Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (14): 2658-2669.doi: 10.3864/j.issn.0578-1752.2017.14.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

A Spatial Partition Statistical Analysis for Quality and Agronomic Traits of Foxtail Millet Germplasm Resources

CHEN YanQing, CAO YongSheng, CHEN LiNa, FANG Wei   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2016-12-23 Online:2017-07-16 Published:2017-07-16

Abstract: 【Objective】 The objective of this paper is to analyze the spatial distribution characteristics of related agronomic traits and quality of millet germplasm resources in China, grasp the overall quality in spatial distribution, improve the macro cognition of millet resources and effective protection and utilization. 【Method】 From the point of view of geographical space, the methods of spatial interpolation and spatial clustering were used to study the spatial distribution rules of the related traits of foxtail millet resources. Firstly, spatial interpolation was made for target traits of foxtail millet resources, partition statistics method was used to analyze national grid and interpolation data and the optimized hot spot analysis method was used to get the spatial partition data. Finally, the high value, random value and low value spatial distribution of foxtail millet related traits were found. 【Result】 The results of the distribution of the foxtail millet resources in the country show that the average of crude protein content of foxtail millet resources is (13.98±1.23)%, the range is 10.47%-17.33%, the coefficient of variation is 8.80%. The average of crude fat content is (4.01±0.38)%, the range is 3.08%-5.47%, the coefficient of variation is 9.48%. The average of grain weight per plant is (10.39±4.13) g, the range is 1.65-29.30 g, the coefficient of variation is 39.75%. The average of growth period is (111.46±10.94) d, the range is 79.15-150.43 d, the coefficient of variation is 9.81%. From the aspect of the cluster distribution areas, the average values of crude protein content in low value area, random value area and high value area are (12.80±0.70) %, (13.98±0.39)% and (15.24±0.42)%, respectively, the amplitude of variations of the three areas, respectively, are 10.47%-14.90%, 12.72%-15.30% and 13.61%-17.33%, the variation coefficients of the three areas, respectively, are 5.47%, 2.79% and 2.76%. The average values of crude fat content in low value area, random value area and high value area are (3.69±0.13) %, (3.99±0.16) % and (4.41±0.26)%, respectively, the amplitude of variations of the three areas, respectively, are 3.11%-4.39%, 3.08%-4.48% and 3.57%-5.47%, the variation coefficients of the three areas, respectively, are 3.52%, 4.01% and 5.89%. The average values of grain weight per plant in low value area, random value area and high value area are (6.49±1.84) g, (10.51±1.49)g and (14.44±2.88)g, respectively, the amplitude of variations of the three areas, respectively, are 1.65-13.38 g, 5.42-16.54 g and 7.63-29.30 g, the variation coefficients of the three areas respectively are 23.73%, 14.18% and 19.94%. The average values of growth period in low value area, random value area and high value area are (99.58±6.64)d, (111.89±2.99)d and (121.17±6.04)d, respectively, the amplitude of variations of the three areas, respectively, are 79.15-116.81d, 99.53-124.44 d and 108.34-150.43 d, the variation coefficients of the three areas respectively are6.67%, 2.67% and 4.98%. 【Conclusion】The internal differences in the high value regions of crude protein content are the minimum and these regions are mainly concentrated in Xinjiang and the northeast of Heilongjiang province. The internal differences of the low value regions are the maximum and they are mainly distributed in the central and Eastern zones. Random value regions are mainly distributed in the areas which located between high value and low value regions. The distribution of crude protein content shows an increasing trend in the two sides. On the contrary, the high value regions of crude fat content own the maximum internal differences, which are mainly concentrated in central zones of China, the low value regions’ internal differences are the minimum, which are mainly distributed in Xinjiang and the northeast of China. The distribution of crude fat content shows a decreasing trend in the two sides and the regions are relatively not regular. The internal differences in random value areas of grain weight per plant are the minimum, and the high value areas are the maximum. Ningxia, Shanxi, Shaanxi and other places belong to the high value areas of grain weight per plant, Heilongjiang, Zhejiang, northern Inner Mongolia, southern Anhui and southwestern parts belong to the low value areas. The internal differences in random value areas of growth period are the minimum, and the low value areas are the maximum. The growth period of foxtail millet in Northeast China, northwest and southwest Henan is relatively long, and Shandong, Hebei and other areas where summer foxtail millet is planted, belong to the short growth period regions.

Key words: foxtail millet, germplasm resources, target traits, spatial interpolation, spatial distribution

[1]    刁现民. 中国谷子生产与产业发展方向//柴岩, 万世富. 中国小杂粮产业发展报告. 北京: 中国农业科学技术出版社, 2007: 32-43.
Diao X M. Developing direction of the Chinese foxtail millet production and industry//Chai Y, Wan S F. Developing Reports of the Chinese Minor Cereal Production and Industry. Beijing: Chinese Agricultural Science and Technology Press, 2007: 32-43. (in Chinese)
[2]    Lu H Y, Zhang J P, Liu K B, Wu N Q, Li Y M, Zhou K S. Earliest domestication of common milletPanicum miliaceum)in East Asia Extended to 10000 Years Ago. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18): 7367-7372.
[3]    李顺国, 刘猛, 赵宇, 刘斐, 王慧军. 河北省谷子产业现状和技术需求及发展对策. 农业现代化研究, 2012, 33(3): 286-289.
Li S G, Liu M, Zhao Y, Liu F, Wang H J. Industry situation, technology need and development suggestion of foxtail millet in Hebei province. Research of Agricultural Modernization, 2012, 33(3): 286-289. (in Chinese)
[4]    张海金. 谷子在旱作农业中的地位和作用. 安徽农学通报, 2007, 13(10): 169-170.
Zhang H J. Status and effect of foxtail millet in dry-land agriculture. Anhui Agricultural Science Bulletin, 2007, 13(10): 169-170. (in Chinese)
[5]    柴岩, 万福世. 中国小杂粮产业发展报告. 北京: 中国农业出版社, 2007: 32-43.
Chai Y, Wan F S. Development Report of China's Small Grain Industry. Beijing: China Agriculture Press, 2007: 32-43. (in Chinese)
[6]    刁现民. 中国谷子产业与产业技术体系. 北京: 中国农业科学与技术出版社, 2011: 20-30.
Diao X M. Chinese Industry and Technical System of Foxtail Millet. Beijing: China Agricultural Sciences and Technology Press, 2011: 20-30. (in Chinese)
[7]    中华人民共和国农业部.《全国种植业结构调整规划(2016-2020年)》农农发〔20163.
Ministry of Agriculture of the People's Republic of China, < National crop structure adjustment plan (2016-2020)>, 〔2016〕NO. 3 (in Chinese)
[8]    李庆春, 吴舒致. 不同品种小米中粗蛋白含量的普查与评价. 中国粮油学报, 1993, 8(增刊): 8-13.
Li Q C, Wu S Z. Survey and evaluation of crude protein content in different varieties of foxtail millet. Journal of the Chinese Cereals and Oils Association, 1993, 8(Suppl.): 8-13. (in Chinese)
[9]    那海智, 吴秀兰, 赵铁男. 试论谷子粗蛋白质、粗脂肪含量与物候期的相关关系. 黑龙江农业科学, 1982(4). 14-16.
Na H Z, Wu X L, Zhao T N. Study on the relationship between the contents of crude protein and crude fat and the phenological phase. Heilongjiang Agricultural Sciences, 1982(4): 14-16. (in Chinese)
[10]   王海岗, 贾冠清, 智慧, 温琪汾, 董俊丽, 陈凌, 王君杰, 曹晓宁, 刘思辰, 王纶, 乔治军, 刁现民. 谷子核心种质表型遗传多样性分析及综合评价. 作物学报, 2016, 42(1): 19-30.
Wang H G, Jia G Q, Zhi H, Wen Q F, Dong J L, Chen L, Wang J J, Cao X N, Liu S C, Wang L, Qiao Z J, Diao X M. Phenotypic diversity evaluations of foxtail millet core collections. Acta Agronomica Sinica, 2016, 42(1): 19-30. (in Chinese)
[11]   刘三才, 朱志华, 李为喜, 刘方, 李燕, 黄蓉. 谷子品种资源微量元素硒和蛋白质含量的测定与评价. 中国农业科学, 2009,42(11): 3812-3818.
Liu S C, Zhu Z H, Li W X, Liu F, Li Y, Huang R. Evaluation of selenium and protein content of foxtail millet landraces originated from different ecological regions of China. Scientia Agricultura Sinica, 2009, 42(11): 3812-3818. (in Chinese)
[12]   刘敏轩, 陆平. 中国谷子育成品种维生素E含量分布规律及其与主要农艺性状和类胡萝卜素的相关性分析. 作物学报, 2013, 39(3): 398-408.
Liu M X, Lu P. Distribution of vitamin E content and its correlation with agronomic trait sand carotenoids content in foxtail millet varieties in china. China. Acta Agronomica Sinica, 2013, 39(3): 398-408. (in Chinese)
[13]   曹永生, 方沩. 国家农作物种质资源平台的建立和应用. 生物多样性, 2010, 18(5): 454-460.
Cao Y S, Fang W. Establishment and application of national crop germplasm resources infrastructure in China. Biodiversity Science, 2010, 18(5): 454-460. (in Chinese)
[14]   王述民, 张宗文. 世界粮食和农业植物遗传资源保护与利用现状. 植物遗传资源学报, 2011, 12(3): 325-338.
Wang S M, Zhang Z W. The state of the world's plant genetic resources for food and agriculture. Journal of Plant Genetic Resources, 2011, 12(3): 325-338. (in Chinese)
[15]   司海平, 方沩, 唐鹏, 曹永生. 基于SOA的农作物种质资源调查信息系统研究. 植物遗传资源学报, 2010, 11(5): 517-521.
Si H P, Fang W, Tang P, Cao Y S. Research of crop germplasm resources investigation information system based on SOA. Journal of Plant Genetic Resources, 2010, 11(5): 517-521. (in Chinese)
[16]   陆平. 谷子种质资源描述规范和数据标准. 北京: 中国农业出版 社, 2006: 3.
Lu P. Descriptors and Data Standard for Foxtail Millet. Beijing: China Agriculture Press, 2006: 3. (in Chinese)
[17]   侯景儒, 黄竞先.地质统计学及其在矿产储量计算中的应用. 北京: 地质出版社, 1982.
Hou J R, Huang J X. Geostatistics and Its Application in the Calculation of Mineral Reserves. Beijing: Geological Press, 1982. (in Chinese)
[18]   Krige D G. A statistical analysis of some of the borehole values in the Orange Free St ate gold field. Journal of the Chemical and Metallurgical Society of South Africa, 1952, 53: 47-64.
[19]   Bor?vka L, Mládková L, Pení?ek V, Drábek O, Vašát R. Forest soil acidification assessment using principal component analysis and geostatistics. Geoderma, 2007, 140(4): 374-382.
[20]   Goovaerts P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 2000, 228(1/2): 113-129.
[21]   Oliver M A. Precision agriculture and geostatistics: how to manage agriculture more exactly. Significance, 2013, 10(2): 17-22.
[22]   Castrignanò A, Landrum C, Benedetto D D, Poljak M. Delineation of management zones in precision agriculture by integration of proximal sensing with multivariate geostatistics. Agriculturae Conspectus Scientificus, 2015, 80(1): 39-45.
[23]   王虎, 许哲, 郭静, 刘哲, 李绍明, 张晓东, 朱德海. 玉米品种多环境测试数据的空间插值分析. 玉米科学, 2012, 20(6): 43-148.
Wang H, Xu Z, Guo J, Liu Z, Li S M, Zhang X D, Zhu D H. Spatial interpolation research of multi-environment trials data for maize. Journal of Maize Sciences, 2012, 20(6): 143-148. (in Chinese)
[24]   Künzli N, Jerrett M, Mack W J, Beckerman B, Labree L, Gilliland F. Ambient air pollution and atherosclerosis in los angeles. Environmental Health Perspectives, 2005, 113(2): 201-206.
[25]   Jonathan P, Ewans K. Statistical modelling of extreme ocean environments for marine design: A review. Ocean Engineering, 2013, 62(2): 91-109.
[26]   沈立宏, 张超, 桑玲玲, 陈亚婷, 张晓东, 杨建宇, 朱德海, 郧文聚. 利用网格法确定县域农田整治优先度. 农业工程学报, 2012, 28(18): 241-247.
Shen L H, Zhang C, Sang L L, Chen Y T, Zhang X D, Yang J Y, Zhu D H, Yun W J. Determination of consolidation priority for farmland at county level using grid method. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(18): 241-247. (in Chinese)
[27]   李德仁, 宾洪超, 邵振峰. 国土资源网格化管理与服务系统的设计与实现. 武汉大学学报(信息科学版), 2008, 33(1): 1-6.
Li D R, Bin H C, Shao Z F. Design and Implementation of Land and Resources Grid Management and Service System. Geomatics and Information Science of Wuhan University, 2008, 33(1): 1-6. (in Chinese)
[28]   陈述彭, 陈星. 地球信息科学的理解与实践. 地球信息科学, 2004, 6(1): 4-10.
Chen S P, Chen X. The cognition and practice of geo-information science. Geo-information Science, 2004, 6(1): 4-10. (in Chinese)
[29]   李东辉, 王尧琴. 粟的品质改良. 作物杂志, 1986, 1(3): 4-6.
Li D H, Wang Y Q. Quality improvement of foxtail millet. Crop Journal, 1986, 1(3): 4-6. (in Chinese)
[30]   王玉文, 李会霞, 田岗, 王高鸿. 我国小米品质研究进展及其改良设想. 中国农学通报, 2001, 17(5): 49-51.
Wang Y W, Li H X, Tian G, Wang G H. Research progress and improvement assumption of quality of foxtail millet in China. Chinese Agricultural Science Bulletin, 2001, 17(5): 49-51. (in Chinese)
[31]   杨春, 田志芳, 卢健鸣, 杨秀丽, 丁卫英. 小米蛋白质研究进展. 中国粮油学报, 2010, 25(8): 123-128.
Yang C, Tian Z F, Lu J M, Yang X L, Ding W Y. Research progress on millet protein. Journal of the Chinese Cereals and Oils Association, 2010, 25(8): 123-128. (in Chinese)
[1] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[2] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[3] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[4] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[5] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[6] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[7] Ting ZHANG,GenPing WANG,YanJie LUO,Lin LI,Xiang GAO,RuHong CHENG,ZhiGang SHI,Li DONG,XiRui ZHANG,WeiHong YANG,LiShan XU. Color Difference Analysis in the Application of High Quality Foxtail Millet Breeding [J]. Scientia Agricultura Sinica, 2021, 54(5): 901-908.
[8] LI ShunGuo, LIU Fei, LIU Meng, CHENG RuHong, XIA EnJun, DIAO XianMin. Current Status and Future Prospective of Foxtail Millet Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 459-470.
[9] GUO ShuQing,SONG Hui,YANG QingHua,GAO JinFeng,GAO XiaoLi,FENG BaiLi,YANG Pu. Analyzing Genetic Effects for Plant Height and Panicle Traits by Means of the Mixed Inheritance Model of Major Gene Plus Polygene in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(24): 5177-5193.
[10] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[11] YanBing YANG,Ling QIN,RunFeng WANG,ErYing CHEN,XiuBo YIN,YuQin LIU,SuMei ZHANG,XinJun CONG,GuoYu LI,LeZheng WANG,YanAn GUAN. Effects of Climatic Factors Under Diverse Ecological Conditions on Foxtail Millet (Setaria italica) Yield in Shandong [J]. Scientia Agricultura Sinica, 2020, 53(7): 1348-1358.
[12] GUO MeiJun,BAI YaQing,GAO Peng,SHEN Jie,DONG ShuQi,YUAN XiangYang,GUO PingYi. Effect of MCPA on Leaf Senescence and Endogenous Hormones Content in Leaves of Foxtail Millet Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(3): 513-526.
[13] LI HuiXia,TIAN Gang,WANG YuWen,LIU Xin,LIU Hong. Genetic Correlation Coefficients of Foxtail Millet Traits Between Parents and Hybrids [J]. Scientia Agricultura Sinica, 2020, 53(2): 239-246.
[14] CHANG GuoRong,LI RenJian,ZHANG Qi,ZHANG YuMing,HAN YuanHuai,ZHANG BaoJun. Identification of Co-Expression Genes Related to Endogenous Abscisic Acid in Response to the Stress of Sclerospora graminicola by WGCNA in Foxtail Millet [J]. Scientia Agricultura Sinica, 2020, 53(16): 3280-3293.
[15] YU AiLi,ZHAO JinFeng,CHENG Kai,WANG ZhenHua,ZHANG Peng,LIU Xin,TIAN Gang,ZHAO TaiCun,WANG YuWen. Screening and Analysis of Key Metabolic Pathways in Foxtail Millet During Different Water Uptake Phases of Germination [J]. Scientia Agricultura Sinica, 2020, 53(15): 3005-3019.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!