Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (9): 1684-1701.doi: 10.3864/j.issn.0578-1752.2025.09.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and Effectiveness Evaluation of InDel Molecular Markers Closely Linked to Fiber Strength QTL in Gossypium barbadense

LÜ Tao1(), SUN GuoQing2, GUO DongCai1, CHEN QuanJia1, CAI YongSheng1, FAN BiaoXing1, QU YanYing1(), ZHENG Kai1()   

  1. 1 College of Agronomy, Xinjiang Agricultural University/Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Urumqi 830052
    2 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2024-09-01 Accepted:2024-10-28 Online:2025-05-08 Published:2025-05-08
  • Contact: QU YanYing, ZHENG Kai

Abstract:

【Objective】 The objective of this study is to develop InDel molecular markers for Island cotton, which is characterized by its superior fiber quality, particularly the fiber tensile strength-a key indicator of cotton fiber quality. The study aims to validate these markers using RIL (Recombinant Inbred Line) populations and resource materials, thereby providing a theoretical foundation for breeding new varieties of Island cotton with enhanced fiber quality. 【Method】 Utilizing a previously established population of 213 Pima S-7 and 5917 F5:6 RILs, we conducted QTL (Quantitative Trait Locus) mapping to identify the locus regulating fiber strength in Island cotton, designated qFS-chr17-1. InDel markers were designed based on whole genome sequencing (WGS) data of the parental lines, followed by the identification of polymorphic markers. Preliminary validation of these markers was performed using 40 extreme family materials selected based on phenotypic data. Genotyping was carried out on both the 213 RIL population and the 213 Island cotton resource population, alongside multi-year fiber quality data to assess the markers' effectiveness. 【Result】 The genotyping of the RIL and Island cotton resource populations with the two developed InDel markers indicated a close linkage to fiber strength phenotypic data, with significant differences observed in fiber strength traits among the differentiated materials. The analysis of genotypic combinations revealed an upward trend in fiber strength across four combination types, with materials exhibiting the Hap3 (B/A) and Hap4 (B/B) genotypes demonstrating significantly greater fiber strength than those with Hap1 (A/A) and Hap2 (A/B). Furthermore, the InDel-3L2 marker showed significant correlations with fiber length, fiber uniformity, and spinning consistency index, consistent with the observed phenotypic trends. Analysis of multi-year fiber quality data from two experimental sites revealed environmental variability in fiber quality, while temperature data indicated that the developed molecular markers are minimally influenced by environmental factors. Clustering analysis of fiber quality data from 213 Island cotton resource materials, combined with molecular marker genotyping, identified eight materials exhibiting superior fiber quality. 【Conclusion】 This study successfully developed two InDel molecular markers closely linked to the fiber strength QTL (qFS-chr17-1), which maintain their effectiveness upon combination. The InDel-3L2 marker demonstrates significant correlations with fiber length, fiber uniformity, and spinning consistency index. These markers can efficiently and accurately identify high-strength fiber resources in Island cotton, contributing to the breeding of improved fiber quality. Additionally, eight materials with excellent fiber quality have been identified.

Key words: Gossypium barbadense, fiber strength, InDel markers, germplasm resources, combined molecular markers

Fig. 1

Normal distribution diagram of fiber quality of Gossypium barbadense L. resource"

Fig. 2

Pearson correlation analysis of different environmental fiber quality of Gossypium barbadense L. *, ** and *** indicate a significantly difference at the level of 0.05, 0.01 and 0.001, respectively. The same as below"

Fig. 3

Genotyping results of materials with extreme fiber strength in a recombinant inbred line (RIL) population a: Genotyping results of InDel-3L2 marker gene; b: Genotyping results of InDel-3R3 marker gene, 1-20 represent high fiber strength family materials, 21-40 represent low fiber strength family materials; P1 is Pima S-7, and P2 is 5917; c: Analysis of fiber strength differences in extreme families"

Table 1

InDel marker sequence informatio"

引物名称
Primer name
染色体D03
Chr. D03
插入/缺失
In/Del
扩增片段
Amplicon size (bp)
引物序列
Primer sequence (5′-3′)
InDel-3L2 3274389 Del 19bp 145 F(CCGAACAAAGGGTTAAATCG)
R(TTCGACTGCCAGACAAATAA)
InDel-3R3 3986566 In 16bp 172 F(TAAATTTCCCTCCTTTCGGC)
R(TGATTGAGTATGGGTTTTGG)

Fig. 4

Genetic typing and phenotypic analysis of InDel markers in RIL population A: Gene genotyping ratio of InDel-3L2 in the RIL population; B: Gene genotyping ratio of InDel-3R3 in the RIL population; C: Effect of InDel-3L2 marker on fiber strength; D: Effect of InDel-3R3 marker on fiber strength. Legend: A: The genotype is the same as Pima S-7, B: The genotype is the same as 5917, H: A heterozygous type. The same as below"

Fig. 5

Genotyping results of Gossypium barbadense L. germplasm a: Phenotypic analysis combined with InDel-3L2 marker genotyping; b: Phenotypic analysis combined with InDel-3R3 marker genotyping; c: Gene genotyping ratio of InDel-3L2 marker; d: Gene genotyping ratio of InDel-3R3 marker"

Fig. 6

Analysis of InDel-3L2 marker genotype associations with other fiber quality traits"

Table 2

InDel molecular marker combination type"

标记Marker Hap1 Hap2 Hap3 Hap4
InDel-3L2 A A B B
InDel-3R3 A B A B
总计Total 100 40 31 13

Fig. 7

Effect of combined indel molecular marker genotypes on fiber strength across different years Hap1 represents (A/A) type; Hap2 represents (A/B) type; Hap3 represents (B/A) type; Hap4 represents (B/B) type"

Fig. 8

Daily average temperature of Korla and Awati in June-September in 2015-2023"

Table 3

Statistics of days between 18-25 ℃ at two environmental sites from June to September (d)"

年份
Year
环境点Environment
6月June 7月July 8月August
库尔勒Korla 阿瓦提Awati 库尔勒Korla 阿瓦提Awati 库尔勒Korla 阿瓦提Awati
2015 14 29 3 10 7 26
2016 9 8 6 14 19 30
2017 10 17 2 15 11 25
2018 8 28 6 15 5 19
2020 22 25 6 28 12 25
2021 29 27 10 13 28 30
2022 14 19 17 16 19 28
2023 13 16 11 13 14 21

Fig. 9

Clustering analysis of fiber quality traits of Gossypium barbadense L."

Fig. 10

Venn diagram of fiber quality clustering and molecular marker screening"

Table 4

Gossypium barbadense L. of excellent fiber quality material phenotype"

类型
Type
材料
Material
纤维长度
FL (mm)
纤维强度
FS (cN·tex-1)
马克隆值
MIC
纤维伸长率
FE (%)
纤维整齐度
FU (%)
纺纱一致性指数
SCI
Hap4
(B/B)
GB2 33.94 41.49 4.34 5.30 86.58 199.05
GB7 31.82 42.55 4.18 5.75 87.14 213.79
GB8 32.93 43.88 4.08 6.08 87.55 204.30
GB21 34.45 45.82 4.07 6.10 89.73 224.61
GB26 32.51 45.79 4.31 4.99 88.13 215.15
GB33 35.56 42.77 4.29 6.47 88.58 201.13
GB37 33.87 46.32 4.10 6.40 87.59 210.13
GB85 34.30 42.58 4.04 5.34 86.15 216.90
Hap3
(B/A)
GB3 32.77 43.94 4.14 5.60 87.54 204.97
GB5 34.74 42.57 4.24 6.41 88.20 202.22
GB6 33.73 42.70 4.08 5.65 88.23 217.74
GB15 34.67 43.84 4.27 5.34 87.94 208.15
GB16 34.61 43.16 4.29 5.87 88.17 206.27
GB18 33.99 41.99 4.18 5.81 87.73 204.03
GB20 34.83 44.36 4.15 5.76 88.45 211.63
GB23 32.45 42.89 4.23 5.98 88.49 210.73
GB35 33.51 42.18 4.55 5.54 87.06 195.89
GB38 32.66 44.28 4.43 6.01 87.78 201.15
GB58 32.92 43.33 4.52 5.47 87.96 218.97
[1]
贾晓昀, 王士杰, 朱继杰, 赵红霞, 李妙, 王国印. 陆地棉高密度遗传图谱的构建及产量相关性状的QTL定位. 中国农业科学, 2023, 56(4): 587-598. doi: 10.3864/j.issn.0578-1752.2023.04.001.
JIA X Y, WANG S J, ZHU J J, ZHAO H X, LI M, WANG G Y. Construction of a high-density genetic map and QTL mapping for yield related traits in upland cotton. Scientia Agricultura Sinica, 2023, 56(4): 587-598. doi: 10.3864/j.issn.0578-1752.2023.04.001. (in Chinese)
[2]
LIN F, WANG M, ZHAO N, ZHANG Y B, WANG W R, YANG J, WAN S M, LI J P, AIERXI A, CHENG G D, KONG J. Evaluation of quality traits in relation to mechanical harvesting for screening excellent materials in Gossypium barbadense L. germplasm resources. Agronomy, 2024, 14(5): 891.
[3]
范李萍, 吴鹏昊, 王莉萍, 陈全家, 曲延英. 基于遗传和表型特征的海岛棉遗传多样性分析. 植物遗传资源学报, 2016, 17(2): 197-208.

doi: 10.13430/j.cnki.jpgr.2016.02.002
FAN L P, WU P H, WANG L P, CHEN Q J, QU Y Y. Analysis of genetic diversity in sea Island cotton based on genetic and penotypic traits. Journal of Plant Genetic Resources, 2016, 17(2): 197-208. (in Chinese)

doi: 10.13430/j.cnki.jpgr.2016.02.002
[4]
李江博, 叶盛, 常国斌, 高曼, 王霞, 帕丽旦·艾海提, 曲延英, 郑凯, 陈全家. 213份海岛棉种质资源的遗传多样性分析. 植物遗传资源学报, 2024, 25(11): 1857-1874.
LI J B, YE S, CHANG G B, GAO M, WANG X, AIHAITI P, QU Y Y, ZHENG K, CHEN Q J. Genetic diversity analysis of 213 Gossypium barbadense L. germplasm resources. Journal of Plant Genetic Resources, 2024, 25(11): 1857-1874. (in Chinese)
[5]
FLACHOWSKY H, LE ROUX P M, PEIL A, PATOCCHI A, RICHTER K, HANKE M V. Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytologist, 2011, 192(2): 364-377.
[6]
YUAN H R, YANG W L, ZOU J N, CHENG M X, FAN F F, LIANG T, YU Y J, QIU R H, LI S Q, HU J. InDel markers based on 3K whole-genome re-sequencing data characterise the subspecies of rice (Oryza sativa L.). Agriculture, 2021, 11(7): 655.
[7]
仪泽会, 卢有飞, 郭晓芹, 惠麦侠, 张鲁刚, 张明科. 大白菜简单序列重复(SSR)和插入/缺失(InDel)标记的开发及通用性分析. 农业生物技术学报, 2012, 20(12): 1398-1406.
YI Z H, LU Y F, GUO X Q, HUI M X, ZHANG L G, ZHANG M K. Development of simple sequence repeat (SSR) and insertion/deletion (InDel) markers in Chinese cabbage (Brassica rapa ssp. pekinesis) and analysis of their transferability. Journal of Agricultural Biotechnology, 2012, 20(12): 1398-1406. (in Chinese)
[8]
陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用. 作物学报, 2023, 49(5): 1222-1230.

doi: 10.3724/SP.J.1006.2023.24140
TAO S Y, WU B, LIU N, LUO H Y, HUANG L, ZHOU X J, CHEN W G, GUO J B, YU B L, LEI Y, LIAO B S, JIANG H F. Development and employment of InDel marker in peanut QTL mapping of oil content. Acta Agronomica Sinica, 2023, 49(5): 1222-1230. (in Chinese)
[9]
CAI Y S, QU Y Y, YANG L, LIU J, HUO P, DUAN Y J, GUO D C, ZHOU Q, LI Y, CHEN Q J, ZHENG K. Unraveling the genetic basis of superior traits in Gossypium barbadense: From phenotype to genotype. Industrial Crops and Products, 2024, 215: 118663.
[10]
王莉萍, 孙国清, 梁亚军, 陈全家. 棉花纤维品质性状与SSR标记的关联分析. 中国农业科技导报, 2013, 15(4): 110-120.
WANG L P, SUN G Q, LIANG Y J, CHEN Q J. Analysis of relations between cotton fiber quality and SSR marker. Journal of Agricultural Science and Technology, 2013, 15(4): 110-120. (in Chinese)

doi: 10.3969/j.issn.10080864.2013.04.18
[11]
SUN Z W, WANG X F, LIU Z W, GU Q S, ZHANG Y, LI Z K, KE H F, YANG J, WU J H, WU L Q, ZHANG G Y, ZHANG C Y, MA Z Y. Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L.. Plant Biotechnology Journal, 2017, 15(8): 982-996.
[12]
WU J Y, ZHANG M, ZHANG X X, GUO L P, QI T X, WANG H L, TANG H N, ZHANG J F, XING C Z. Development of InDel markers for the restorer gene Rf1 and assessment of their utility for marker- assisted selection in cotton. Euphytica, 2017, 213(11): 251.
[13]
GUO Y P, CHEN Q, QU Y Y, DENG X J, ZHENG K, WANG N, SHI J B, ZHANG Y B, CHEN Q J, YAN G T. Development and identification of molecular markers of GhHSP70-26 related to heat tolerance in cotton. Gene, 2023, 874: 147486.
[14]
张宝秋. 棉纤维品质相关基因SuSA1和ADF1功能标记的开发[D]. 保定: 河北农业大学, 2015.
ZHANG B Q. Development of functional markers of cotton fiber quality-related genes SuSA1 and ADF1[D]. Baoding: Hebei Agricultural University, 2015. (in Chinese)
[15]
WANG X Y, ZHANG X W, ELSAMMAN E, GONG J W, GE Q, FAN D R, YAN H L, LIU A Y, FU G Y, GONG W K, SHI Y Z, YUAN Y L. GhCKX1 is an important genetic target for improving fiber strength in cotton. Industrial Crops and Products, 2024, 214: 118553.
[16]
AKHTAR S, ALI SHAHID A, SHAKOOR S, AHMED M, IFTIKHAR S, USMAAN M, SADAQAT S, LATIF A, IQBAL A, RAO A Q. Tissue specific expression of bacterial cellulose synthase (Bcs) genes improves cotton fiber length and strength. Plant Science, 2023, 328: 111576.
[17]
ABOUZARI A, SOLOUKI M, GOLEIN B, ALI FAKHERI B, SABOURI A, DADRAS A R. Screening of molecular markers associated to cold tolerance- related traits in Citrus. Scientia Horticulturae, 2020, 263: 109145.
[18]
郭江涛, 吕远大, 赵姝楠, 周淼平, 姚金保, 杨学明. InDel分子标记WC656的开发及其在鉴别小麦-簇毛麦5VS纯合易位中的应用. 麦类作物学报, 2023, 43(9): 1115-1124.
GUO J T, Y D, ZHAO S N, ZHOU M P, YAO J B, YANG X M. Development of insertion-deletion molecular marker WC656 and its application in identifying wheat-Dasypyrum villosa 5VS homozygous translocation. Journal of Triticeae Crops, 2023, 43(9): 1115-1124. (in Chinese)
[19]
WANG Z Y, DENG Z Y, KONG X C, WANG F, GUAN J T, CUI D D, SUN G L, LIAO R Y, FU M X, CHE Y Q, HAO C Y, GENG S F, ZHANG X Y, ZHOU P, MAO L, LIU S S, LI A L. InDels identification and association analysis with spike and awn length in Chinese wheat mini-core collection. International Journal of Molecular Sciences, 2022, 23(10): 5587.
[20]
潘伟芹, 马卉, 许学, 鲍翔宇, 麦霄黎, 林玲, 吴爽, 汪秀峰. 利用InDel分子标记鉴定杂交籼稻中籼粳交杂株. 中国农学通报, 2023, 39(33): 107-113.

doi: 10.11924/j.issn.1000-6850.casb2022-0871
PAN W Q, MA H, XU X, BAO X Y, MAI X L, LIN L, WU S, WANG X F. Indica-Japonica untypical plants among hybrid indica rice: Identification by InDel markers. Chinese Agricultural Science Bulletin, 2023, 39(33): 107-113. (in Chinese)
[21]
WHANKAEW S, KAEWMANEE S, RUTTAJORN K, PHONGDARA A. Indel marker analysis of putative stress-related genes reveals genetic diversity and differentiation of rice landraces in peninsular Thailand. Physiology and Molecular Biology of Plants, 2020, 26(6): 1237-1247.

doi: 10.1007/s12298-020-00816-z pmid: 32549686
[22]
田红丽, 晏朋涛, 王蕊, 杨扬, 许理文, 易红梅, 王元东, 宋伟, 席章营, 赵久然, 王凤格. 基于叶绿体InDel标记对玉米S型胞质不育制种鉴定的研究. 玉米科学, 2019, 27(2): 53-60, 68.
TIAN H L, YAN P T, WANG R, YANG Y, XU L W, YI H M, WANG Y D, SONG W, XI Z Y, ZHAO J R, WANG F G. Identification of maize S-type cytoplasmic male sterile (CMS) using two chloroplast InDel markers in seed production. Journal of Maize Sciences, 2019, 27(2): 53-60, 68. (in Chinese)
[23]
LIANG S Q, LIN F, QIAN Y L, ZHANG T F, WU Y B, QI Y C, REN S H, RUAN L, ZHAO H. A cost-effective barcode system for maize genetic discrimination based on bi-allelic InDel markers. Plant Methods, 2020, 16: 101.

doi: 10.1186/s13007-020-00644-y pmid: 32742299
[24]
FAN L P, WANG L P, WANG X Y, ZHANG H Y, ZHU Y F, GUO J Y, GAO W W, GENG H W, CHEN Q J, QU Y Y. A high-density genetic map of extra-long staple cotton (Gossypium barbadense) constructed using genotyping-by-sequencing based single nucleotide polymorphic markers and identification of fiber traits-related QTL in a recombinant inbred line population. BMC Genomics, 2018, 19(1): 489.

doi: 10.1186/s12864-018-4890-8 pmid: 29940861
[25]
DUAN Y J, CHEN Q, CHEN Q J, ZHENG K, CAI Y S, LONG Y L, ZHAO J Y, GUO Y P, SUN F L, QU Y Y. Analysis of transcriptome data and quantitative trait loci enables the identification of candidate genes responsible for fiber strength in Gossypium barbadense. G3, 2022, 12(9): jkac167.
[26]
李文奇, 许扬, 王芳权, 朱建平, 陶亚军, 李霞, 范方军, 杨杰. 广谱抗稻瘟病基因PigmR的KASP标记开发及应用. 中国水稻科学, 2024: 1-13.
LI W Q, XU Y, WANG F Q, ZHU J P, TAO Y J, LI X, FAN F J, YANG J. Development and application of KASP marker for the broad-spectrum resistance gene pigmR to rice blast. Chinese Journal of Rice Science, 2024: 1-13. (in Chinese)
[27]
陆海燕, 陈璐, 王显生, 赵涵, 沈奇. 基于高通量测序的棉花InDel标记开发及其应用. 棉花学报, 2019, 31(4): 297-306.

doi: 10.11963/1002-7807.lhysq.20190605
LU H Y, CHEN L, WANG X S, ZHAO H, SHEN Q. Development and application of cotton InDel markers based on high throughput sequencing. Cotton Science, 2019, 31(4): 297-306. (in Chinese)
[28]
WANG N N, NI P, WEI Y L, HU R, LI Y, LI X B, ZHENG Y. Phosphatidic acid interacts with an HD-ZIP transcription factor GhHOX4 to influence its function in fiber elongation of cotton (Gossypium hirsutum). The Plant Journal, 2024, 118(2): 423-436.
[29]
LIU J Y, DING L, ZHANG X, LI S, GUAN Y X, JIA D W, SONG A P, JIANG J F, CHEN F D. B class floral homeotic genes are involved in the petal identity and flower meristem determinations in Chrysanthemum morifolium. Phyton, 2023, 92(2): 311-331.
[30]
HU J, SU H L, CAO H, WEI H B, FU X K, JIANG X M, SONG Q, HE X H, XU C Z, LUO K M. AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. The Plant Cell, 2022, 34(7): 2688-2707.
[31]
景海春, 田志喜, 种康, 李家洋. 分子设计育种的科技问题及其展望概论. 中国科学: 生命科学, 2021, 51(10): 1356-1365, 1355.
JING H C, TIAN Z X, ZHONG K, LI J Y. Progress and perspective of molecular design breeding. Scientia Sinica (Vitae), 2021, 51(10): 1356-1365, 1355. (in Chinese)
[32]
LI F G, FAN G Y, LU C R, XIAO G H, ZOU C S, KOHEL R J, MA Z Y, SHANG H H, MA X F, WU J Y, et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 2015, 33(5): 524-530.
[33]
唐淑荣, 魏守军, 郭瑞林, 韦京艳, 孟俊婷, 杨长琴. 不同熟性棉花品种纤维品质特征分析与评价. 中国生态农业学报, 2019, 27(10): 1564-1577.
TANG S R, WEI S J, GUO R L, WEI J Y, MENG J T, YANG C Q. Evaluation and analysis of fiber quality characteristics of different maturity cotton varieties. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1564-1577. (in Chinese)
[34]
LU G L, WANG Z T, PAN Y B, WU Q B, CHENG W, XU F, DAI S B, LI B Y, QUE Y X, XU L P. Identification of QTLs and critical genes related to sugarcane mosaic disease resistance. Frontiers in Plant Science, 2023, 14: 1107314.
[35]
ZHANG Y F, AN R, SONG M, XIE C G, WEI S H, WANG D J, DONG Y H, JIA Q L, HUANG S H, MU J X. A set of molecular markers to accelerate breeding and determine seed purity of CMS three-line hybrids in Brassica napus. Plants, 2023, 12(7): 1514.
[36]
李丽花, 孙正文, 柯会锋, 谷淇深, 吴立强, 张艳, 张桂寅, 王省芬. 陆地棉纤维强度KASP-SNP标记的开发及效应评价. 中国农业科技导报, 2024, 26(2): 46-55.
LI L H, SUN Z W, KE H F, GU Q S, WU L Q, ZHANG Y, ZHANG G Y, WANG X F. Development and effect evaluation of KASP markers for fiber strength in Gossypium hirsutum L.. Journal of Agricultural Science and Technology, 2024, 26(2): 46-55. (in Chinese)
[37]
CHEN Y L, WANG H M, HU W, WANG S S, WANG Y H, SNIDER J L, ZHOU Z G. Combined elevated temperature and soil waterlogging stresses inhibit cell elongation by altering osmolyte composition of the developing cotton (Gossypium hirsutum L.) fiber. Plant Science, 2017, 256: 196-207.
[38]
马晓昕, 李成林, 张超, 李慧霞, 周克海, 周晓箭, 杨代刚, 高俊山. 高温胁迫影响棉花生长及产量品质的生理与分子机理. 中国棉花, 2021, 48(12): 1-6, 12.

doi: 10.11963/cc20210105
MA X X, LI C L, ZHANG C, LI H X, ZHOU K H, ZHOU X J, YANG D G, GAO J S. Physiological and molecular mechanisms of high temperature stress on cotton growth, yield and quality. China Cotton, 2021, 48(12): 1-6, 12. (in Chinese)
[39]
ZHANG M L, SONG X L, JI H, WANG Z L, SUN X Z. Carbon partitioning in the boll plays an important role in fiber quality in colored cotton. Cellulose, 2017, 24(2): 1087-1097.
[40]
DAI Y J, CHEN B L, MENG Y L, ZHAO W Q, ZHOU Z G, OOSTERHUIS D M, WANG Y H. Effects of elevated temperature on sucrose metabolism and cellulose synthesis in cotton fibre during secondary cell wall development. Functional Plant Biology, 2015, 42(9): 909-919.

doi: 10.1071/FP14361 pmid: 32480733
[1] CHEN YongXian, CHEN RuiJiang, DU YiZhi, ZHU JunJie, CHEN WanXia, ZHAO ZiHan, WANG JiChun, DU Kang, ZHANG Kai. Screening and Identification of Drought-Tolerant Sweet Potato Germplasm Resources [J]. Scientia Agricultura Sinica, 2025, 58(2): 214-237.
[2] ZHU ChunTao, REN DanDan, LIU ZhengCen, LIU ChangChuang, LIU RuiQi, ZHENG HongJian, HU ErLiang, LIN HaiJian, LI JingWei, LU YanLi, WANG QingJun. Combining Ability Analysis on Quality Traits and Breeding Potential Evaluation of 23 Waxy Maize Lines from Laos [J]. Scientia Agricultura Sinica, 2024, 57(15): 2931-2945.
[3] WANG Shuai, ZHANG RuYang, WANG RongHuan, SONG Wei, ZHAO JiuRan. Research Progress of Southern Corn Rust and Resistance Breeding [J]. Scientia Agricultura Sinica, 2024, 57(14): 2732-2743.
[4] ZHANG YuJia, CUI KaiWen, DUAN LiSheng, CAO AiPing, XIE QuanLiang, SHEN HaiTao, WANG Fei, LI HongBin. Identification and Expression of CAD and CAD-Like Gene Families from Gossypium barbadense and Their Response to Verticillium dahliae [J]. Scientia Agricultura Sinica, 2023, 56(19): 3759-3771.
[5] LI Huan, YAN XiaoQing, YANG ZhanLie, TAN JinYu, LI XiaoBing, CHEN NengGang, WU RongJu, CHEN HuiCha, RUAN RenChao. Analysis and Comprehensive Evaluation of Phenotype Genetic Diversity in Kam Sweet Rice Germplasm Resources in Guizhou [J]. Scientia Agricultura Sinica, 2023, 56(11): 2035-2046.
[6] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[7] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[8] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[9] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[10] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[11] YongChao HAN,XiangGuo ZENG,FaYun XIANG,Cong GUO,QingHua ZHANG,FengYing CHEN,Wei GUAN. In vitro Evaluation of Strawberry Germplasm Resources for Resistance to Anthracnose [J]. Scientia Agricultura Sinica, 2019, 52(20): 3585-3594.
[12] TIAN JingShan,ZHANG XuYi,HU XiaoBing,SUI LongLong,ZHANG PengPeng,WANG WenMin,GOU Ling,ZHANG WangFeng. Cellulose Deposition Characteristics of High Strength Cotton Fiber and Optimal Temperature Requirements in Xinjiang Region [J]. Scientia Agricultura Sinica, 2018, 51(22): 4252-4263.
[13] ZHANG Ying, CAO YuFen, HUO HongLiang, XU JiaYu, TIAN LuMing, DONG XingGuang, QI Dan, ZHANG XiaoShuang, LIU Chao, WANG LiDong. Diversity of Pear Germplasm Resources Based on Twig and Leaf Phenotypic Traits [J]. Scientia Agricultura Sinica, 2018, 51(17): 3353-3369.
[14] CHEN YanQing, CAO YongSheng, CHEN LiNa, FANG Wei . A Spatial Partition Statistical Analysis for Quality and Agronomic Traits of Foxtail Millet Germplasm Resources [J]. Scientia Agricultura Sinica, 2017, 50(14): 2658-2669.
[15] LIU YanYang, MEI HongXian, DU ZhenWei, WU Ke, ZHENG YongZhan, CUI XiangHua, ZHENG Lei. Construction of Core Collection of Sesame Based on Phenotype and Molecular Markers [J]. Scientia Agricultura Sinica, 2017, 50(13): 2433-2441.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!