Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (9): 1702-1718.doi: 10.3864/j.issn.0578-1752.2025.09.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Integrated Multi-Omics Elucidates the Pigmentation Dynamics During Post-Harvest Maturation in Foxtail Millet (Setaria italica)

ZHANG YiRu1(), HAN Xue1(), YAO XinJie3, FENG Jun1, WEI AiLi1, LI WenChao1, ZHANG Bin2, HAN YuanHuai2, LI HongYing2   

  1. 1 College of Biological Sciences and Technology, Taiyuan Normal University, Yuci 030619, Shanxi
    2 College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi
    3 College of Agriculture, Ningxia University, Yinchuan 750021
  • Received:2024-10-14 Accepted:2024-12-12 Online:2025-05-08 Published:2025-05-08

Abstract:

【Objective】 The aim of the study is to investigate the variation characteristics of starch and carotenoid content in grains of the foxtail millet during post-harvest maturation, and to elucidate the molecular mechanism of this phenomenon. The study will expand new insights into carotenoid metabolism in grains, thereby providing theoretical support for the stabilization of millet color, deep processing of millet, and storage. 【Method】 The carotenoid and starch content in grains from ten varieties of foxtail millet were measured after storage for 0, 30, 60, and 90 days, respectively. Changes in starch granules of representative materials during the four storage stages were observed using confocal laser scanning microscopy. Transcriptome and proteome analyses were conducted to investigate differential genes and proteins related to starch and carotenoid metabolic pathways at different storage stages for the same material. 【Result】 Among the 10 foxtail millet varieties, the carotenoid content in the millet mainly showed an upward trend from 0 to 60 days of post-harvest maturation and began to decline after 90 days, but remained higher than that of 0 days. The starch content showed an upward trend after 30 days of post-harvest maturation and then declined overall. Microscopic observation revealed a gradual increase in carotenoid fluorescence in millet starch granules after 30 days of post-harvest maturation, with a tendency for starch plastids to convert into chromoplasts. Furthermore, the transcriptome and proteome analyses identified 1 344 differentially expressed genes (DEGs) and 224 differentially expressed proteins (DEPs), which were mainly enriched in starch degradation and carotenoid synthesis pathways. A metabolic network regulation was also constructed.【Conclusion】 During of post-harvest maturation of the foxtail millet, there is an increase trend in the carotenoid content and a decrease trend in the starch content of the millet. It is speculated that starch degradation leads to an increase in pyruvate content, which enters the plastid methylerythritol phosphate (MEP) pathway to promote carotenoid synthesis. Towards the end of post-harvest maturation of the foxtail millet, the downstream synthesis of abscisic acid is inhibited, resulting in the accumulation of substances such as beta-carotene and zeaxanthin, which subsequently affect changes in the millet color.

Key words: foxtail millet, post-harvest maturation, millet color, starch, carotenoids, transcriptomics, proteomics

Fig. 1

Standard curve for starch"

Table 1

List of primers used for qRT-PCR analysis"

基因ID Gene ID 正向引物Forward primer (5′-3′) 反向引物Reverse primer (5′-3′)
Seita.6G181400 GCTACGCCTACATCCTAACCC CCGATCTTCGTGATGACTTTGT
Seita.6G181600 TACAACAGCCTCAATGCCCA GTAACCTTGGGGTGAGACGG
Seita.1G331000 ACAAGGTCATGCAGGGCTAC AGGCCCCAGTCGAAGAAATG
Seita.9G229700 GTACTACAACACCCGGCACC CATCTCGACGCAGGTGAAGT
Seita.4G263300 CAGTACACCCAGCTCATCGG AGCAACGTTCTTGTACCCGT
Seita.5G134800 TTCTGTTCATCCCATCTTCCTG CCCTCCTTACAATTTCGCCTA
Seita.8G083400 GCCAAGGATGAACGGAACCT GAGCTCCATGTTCTCCCCAC
Seita.3G059500 CGTCGCACTCAGGAAAGTGT GGCAGAACCGTCGAGCTTAT
Seita.9G239800 TGGAGAAGTGGTTGTGGTGC TCAAGAGCGAAAGTGCATGG
Seita.4G108300 CCGGTCATATTGGTCTGCGA TAAGCTGGGCTCTTGGATGC
actin TGCTCAGTGGAGGCTCAACA CCAGACACTGTACTTGCGCTC

Fig. 2

The change characteristic of carotenoid (A) and starch (B) contents in grains of foxtail millet during the storage period JG21: Jingu 21; CN35: Changnong 35; GS4: Gongsui 4; XYG: Xiangyanggu; MS: Maosu; YG11: Yugu 11; JG11: Jigu 11; YG1: Yugu 1; QH2: Qinhuang 2; JF52: Jinfen 52"

Fig. 3

The change characteristic of carotenoid (A) and starch (B) contents in grains of xiaomi during the storage period Different letter represents significant differences at the 5% level between different groups, respectively"

Fig. 4

Microscopic observations of millet plastids during the after-ripening period of the foxtail millet Black particles: Starch granules; Red circles: The green fluorescence of carotenoids in starch granules"

Table 2

The information of transcriptome sequencing data"

样品
Sample
原始数据
Raw reads
高质量数据
Clean reads
总比对率
Total mapped (%)
过滤后数据
Clean bases (G)
Q20
(%)
Q30
(%)
GC
(%)
0d-1 58375418 55633756 97.22 8.35 98.33 95.17 57.54
0d-2 58769864 55823920 97.21 8.37 98.48 95.64 57.53
0d-3 56265292 53767766 97.19 8.07 98.41 95.40 57.68
90d-1 53164314 51169888 96.36 7.68 98.08 94.82 56.38
90d-2 53275414 50375952 96.26 7.56 98.37 95.33 56.72
90d-3 44176254 41831696 96.36 6.27 98.30 95.17 57.02

Fig. 5

Analysis of GO enrichment (A) and KEGG enrichment (B) of differentially expressed genes during after-repening period of xiaomi"

Table 3

Proteome identification results"

数据库蛋白质数目
Database
鉴定肽段总数
Peptides
鉴定蛋白质总数
Identified proteins
定量蛋白质总数
Quantification proteins
46514 64191 8182 8182

Fig. 6

Analysis of differential protein expression for 0 d and 90 d after millet maturation with GO enrichment (A) and KEGG enrichment (B)"

Fig. 7

Combined transcriptome and proteome analysis of 0 day and 90 day in the millet of xiaomi during after-ripening period A: Venn map for DEGs and DEPs; B: Bar map for DEGs and DEPs; C: Gene Ontology (GO) categories for DEGs and DEPs; D: KEGG enrichment analysis for DEGs and DEPs"

Fig. 8

Network regulation map of starch degradation and carotenoid synthesis pathways A: Metabolic pathways of starch degradation and carotenoid synthesis; B: Heatmap of gene expression related to these pathways; C: Heatmap of protein expression related to these pathways. Boxes represent enzymes, green indicates downregulation of expression, red indicates upregulation, and blue indicates no significant difference in expression levels. AMY: α-amylase; BMY: β-amylase; MGAM: Maltose enzyme-glucoamylase; HK: Hexokinase; PGM: Phosphoglucomutase; GPI: Glucose-6-phosphate isomerase; SPP: Sucrose phosphate synthase; SPS: Sucrose phosphate synthase; INA: Sucrase enzyme; FRK: Fructokinase; PFP: Adenosine diphosphate-dependent phosphofructokinase; FBA: Fructose-1,6-bisphosphate aldolase; PGK: Glycerol phosphate kinase; PGAM: 2,3-diphosphoglycerate-dependent phosphoglycerate mutase; ENO: Enolase; PK: Pyruvate Kinase; PDH: Pyruvate dehydrogenase; AACT: Acetyl-CoA acetyltransferase; DXP: Deoxymannose-6-phosphate synthase; DXR: Deoxy-mannose-6-phosphate reductase isomerase; PSY: Bicyclic lycopene synthase; PDS: Phytoene desaturase; Z-ISO: ζ-Carotene Isomerase; ZDS: Carotene dehydrogenase; CRTISO, Carotenoid isomerase; LCYB, β-Lycopene cyclase; LCYE, ε-Lycopene cyclase; BCH, β-carotene hydroxylase; ZEP: Zeaxanthin epoxidase; NCED: 9-cis-epoxycarotenoid dioxygenase; ABA2: Flavoxate dehydrogenase; AAO3: Abscisic acid aldehyde oxidase"

Fig. 9

qRT-PCR verification of gene expression (A) with RNA-Seq expression patterns (B) *: Significance at P<0.05; **: Significance at P<0.01; ***: Significance at P<0.001"

[1]
贾冠清, 刁现民. 中国谷子种业创新现状与未来展望. 中国农业科学, 2022, 55(4): 653-665. doi: 10.3864/j.issn.0578-1752.2022.04.003.
JIA G Q, DIAO X M. Current status and perspectives of innovation studies related to foxtail millet seed industry in China. Scientia Agricultura Sinica, 2022, 55(4): 653-665. doi: 10.3864/j.issn.0578-1752.2022.04.003. (in Chinese)
[2]
YANG Y B, JIA G Q, DENG L G, QIN L, CHEN E Y, CONG X J, ZOU R F, WANG H L, ZHANG H W, LIU B, GUAN Y N, DIAO X M, YIN Y P. Genetic variation of yellow pigment and its components in foxtail millet (Setaria italica (L.) P. Beauv.) from different eco-regions in China. Journal of Integrative Agriculture, 2017, 16(11): 2459-2469.
[3]
冯攀屹, 王晓曦, 董秋晨, 刘亚楠, 王罗云. 小麦后熟作用对其品质变化的影响. 粮食加工, 2010, 35(5): 37-39.
FENG P Y, WANG X X, DONG Q C, LIU Y N, WANG L Y. The effects of after-ripening wheat on its quality changes. Grain Processing, 2010, 35(5): 37-39. (in Chinese)
[4]
黄建峰, 高爱平, 赵志常, 党志国, 罗睿雄, 陈业渊. 杧果类胡萝卜素合成酶基因PSY的表达特性分析. 中国南方果树, 2016, 45(5): 18-22.
HUANG J F, GAO A P, ZHAO Z C, DANG Z G, LUO R X, CHEN Y Y. The expression analysis of phytoene synthase gene in mango. South China Fruits, 2016, 45(5): 18-22. (in Chinese)
[5]
SCHAUB P, WÜST F, KOSCHMIEDER J, YU Q J, VIRK P, TOHME J, BEYER P. Nonenzymatic β-carotene degradation in provitamin A-biofortified crop plants. Journal of Agricultural and Food Chemistry, 2017, 65(31): 6588-6598.

doi: 10.1021/acs.jafc.7b01693 pmid: 28703588
[6]
ZHANG M K, ZHANG M P, MAZOUREK M, TADMOR Y, LI L. Regulatory control of carotenoid accumulation in winter squash during storage. Planta, 2014, 240(5): 1063-1074.

doi: 10.1007/s00425-014-2147-6 pmid: 25139277
[7]
CAO H B, WANG J B, DONG X T, HAN Y, MA Q L, DING Y D, ZHAO F, ZHANG J C, CHEN H J, XU Q, XU J, DENG X X. Carotenoid accumulation affects redox status, starch metabolism, and flavonoid/anthocyanin accumulation in Citrus. BMC Plant Biology, 2015, 15: 27.
[8]
LOPEZ-JUEZ E, PYKE K A. Plastids unleashed: their development and their integration in plant development. International Journal of Development Biology, 2005, 49: 557-577.
[9]
SUN T H, YUAN H, CAO H B, YAZDANI M, TADMOR Y, LI L. Carotenoid metabolism in plants: The role of plastids. Molecular Plant, 2018, 11(1): 58-74.

doi: S1674-2052(17)30273-3 pmid: 28958604
[10]
HE L, CHENG L, WANG J J, LIU J, CHENG J J, YANG Z R, CAO R, HAN Y H, LI H Y, ZHANG B. Carotenoid cleavage dioxygenase 1 catalyzes lutein degradation to influence carotenoid accumulation and color development in foxtail millet grains. Journal of Agricultural and Food Chemistry, 2022, 70(30): 9283-9294.
[11]
ZHANG B, LIU J, LU C, ZHANG Y Y, HOU S Y, SUN Z X, LI H Y, HAN Y H. Carotenoid composition and expression of biosynthetic genes in yellow and white foxtail millet [Setaria italica (L.) Beauv]. Journal of Cereal Science, 2019, 85: 84-90.
[12]
CHENG L, ZHANG B, HE L, MA F F, WANG X C, LI H Y, HAN Y H. Constitutive down regulation of SiSGR gene is related to green millet in Setaria italica. Russian Journal of Plant Physiology, 2017, 64(4): 608-615.
[13]
YANG Z R, ZHANG H S, LI X K, SHEN H M, GAO J H, HOU S Y, ZHANG B, MAYES S, BENNETT M, MA J X, WU C Y, SUI Y, HAN Y H, WANG X C. A mini foxtail millet with an Arabidopsis- like life cycle as a C4 model system. Nature Plants, 2020, 6(9): 1167-1178.
[14]
赵凌霄. 禾谷类成熟完整籽粒切片技术及其在玉米颖果淀粉研究中的应用[D]. 扬州: 扬州大学, 2019.
ZHAO L X. Slicing technology of mature whole grain of cereal and its application in the study of corn caryopsis starch[D]. Yangzhou: Yangzhou University, 2019. (in Chinese)
[15]
KILCREASE J, COLLINS A M, RICHINS R D, TIMLIN J A, O’CONNELL M A. Multiple microscopic approaches demonstrate linkage between chromoplast architecture and carotenoid composition in diverse Capsicum annuum fruit. The Plant Journal, 2013, 76(6): 1074-1083.
[16]
曹勇, 许秀颖, 蔡丹, 刘回民, 张浩, 赵城彬, 郑明珠, 刘景圣. 玉米籽粒后熟品质性状主成分分析与综合评价. 食品科学, 2024, 45(11): 1-7.
CAO Y, XU X Y, CAI D, LIU H M, ZHANG H, ZHAO C B, ZHENG M Z, LIU J S. Principal component analysis and comprehensive evaluation of quality traits in post-ripening corn kernels. Food Science, 2024, 45(11): 1-7. (in Chinese)

doi: 10.7506/spkx1002-6630-20230724-264
[17]
陈一帆, 舒在习. 六种优质籼稻后熟期间的品质变化比较. 食品工业科技, 2022, 43(6): 342-350.
CHEN Y F, SHU Z X. Comparison of change of quality for six high-quality indica rice during after-ripening. Science and Technology of Food Industry, 2022, 43(6): 342-350. (in Chinese)
[18]
邓昌哲, 姚慧, 安飞飞, 李开绵, 陈松笔. 木薯块根有色体分离及其蛋白质组学的研究. 作物学报, 2017, 43(9): 1290-1299.
DENG C Z, YAO H, AN F F, LI K M, CHEN S B. Chromoplast isolation and its proteomic analysis from cassava storage roots. Acta Agronomica Sinica, 2017, 43(9): 1290-1299. (in Chinese)
[19]
LOPEZ A B, VAN ECK J, CONLIN B J, PAOLILLO D J, O’NEILL J, LI L. Effect of the cauliflower or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. Journal of Experimental Botany, 2008, 59(2): 213-223.

doi: 10.1093/jxb/erm299 pmid: 18256051
[20]
EGEA I, BIAN W P, BARSAN C, JAUNEAU A, PECH J C, LATCHÉ A, LI Z G, CHERVIN C. Chloroplast to chromoplast transition in tomato fruit: Spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue. Annals of Botany, 2011, 108(2): 291-297.

doi: 10.1093/aob/mcr140 pmid: 21788376
[21]
HEMPEL J, AMREHN E, QUESADA S, ESQUIVEL P, JIMÉNEZ V M, HELLER A, CARLE R, SCHWEIGGERT R M. Lipid-dissolved γ-carotene, β-carotene, and lycopene in globular chromoplasts of peach palm (Bactris gasipaes Kunth) fruits. Planta, 2014, 240(5): 1037-1050.
[22]
HOWITT C A, POGSON B J. Carotenoid accumulation and function in seeds and non-green tissues. Plant, Cell & Environment, 2006, 29(3): 435-445.
[23]
GALPAZ N, WANG Q, MENDA N, ZAMIR D, HIRSCHBERG J. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. The Plant Journal, 2008, 53(5): 717-730.

doi: 10.1111/j.1365-313X.2007.03362.x pmid: 17988221
[24]
FANTINI E, FALCONE G, FRUSCIANTE S, GILIBERTO L, GIULIANO G. Dissection of tomato lycopene biosynthesis through virus-induced gene silencing. Plant Physiology, 2013, 163(2): 986-998.

doi: 10.1104/pp.113.224733 pmid: 24014574
[25]
NISAR N, LI L, LU S, KHIN N C, POGSON B J. Carotenoid metabolism in plants. Molecular Plant, 2015, 8(1): 68-82.

doi: 10.1016/j.molp.2014.12.007 pmid: 25578273
[26]
SCHORMANN N, HAYDEN K L, LEE P, BANERJEE S, CHATTOPADHYAY D. An overview of structure, function, and regulation of pyruvate kinases. Protein Science, 2019, 28(10): 1771-1784.

doi: 10.1002/pro.3691 pmid: 31342570
[27]
RIAHI L, ZOGHLAMI N, DEREEPER A, LAUCOU V, MLIKI A, THIS P. Molecular characterization and evolutionary pattern of the 9-Cis-epoxycarotenoid dioxygenase NCED1 gene in grapevine. Molecular Breeding, 2013, 32(2): 253-266.
[28]
SONG H Y, LIU J H, CHEN C Q, ZHANG Y, TANG W J, YANG W L, CHEN H X, LI M Y, JIANG G L, SUN S X, LI J, TU M Y, WANG L L, XU Z H, GONG R G, CHEN D. Down-regulation of NCED leads to the accumulation of carotenoids in the flesh of F1 generation of peach hybrid. Frontiers in Plant Science, 2022, 13: 1055779.
[29]
WANG P F, LU S Y, ZHANG X Y, HYDEN B, QIN L J, LIU L P, BAI Y Y, HAN Y, WEN Z L, XU J Z, CAO H B, CHEN H J. Double NCED isozymes control ABA biosynthesis for ripening and senescent regulation in peach fruits. Plant Science, 2021, 304: 110739.
[30]
LANG J, FU Y X, ZHOU Y, CHENG M P, DENG M, LI M L, ZHU T T, YANG J, GUO X J, GUI L X, et al. Myb10-D confers PHS-3D resistance to pre-harvest sprouting by regulating NCED in ABA biosynthesis pathway of wheat. New Phytologist, 2021, 230(5): 1940-1952.

doi: 10.1111/nph.17312 pmid: 33651378
[31]
ZHANG M, YUAN B, LENG P. Cloning of 9-Cis-epoxycarotenoid dioxygenase (NCED) gene and the role of ABA on fruit ripening. Plant Signaling & Behavior, 2009, 4(5): 460-463.
[32]
ZHOU X S, RAO S, WRIGHTSTONE E, SUN T H, LUI A C W, WELSCH R, LI L. Phytoene synthase: the key rate-limiting enzyme of carotenoid biosynthesis in plants. Frontiers in Plant Science, 2022, 13: 884720.
[33]
RODRIGUEZ-CONCEPCION M, AVALOS J, BONET M L, BORONAT A, GOMEZ-GOMEZ L, HORNERO-MENDEZ D, LIMON M C, MELÉNDEZ-MARTÍNEZ A J, OLMEDILLA-ALONSO B, PALOU A, RIBOT J, RODRIGO M J, ZACARIAS L, ZHU C F. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 2018, 70: 62-93.
[34]
DEJONGHE W, OKAMOTO M, CUTLER S R. Small molecule probes of ABA biosynthesis and signaling. Plant & Cell Physiology, 2018, 59(8): 1490-1499.
[35]
ZHANG F, WU J F, SADE N, WU S, EGBARIA A, FERNIE A R, YAN J B, QIN F, CHEN W, BROTMAN Y, DAI M Q. Genomic basis underlying the metabolome-mediated drought adaptation of maize. Genome Biology, 2021, 22(1): 260.

doi: 10.1186/s13059-021-02481-1 pmid: 34488839
[36]
JIA K P, MI J N, ALI S, OHYANAGI H, MORENO J C, ABLAZOV A, BALAKRISHNA A, BERQDAR L, FIORE A, DIRETTO G, MARTÍNEZ C, DE LERA A R, GOJOBORI T, AL-BABILI S. An alternative, Zeaxanthin epoxidase-independent abscisic acid biosynthetic pathway in plants. Molecular Plant, 2022, 15(1): 151-166.
[37]
LI L, YANG Y, XU Q, OWSIANY K, WELSCH R, CHITCHUMROONCHOKCHAI C, LU S, VAN ECK J, DENG X X, FAILLA M, THANNHAUSER T W. The Or gene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers. Molecular Plant, 2012, 5(2): 339-352.

doi: 10.1093/mp/ssr099 pmid: 22155949
[1] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[2] ZHU DaWei, ZHENG Xin, YU Jing, MOU RenXiang, CHEN MingXue, SHAO YaFang, ZHANG LinPing. Differences in Physicochemical Characteristics and Eating Quality Between High Taste Northern Japonica Rice and Southern Semi- Glutinous Japonica Rice Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(3): 469-483.
[3] ZHANG HuiHui, KANG HanYe, LIU Hui, ZHANG JinRui, HUO Fan, GUO WeiQi, YE XiaoFang, JI Rong, HU HongXia. Differentially Expressed Proteins Analysis of Locusta migratoria Infected by Paranosema locustae Based on TMT Proteomics Technique [J]. Scientia Agricultura Sinica, 2024, 57(24): 4884-4893.
[4] DU YanWei, YAN XiaoGuang, ZHAO JinFeng, JIA SuQing, WANG GaoHong, YU AiLi, ZHANG Peng. Cloning and Functional Verification of SiCIPK21 Gene in Foxtail Millet [J]. Scientia Agricultura Sinica, 2024, 57(22): 4416-4430.
[5] CAO WenZhuo, YU ZhenWen, ZHANG YongLi, ZHANG Zhen, SHI Yu, WANG YongJun. The Difference of Grain Starch Accumulation Dynamics and Yield Formation of Spring Maize Under Different Nitrogen Application Rates in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(22): 4431-4443.
[6] DONG ErWei, WANG Yuan, WANG JinSong, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan. Effects of Nitrogen Fertilization Levels on Grain Yield, Plant Nitrogen Utilization Characteristics and Grain Quality of Foxtail Millet [J]. Scientia Agricultura Sinica, 2024, 57(2): 306-318.
[7] SHANG Hang, CHENG YuKun, REN Yi, GENG HongWei. Genome-Wide Association Analysis of Starch Gelatinization Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(18): 3507-3521.
[8] LIU DeLong, LI ShiRu, WANG ChuanXing, GUO ShuQing, MA ZhiXiu, WU YongJiang, HAN HuiBing, LI YuJie, ZHANG PanPan, YANG Pu. Phenotypical Variation and Dynamic QTL Mapping of Plant Height in Foxtail Millet at Different Developmental Stages [J]. Scientia Agricultura Sinica, 2024, 57(18): 3533-3550.
[9] YU ShuHan, QIN XiaoJie, WU QiChao, LI Ling, ZANG DeKui, MA Yan. Transcriptome Analysis of Paeonia lactiflora in Response to Alternaria tenuissima Infection [J]. Scientia Agricultura Sinica, 2024, 57(15): 3035-3052.
[10] DUAN HuiMin, LIU LingLing, XIA LuLu, YUAN JianLong, CHENG LiXiang, CHEN AiRong, ZHANG Feng. Screening of Low Glycemic Potato Varieties [J]. Scientia Agricultura Sinica, 2024, 57(12): 2295-2308.
[11] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[12] ZHANG Ji, ZHOU ShangLing, HE Fa, LIU LiSha, ZHANG YuJuan, HE JinYu, DU XiaoQiu. Expression Pattern of the Rice α-Amylase Genes Related with the Process of Floret Opening [J]. Scientia Agricultura Sinica, 2023, 56(7): 1275-1282.
[13] QIN Na, FU SenJie, ZHU CanCan, DAI ShuTao, SONG YingHui, WEI Xin, WANG ChunYi, YE ZhenYan, LI JunXia. QTL Analysis for Seeding Traits Related to Low Nitrogen Tolerance in Foxtail Millet [J]. Scientia Agricultura Sinica, 2023, 56(20): 3931-3945.
[14] PENG Pai, WANG XiaoLong, MA Lan, ZOU XiaoYang, MA QianYing, ZHANG XinYu, LI XiaoPing, HU XinZhong. Effects of Oat Bran Flour and Tartary Buckwheat Bran Flour on Structure, Cooking Quality and Digestive Characteristics of Wheat Noodles [J]. Scientia Agricultura Sinica, 2023, 56(20): 4102-4114.
[15] LI ShaoHui, ZHAO Wei, LIU SongYan, LI PengLiang, ZHANG AiXia, LIU JingKe. Aroma Characteristics of Foxtail Millet Varieties from Different Ecological Regions by Analysis of SDE-GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2023, 56(13): 2586-2596.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!