinese Tobacco Science, 2020, 41(6): 30-36. (in Chinese)
[18]
白春生, 范虹, 李波, 程宝钰, 王岩, 殷文, 胡发龙, 樊志龙, 赵财. 等氮量有机肥替代化肥对绿洲灌区糯玉米光合特性及品质的影响. 干旱地区农业研究, 2024, 42(6): 121-130.
BAI C S, FAN H, LI B, CHENG B Y, WANG Y, YIN W, HU F L, FAN Z L, ZHAO C. Effects of equal nitrogen organic fertilizer substitution ofchemical fertilizer on photosynthetic characteristics andquality of waxy maize in oasis irrigation areas. Agricultural Research in the Arid Areas, 2024, 42(6): 121-130. (in Chinese)
[19]
张东旭, 胡丹珠, 闫金龙, 冯丽云, 邬志远, 李岩华, 闫海丽, 程永明, 张俊灵. 有机肥替代化肥对小麦生长及土壤养分的影响. 生态学杂志, 2024, 43(11): 3383-3393.
ZHANG D X, HU D Z, YAN J L, FENG L Y, WU Z Y, LI Y H, YAN H L, CHENG Y M, ZHANG J L. Effect of organic fertilizer replacing chemical fertilizer on wheat growth and soil nutrients. Chinese Journal of Ecology, 2024, 43(11): 3383-3393. (in Chinese)

doi: 10.13292/j.1000-4890.202411.004
[20]
张瑞富, 杨恒山, 高聚林, 张玉芹, 王志刚, 范秀艳, 毕文波. 深松促进春玉米干物质和磷素的积累与转运. 农业工程学报, 2016, 32(19): 106-112.
ZHANG R F, YANG H S, GAO J L, ZHANG Y Q, WANG Z G, FAN X Y, BI W B. Subsoiling facilitating accumulation and transportation of dry matter and phosphorus of spring maize. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(19): 106-112. (in Chinese)
[21]
杨昭, 柴强, 王玉, 苟志文, 樊志龙, 胡发龙, 殷文. 河西绿洲灌区减量灌溉下绿肥对小麦光合源及产量的补偿效应. 植物营养与肥料学报, 2022, 28(6): 1003-1014.
YANG Z, CHAI Q, WANG Y, GOU Z W, FAN Z L, HU F L, YIN W. Compensation of green manure on photosynthetic source and yield loss of wheat caused by reduced irrigation in Hexi oasis irrigation area. Journal of Plant Nutrition and Fertilizers, 2022, 28(6): 1003-1014. (in Chinese)
[22]
王昕. 乙烯利—胺鲜酯(玉黄金)对春玉米不同器官的调节效应[D]. 武汉: 华中农业大学, 2019.
WANG X. Regulating effects of ethephon and diethyl aminoethyl Hexanoate (edah) on different organs of spring maize[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[23]
张瑞富. 深松措施下磷肥深施提高春玉米磷效率的生理机制[D]. 呼和浩特: 内蒙古农业大学, 2016.
ZHANG R F. Physiological mechanism of deep phosphorus fertilizer improving phosphorus efficiency of spring maize under subsoiling measure[D]. Hohhot: Inner Mongolia Agricultural University, 2016. (in Chinese)
[24]
ZHAI L C, ZHANG L H, CUI Y Z, ZHAI L F, ZHENG M J, YAO Y R, ZHANG J T, HOU W B, WU L Y, JIA X L. Combined application of organic fertilizer and chemical fertilizer alleviates the kernel position effect in summer maize by promoting post-silking nitrogen uptake and dry matter accumulation. Journal of Integrative Agriculture, 2024, 23(4): 1179-1194.
[25]
邓小华, 邓永晟, 刘勇军, 彭德元, 王振华, 符昌武, 章程, 胡庆辉, 陈金, 李源环. 垂直深旋耕配施改土物料改良酸性土壤并提高烟草种植效益研究. 中国烟草学报, 2021, 27(1): 64-73.
DENG X H, DENG Y S, LIU Y J, PENG D Y, WANG Z H, FU C W, ZHANG C, HU Q H, CHEN J, LI Y H. Restoration of acid soil and improvement of tobacco cultivation efficiency by deep vertical rotary tillage combined with application of soil ameliorative materials. Acta Tabacaria Sinica, 2021, 27(1): 64-73. (in Chinese)
[26]
赵宝泉, 王茂文, 丁海荣, 邢锦城, 朱小梅, 刘冲, 董静, 洪立洲. 密度和有机肥对苏北滩涂蓖麻群体生长及产量构成的影响. 中国生态农业学报, 2017, 25(9): 1306-1316.
ZHAO B Q, WANG M W, DING H R, XING J C, ZHU X M, LIU C, DONG J, HONG L Z. Effect of organic fertilizer on growth and yield components of Castor under different planting densities. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1306-1316. (in Chinese)
[27]
LIU L, SI L, ZHANG L S, GUO R, WANG R X, DONG H M, GUO C H. Metabolomics and transcriptomics analysis revealed the response mechanism of alfalfa to combined cold and saline-alkali stress. The Plant Journal, 2024, 119(4): 1900-1919.
[28]
于文颖, 纪瑞鹏, 冯锐, 赵先丽, 张玉书. 不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应. 生态学报, 2015, 35(9): 2902-2909.
YU W Y, JI R P, FENG R, ZHAO X L, ZHANG Y S. Response of water stress on photosynthetic characteristics and water use efficiency of maize leaves in different growth stage. Acta Ecologica Sinica, 2015, 35(9): 2902-2909. (in Chinese)
[29]
陈歆, 刘贝贝, 韩丙军, 周兆德, 彭黎旭, 杨福孙. 土壤水分胁迫对槟榔幼苗叶绿素荧光动力学参数的影响. 热带作物学报, 2012, 33(2): 230-237.
CHEN X, LIU B B, HAN B J, ZHOU Z D, PENG L X, YANG F S. Effects of different water stress on chlorophyll fluorescence parameters of Areca catechu L. Seedling. Chinese Journal of Tropical Crops, 2012, 33(2): 230-237. (in Chinese)
[30]
翟振, 李玉义, 张莉, 逄博, 逄焕成, 韦本辉, 王庆伟, 綦少伟. 短期深旋松对黄淮海沙姜黑土耕层结构及小麦生长的影响. 应用生态学报, 2017, 28(4): 1211-1218.

doi: 10.13287/j.1001-9332.201704.016
ZHAI Z, LI Y Y, ZHANG L, PANG B, PANG H C, WEI B H, WANG Q W, QI S W. Effects of short-term deep vertically rotary tillage on topsoil structure of lime concretion black soil and wheat growth in Huang-Huai-Hai Plain, China. Chinese Journal of Applied Ecology, 2017, 28(4): 1211-1218. (in Chinese)
[31]
洪自强, 张正珍, 周甜, 苏明, 李翻过, 康建宏, 吴宏亮. 水肥一体化下钾肥用量对春玉米光合荧光参数的影响. 植物营养与肥料学报, 2024, 30(8): 1461-1476.
HONG Z Q, ZHANG Z Z, ZHOU T, SU M, LI F G, KANG J H, WU H L. Optimal potassium dosage for high fluorescence parameters and target yield of spring maize under drip fertigation. Journal of Plant Nutrition and Fertilizers, 2024, 30(8): 1461-1476. (in Chinese)
[32]
陈修斌, 杨彬, 许耀照, 李翊华, 祖廷勋. 两种有机肥对荒漠温室番茄光合特性与产量品质的影响. 甘肃农业大学学报, 2019, 54(2): 89-95.
CHEN X B, YANG B, XU Y Z, LI Y H, ZU T X. Effects of two organic fertilizers on photosynthetic characteristics and yield quality of tomato in greenhouse in desert area. Journal of Gansu Agricultural University, 2019, 54(2): 89-95. (in Chinese)
[33]
王本龙, 周春生, 海珍, 娄雨欣. 深松耕作和不同灌水量对通辽苏打盐碱地土壤理化性状和玉米产量的影响. 江苏农业科学, 2024, 52(3): 247-254.
WANG B L, ZHOU C S, HAI Z, LOU Y X. Effects of subsoiling and different irrigation amounts on soil physical and chemical properties and corn yield in Tongliao soda saline-alkali soil. Jiangsu Agricultural Sciences, 2024, 52(3): 247-254. (in Chinese)
[34]
李雪婷, 任昊, 王洪章, 张吉旺, 赵斌, 任佰朝, 刘莹, 姚海燕, 刘鹏. 盐胁迫对不同耐盐型玉米品种叶片光合性能和干物质积累与分配的影响. 作物学报, 2025, 51 (4): 1091-1101.

doi: 10.3724/SP.J.1006.2025.43032
LI X T, REN H, WANG H Z, ZHANG J W, ZHAO B, REN B Z, LIU Y, YAO H Y, LIU P. Effects of salt stress on photosynthetic performance and dry matter accumulation and distribution in leaves of different salt-tolerant maize varieties. Crop Journal, 2025, 51 (4): 1091-1101. (in Chinese)
[35]
周宝元, 孙雪芳, 丁在松, 马玮, 赵明. 土壤耕作和施肥方式对夏玉米干物质积累与产量的影响. 中国农业科学, 2017, 50(11): 2129-2140. doi:10.3864/j.issn.0578-1752.2017.11.018.
ZHOU B Y, SUN X F, DING Z S, MA W, ZHAO M. Effect of tillage practice and fertilization on dry matter accumulation and grain yield of summer maize (Zea mays L.). Scientia Agricultura Sinica, 2017, 50(11): 2129-2140. doi:10.3864/j.issn.0578-1752.2017.11.018. (in Chinese)
[36]
王培, 张安琪, 安晓飞, 尹彦鑫, 王虹, 孟志军. 深松作业质量多维度综合评价方法研究. 农业机械学报, 2025, 56 (4): 81-86, 97.
WANG P, ZHANG A Q, AN X F, YIN Y X, WANG H, MENG Z J. Research on a comprehensive evaluation method for deep plowing quality across multiple dimensions. Journal of China Agricultural Machinery Society, 2025, 56 (4): 81-86, 97. (in Chinese)
[37]
孟阿静, 齐莹莹, 吕彩霞, 邵华伟, 王新勇. 不同量黄腐酸配施微生物菌肥对玉米生长、养分积累及苗期光合特征的影响. 新疆农业科学, 2021, 58(12): 2312-2319.

doi: 10.6048/j.issn.1001-4330.2021.12.018
MENG A J, QI Y Y, C X, SHAO H W, WANG X Y. Effects of different quantities of fulvic acid combined application with microbial fertilizer on corn growth, nutrient accumulation and photosynthetic characteristics at seedling stage. Xinjiang Agricultural Sciences, 2021, 58(12): 2312-2319. (in Chinese)

doi: 10.6048/j.issn.1001-4330.2021.12.018
[38]
CAI F, MI N, MING H Q, ZHANG Y S, ZHANG H, ZHANG S J, ZHAO X L, ZHANG B B. Responses of dry matter accumulation and partitioning to drought and subsequent rewatering at different growth stages of maize in Northeast China. Frontiers in Plant Science, 2023, 14: 1110727.
[39]
吕丽华, 赵明, 赵久然, 陶洪斌, 王璞. 不同施氮量下夏玉米冠层结构及光合特性的变化. 中国农业科学, 2008, 41(9): 2624-2632. doi:10.3864/j.issn.0578-1752.2008.09.008.
L H, ZHAO M, ZHAO J R, TAO H B, WANG P. Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates. Scientia Agricultura Sinica, 2008, 41(9): 2624-2632. doi:10.3864/j.issn.0578-1752.2008.09.008. (in Chinese)
[40]
隋鹏祥, 有德宝, 安俊朋, 张文可, 田平, 梅楠, 王美佳, 王沣, 苏思慧, 齐华. 秸秆还田方式与施氮量对春玉米产量及干物质和氮素积累、转运的影响. 植物营养与肥料学报, 2018, 24(2): 316-324.
SUI P X, YOU D B, AN J P, ZHANG W K, TIAN P, MEI N, WANG M J, WANG F, SU S H, QI H. Effects of straw management and nitrogen application on spring maize yield, dry matter and nitrogen accumulation and transfer. Journal of Plant Nutrition and Fertilizers, 2018, 24(2): 316-324. (in Chinese)
[41]
田立双, 李国红, 杨恒山, 张瑞富, 毕文波, 智沈伟. 不同栽培模式对春玉米干物质积累及转运的影响. 作物杂志, 2014(1): 89-93.
TIAN L S, LI G H, YANG H S, ZHANG R F, BI W B, ZHI S W. Effects of different cultivation patterns on dry matter accumulation and transportation of spring maize. Crops, 2014(1): 89-93. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] YUE RunQing, LI WenLan, DING ZhaoHua, MENG ZhaoDong. Molecular Characteristics and Resistance Evaluation of Transgenic Maize LD05 with Stacked Insect and Herbicide Resistance Traits [J]. Scientia Agricultura Sinica, 2025, 58(7): 1269-1283.
[10] ZHAO Yao, CHENG Qian, XU TianJun, LIU Zheng, WANG RongHuan, ZHAO JiuRan, LU DaLei, LI CongFeng. Effects of Plant Type Improvement on Root-Canopy Characteristics and Grain Yield of Spring Maize Under High Density Condition [J]. Scientia Agricultura Sinica, 2025, 58(7): 1296-1310.
[11] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[12] ZOU XiaoWei, XIA Lei, ZHU XiaoMin, SUN Hui, ZHOU Qi, QI Ji, ZHANG YaFeng, ZHENG Yan, JIANG ZhaoYuan. Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2025, 58(6): 1116-1130.
[13] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[14] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[15] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!