Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (22): 4252-4263.doi: 10.3864/j.issn.0578-1752.2018.22.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Cellulose Deposition Characteristics of High Strength Cotton Fiber and Optimal Temperature Requirements in Xinjiang Region

TIAN JingShan(),ZHANG XuYi,HU XiaoBing,SUI LongLong,ZHANG PengPeng,WANG WenMin,GOU Ling(),ZHANG WangFeng()   

  1. Agricultural College of Shihezi University/Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang
  • Received:2018-05-14 Accepted:2018-07-27 Online:2018-11-16 Published:2018-11-16

Abstract:

【Objective】 Xinjiang region is a major cotton growing-region in northwest China. Temperatures in the region, especially night-time temperatures, drop drastically at the end of the cotton growing season. The objective of research was to explicate the effects of temperatures on fiber development, so as to benefit to cotton production. 【Method】 Three field experiments were conducted by different sowing dates, elevated night-time temperature during entire fiber development (from anthesis to boll opening) and elevated night-time temperature during different stage of fiber development (from anthesis to the onset of rapid cellulose deposition, between the onset and termination of rapid cellulose deposition, and from the termination of rapid cellulose deposition to boll opening). The effects of temperatures on cellulose deposition were analyzed to explore the temperature conditions for producing high fiber strength. 【Result】 Fiber strength was significantly affected by the duration of rapid cellulose deposition (T), the average rate of cellulose deposition from anthesis until the onset of rapid cellulose deposition (V1) and the maximum cellulose content (Wm). Fiber strength was quadratically related to the V1 and was positively correlated with the Wm. Growing degree days was the factor associated with cellulose deposition in cotton fiber. The relationship between both was going to go the other way during the different fiber developing stages. During the early stage of fiber development (anthesis to the onset of rapid cellulose deposition), growing degree days was significantly and negatively correlated with fiber strength, whereas there was positive relationship between both during the period between the onset and termination of rapid cellulose deposition. During the period from anthesis until the onset of rapid cellulose deposition, the average rate of cellulose deposition decreased as growing degree days increased, which had an unfavorable about fiber strength. During the period of rapid cellulose deposition, growing degree days increased significantly the cellulose deposition rate during from anthesis until the onset of rapid cellulose deposition and the duration time of rapid cellulose deposition, then fiber strength increased. There was a possibility of producing more than 30 cN/tex of fiber strength, when the following conditions were met: (1) the V1 was between 1.32%·d -1and1.76%·d -1; (2) cellulose deposition entered the onset of rapid cellulose deposition (t1) at 6.7-13.3 days post-anthesis (dpa); (3) the duration of rapid cellulose deposition (T) was 20.2-25.6 days;(4) the time of cellulose deposition was 39.0-46.9 days, and (5) the growing degree days was 5.6℃-96.3℃ and 181.5℃-262.3℃ during from anthesis until the onset of rapid cellulose deposition and the duration time of rapid cellulose deposition, respectively. 【Conclusion】 Therefore, growing degree days resulted in different effects on fiber strength during the different fiber developing, and the main reason was that growing degree days caused variability effects on the average cellulose rate during the period from anthesis until the onset of rapid cellulose deposition.

Key words: cotton, growing degree days, cellulose deposition, fiber strength, upper cotton boll

Table 1

Sown dates and anthesis dates in 2008, 2009, 2015 and 2016"

日期
Date
2008 2009 2015 2016
I II III I II III I II I II III
播种日期(月-日)
Sown dates (M-D)
4-15 5-1 5-15 4-15 5-1 5-15 4-20 5-20 4-8 4-15 4-22
挂花时期(月-日)
Anthesis dates (M-D)
7-12 7-19 7-27 7-14 7-21 8-4 7-5 7-26 7-15 7-15 7-22

Fig. 1

Daily minimum temperature between sown dates treatments"

Fig. 2

Daily minimum temperature and its difference value between elevated night-time and ambient temperatures"

Table 2

Anthesis, initial, final, elevated temperature value, and difference value of relative humidity for the elevated night-time temperatures regimes"

年份
Year
增温处理
Temperature regimes
挂花日期(月-日)
Anthesis dates
(M-D)
增温开始
日期(月-日)
Initial dates
(M-D)
增温结束
日期(月-日)
Final dates
(M-D)
增温时段
Elevated regimes
(days post-anthesis, dpa)
最低温度增加幅度
Difference values of minimum temperatures (℃)
夜间相对湿度与对照的差值
Difference values of relative humidity (%)
2010 N 8-5 8-5 9-27 0-55 4.5 -2.8
2014 N1 7-31 7-31 8-15 0-15 4.3 -0.4
N2 7-31 8-15 9-3 15-34 1.6 6.4
N3 7-13 8-15 9-3 34-51 1.6 6.4
2015 N 8-15 8-15 9-18 0-34 2.7 0.2
N1 8-15 8-15 9-6 0-22 3.1 -0.8
N2 8-12 9-6 9-18 22-34 2.0 2.0

Fig. 3

Relationships describing the effects of cellulose deposition parameters on fiber bundle strength"

Table 4

Correlation analysis of factors affecting cellulose deposition at different fiber development stages of cotton fiber (period I and II)"

纤维素累积阶段
Period of cotton fiber development
纤维素特征值
Cellulose deposition parameters
最低温度
Daily minimum temperature
最高温度
Daily maximum temperature
平均温度
Average
temperature
≥15℃有效积温
Growing degree
days
日温差
Diurnal temperature range
I 段区 Period I t1 -0.1511 0.0075 -0.0078 0.8236** 0.1807
(0—t1) V1 0.2041 0.1679 0.1700 -0.6589** -0.0453
Wm 0.0994 0.2906 0.2730 -0.0926 0.2228
Str -0.1299 -0.1067 -0.1332 -0.3696* 0.0295
II 段区 Period II t2 -0.6825** -0.4674** -0.5690** 0.1098 0.4931**
(t1t2) T -0.3723* -0.2861 -0.2945 0.6738** 0.2178
Vt 0.6543** 0.6358** 0.6341** -0.2759 -0.1300
Wm 0.4187* 0.6011** 0.5526** 0.5674** 0.2887
V1 0.4703** 0.3247 0.4409** 0.7481** -0.3277
Str 0.1215 0.1480 0.1349 0.3636* 0.0399

Fig. 4

Linear relationships describing the effects of growing degree days during the period from anthesis until the onset of rapid cellulose deposition (period I) on the average rate of cellulose deposition (V1), the time from anthesis until the onset of rapid cellulose deposition (t1) , and fiber bundle strength"

Fig. 5

Linear relationships describing the effects of growing degree days during the period of rapid cellulose deposition (period II) on the duration of rapid cellulose deposition (T), the average rate of cellulose deposition (V1), the maximum cellulose content (Wm), and fiber bundle strength"

Table 3

Correlation analysis of factors affecting cellulose deposition on fiber bundle strength"

因素Factor t1 t2 T V1 Vt Wm Str
t1 1 0.0099 0.0045 0.0001 0.0983 0.1749 0.0754
t2 0.4241** 1 0.0001 0.0527 0.0001 0.9894 0.6073
T -0.4624** 0.6069** 1 0.0053 0.0001 0.2303 0.0363
V1 -0.8822** -0.3256 0.4554** 1 0.3513 0.0030 0.0202
Vt 0.2799 -0.5932** -0.8265** -0.1600 1 0.1420 0.5900
Wm -0.2312 0.0023 0.2050 0.4808** 0.2497 1 0.0001
Str -0.3001 0.0886 0.3501* 0.3855* -0.0929 0.6865** 1
[1] 田景山, 张煦怡, 张旺锋 . 新疆近年机采棉发展过程中的棉纤维品质变化. 中国棉花, 2017,44(12):27-31, 34.
TIAN J S, ZHANG X Y, ZHANG W F . Change of fiber quality along with the development of machine-harvested cotton in Xinjiang. China Cotton, 2017,44(12):27-31, 34. (in Chinese)
[2] 过兴先, 曾伟 . 新疆棉区的气温和棉铃发育关系的研究. 作物学报, 1989,15(3):202-212.
GUO X X, ZENG W . A study on relationship between temperature and cotton boll development in Xinjiang. Acta Agronomica Sinica, 1989,15(3):202-212. (in Chinese)
[3] SHU H M, ZHOU Z G, XU N Y, WANG Y H, ZHENG M . Sucrose metabolism in cotton (Gossypium hirsutum L.) fibre under low temperature during fibre development. European Journal of Agronomy, 2009,31(2):61-68.
[4] WANG Y H, SHU H M, CHEN B L, MCGIFFEN JR M E, ZHANG W J, XU N Y, ZHOU Z G . The rate of cellulose increase is highly related to cotton fibre strength and is significantly determined by its genetic background and boll period temperature. Plant Growth Regulation, 2009,57(3):203-209.
doi: 10.1007/s10725-008-9337-9
[5] DAI Y J, CHEN B L, MENG Y L, ZHAO W Q, ZHOU Z G. OOSTERHUIS D M, WANG Y H . Effects of elevated temperature on sucrose metabolism and cellulose synthesis in cotton fibre during secondary cell wall development. Functional Plant Biology, 2015,42(9):909-919.
doi: 10.1071/FP14361
[6] MEINERT M C, DELMER D P . Change in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiology, 1977,59(6):1088-1097.
doi: 10.1104/pp.59.6.1088 pmid: 16660000
[7] TOKUMOTO H, WAKABAYASHI K, KAMISAKA S, HOSON T . Changes in the sugar composition and molecular mass distribution of matrix polysaccharides during cotton fiber development. Plant and Cell Physiology, 2002,43(4):411-418.
doi: 10.1093/pcp/pcf048 pmid: 11978869
[8] HAIGLER C H, ZHANG D S, WILKERSON C G . Biotechnological improvement of cotton fibre maturity. Physiologia Plantarum, 2005,124(3):285-294.
doi: 10.1111/j.1399-3054.2005.00480.x
[9] ABIDI N, HEQUET E, CABRALES L . Changes in sugar composition and cellulose content during the secondary cell wall biogenesis in cotton fibers. Cellulose, 2010,17(1):153-160.
doi: 10.1007/s10570-009-9364-3
[10] HINCHLIFFE D J, MEREDITH W R, DELHOM C D, THIBODEAUX D P, FANG D D . Elevated growing degree days influence transition stage timing during cotton fiber development resulting in increased fiber-bundle strength. Crop Science, 2011,51(4):1683-1692.
doi: 10.2135/cropsci2010.10.0569
[11] HINCHLIFFE D J, MEREDITH W R, YEATER K M, KIM H J, WOODWARD A W, CHEN Z J, TRIPLETT B A . Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling. Theoretical and Applied Genetics, 2010,120(7):1347-1366.
doi: 10.1007/s00122-010-1260-6 pmid: 20087569
[12] 张文静, 胡宏标, 陈兵林, 王友华, 周治国 . 棉花季节桃加厚发育生理特性的差异及与纤维比强度的关系. 作物学报, 2008,34(5):859-869.
doi: 10.3724/SP.J.1006.2008.00859
ZHANG W J, HU H B, CHEN B L, WANG Y H, ZHOU Z G . Difference of physiological characteristics of cotton bolls in development of fiber thickening and its relationship with fiber strength. Acta Agronomica Sinica, 2008,34(5):859-869. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00859
[13] 张文静, 胡宏标, 王友华, 陈兵林, 束红梅, 周治国 . 棉纤维发育相关酶活性的基因型差异与纤维比强度的关系. 中国农业科学, 2007,40(10):2177-2184.
ZHANG W J, HU H B, WANG Y H, CHEN B L, SHU H M, ZHOU Z G . Fiber strength and enzyme activities of different cotton genotypes during fiber development. Scientia Agricultura Sinica, 2007,40(10):2177-2184. (in Chinese)
[14] 束红梅, 王友华, 陈兵林, 胡宏标, 张文静, 周治国 . 棉花纤维素累积特性的基因型差异与纤维比强度形成的关系. 作物学报, 2007,33(6):921-926.
doi: 10.3321/j.issn:0496-3490.2007.06.009
SHU H M, WANG Y H, CHEN B L, HU H B, ZHANG W J, ZHOU Z G . Genotypic differences in cellulose accumulation of cotton fiber and its relationship with fiber strength. Acta Agronomica Sinica, 2007,33(6):921-926. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2007.06.009
[15] ZHANG W J, SHU H M, HU H B, CHEN B L, WANG Y H, ZHOU Z G . Genotypic differences in some physiological characteristics during cotton fiber thickening and its influence on fiber strength. Acta Physiologiae Plantarum, 2009,31(5):927-935.
doi: 10.1007/s11738-009-0306-3
[16] 束红梅, 王友华, 张文静, 周治国 . 两个棉花品种纤维发育关键酶活性变化特性及其与纤维比强度的关系. 作物学报, 2008,34(3):437-446.
doi: 10.3724/SP.J.1006.2008.00437
SHU H M, WANG Y H, ZHANG W J, ZHOU Z G . Activity changes for enzymes associated with fiber development and relation to fiber strength in two cotton cultivars. Acta Agronomica Sinica, 2008,34(3):437-446. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00437
[17] 刘娟, 宋宪亮, 朱玉庆, 李学刚, 陈二影, 孙学振 . 高品质陆地棉蔗糖代谢关键酶活性对纤维品质形成的影响. 作物学报, 2008,34(10):1781-1787.
doi: 10.3724/SP.J.1006.2008.01781
LIU J, SONG X L, ZHU Y Q, LI X G, CHEN E Y, SUN X Z . Effects of key activities in sucrose metabolism on fiber quality in high quality upland cotton. Acta Agronomica Sinica, 2008,34(10):1781-1787. (in Chinese)
doi: 10.3724/SP.J.1006.2008.01781
[18] 田景山, 虎晓兵, 勾玲, 罗宏海, 张亚黎, 赵瑞海, 张旺锋 . 新疆棉花生育后期夜间增温对纤维产量和比强度的影响. 作物学报, 2012,38(1):140-147.
doi: 10.3724/SP.J.1006.2012.00140
TIAN J S, HU X B, GOU L, LUO H H, ZHANG Y L, ZHAO R H, ZHANG W F . Effects of nighttime temperature increase at the late growth stage on the cotton fiber yield and fiber strength in Xinjiang. Acta Agronomica Sinica, 2012,38(1):140-147. (in Chinese)
doi: 10.3724/SP.J.1006.2012.00140
[19] TIAN J S, HU Y Y, GAN X X, ZHANG Y L, HU X B, GOU L, LUO H H, ZHANG W F . Effects of increased night temperature on cellulose synthesis and the activity of sucrose metabolism enzymes in cotton fiber. Journal of Integrative Agriculture, 2013,12(6):979-988.
doi: 10.1016/S2095-3119(13)60318-4
[20] 白岩, 毛树春, 田立文, 李莉, 董合忠 . 新疆棉花高产简化栽培技术评述与展望. 中国农业科学, 2017,50(1):38-50.
doi: 10.3864/j.issn.0578-1752.2017.01.004
BAI Y, MAO S C, TIAN L W, LI L, DONG H Z . Advances and prospects of high-yielding and simplified cotton cultivation technology in Xinjiang cotton-growing area. Scientia Agricultura Sinica, 2017,50(1):38-50. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.01.004
[21] GIPSON J R, JOHAM H E . Influence of night temperature on growth and development of cotton (Gossypium birsutum L.). I. Fruiting and boll development. Agronomy Journal, 1968,60(3):292-295.
doi: 10.2134/agronj1968.00021962006000030014x
[22] 蒋光华, 孟亚利, 陈兵林, 卞海云, 周治国 . 低温对棉纤维比强度形成的生理机制影响. 植物生态学报, 2006,30(2):335-343.
doi: 10.17521/cjpe.2006.0045
JIANG G H, MENG Y L, CHEN B L, BIAN H Y, ZHOU Z G . Effects of low temperature on physiological mechanisms of cotton fiber strength formation process. Journal of Plant Ecology, 2006,30(2):335-343. (in Chinese)
doi: 10.17521/cjpe.2006.0045
[23] 郭林涛, 徐波, 周治国, 赵文青, 王友华 . 棉纤维发育响应高温胁迫的关键时间窗口. 应用生态学报, 2015,26(8):2428-2436.
GUO L T, XU B, ZHOU Z G, ZHAO W Q, WANG Y H . Key time window of fiber quality formation in response to short-term higher temperature stress. Chinese Journal of Applied Ecology, 2015,26(8):2428-2436. (in Chinese)
[24] CHEN Y L, WANG H M, HU W, WANG S S, SNIDER J L, ZHOU Z G . Co-occurring elevated temperature and waterlogging stresses disrupt cellulose synthesis by altering the expression and activity of carbohydrate balance-associated enzymes during fiber development in cotton. Environmental and Experimental Botany, 2017,135:106-117.
doi: 10.1016/j.envexpbot.2016.12.012
[25] 贺新颖, 周治国, 戴艳娇, 强志英, 陈兵林, 王友华 . 铃期增温对棉花产量、品质的影响及其生理机制. 应用生态学报, 2013,24(12):3501-3507.
HE X Y, ZHOU Z G, DAI Y J, QIANG Z Y, CHEN B L, WANG Y H . Effect of increased temperature in boll period on fiber yield and quality of cotton and its physiological mechanism. Chinese Journal of Applied Ecology, 2013,24(12):3501-3507. (in Chinese)
[26] JASDANWALA R T, SING Y D, CHINOY J J . Auxin metabolism in developing cotton hairs. Journal of Experimental Botany, 1977,28(5):1111-1116.
doi: 10.1093/jxb/28.5.1111
[27] GOKANI S J, THAKER V S . Physiological and biochemical changes associated with cotton fiber development Ⅸ. Role of IAA and PAA. Field Crops Research, 2002,77:127-136.
doi: 10.1007/s11738-999-0027-7
[28] 田景山, 张旺锋, 王文敏, 徐守振, 勾玲, 罗宏海, 张亚黎 . 田间增温控制装置: 201620093391.0. 2016-06-15[2018-05-14].
TIAN J S, ZHANG W F, WANG W M, XU S Z, GOU L, LUO H H, ZHANG Y L . A device of elevating temperatures in the field: 201620093391.0. 2016-06-15[2018-05-14]. (in Chinese)
[29] 李合生 . 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
LI H S. Principles and Techniques of Plant Physiological Experiment. Beijing: Higher Education Press, 2000. ( in Chinese)
[30] HUWYLER H R, FRANZ G, MERIER H . Changes in the composition of cotton fiber cell walls during development. Planta, 1979,146(5):635-642.
doi: 10.1007/BF00388844
[31] TIAN J S, HU X B, GOU L, LUO H H, ZHANG Y L, ZHANG W F . Growing degree days is the dominant factor associated with cellulose deposition in cotton fiber. Cellulose, 2014,21(1):813-822.
doi: 10.1007/s10570-013-0152-8
[32] ZHANG M L, SONG X L, JI H, WANG Z L, SUN X Z . Carbon partitioning in boll plays an important role in fiber quality in colored cotton. Cellulose, 2017,24(2):1087-1097.
doi: 10.1007/s10570-016-1139-z
[33] 王友华, 陈兵林, 卞海云, 蒋光华, 张文静, 胡宏标, 束红梅, 周治国 . 温度与棉株生理年龄的协同效应对棉纤维发育的影响. 作物学报, 2006,32(11):1671-1677.
doi: 10.3321/j.issn:0496-3490.2006.11.012
WANG Y H, CHEN B L, BIAN H Y, JIANG G H, ZHANG W J, HU H B, SHU H M, ZHOU Z G . Synergistic effect of temperature and cotton physiological age on fibre development. Acta Agronomica Sinica, 2006,32(11):1671-1677. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2006.11.012
[34] 赵瑞海, 韩春丽, 张旺锋 . 棉纤维超分子结构及与纤维品质的关系. 棉花学报, 2005,17(2):112-116.
doi: 10.3969/j.issn.1002-7807.2005.02.010
ZHAO R H, HAN C L, ZHANG W F . Super-molecular structure and its relation to quality parameters in cotton fiber. Cotton Science, 2005,17(2):112-116. (in Chinese)
doi: 10.3969/j.issn.1002-7807.2005.02.010
[35] 刘继华, 尹承佾, 于凤英, 孙清荣, 王永民, 贾景农, 边栋材 . 棉花纤维强度的形成机理与改良途径. 中国农业科学, 1994,27(5):10-16.
LIU J H, YIN C Y, YU F Y, SUN Q R, WANG Y M, JIA J N, BIAN D C . Formation mechanism and improvement approach of cotton (Gossypium) fiber strength. Scientia Agricultura Sinica, 1994,27(5):10-16. (in Chinese)
[36] CATHEY G W, LUCKETT K E, RAYBURN JR S T . Accelerated cotton boll dehiscence with growth regulator and desiccant chemicals. Field Crops Research, 1982,5:113-120.
doi: 10.1016/0378-4290(82)90011-9
[37] SNIPES C E, WILLS G D . Influence of temperature and adjuvants on thidiazuron activity in cotton leaves. Weed Science, 1994,42(1):13-17.
doi: 10.1007/BF02358358
[38] SNIPES C E, BASKIN C C . Influence of early defoliation on cotton yield, seed quality, and fiber properties. Field Crops Research, 1994,37:137-143.
doi: 10.1016/0378-4290(94)90042-6
[39] BEDNARZ C W, SHURLEY W D, ANTHONY W S . Losses in yield, quality, and profitability of cotton from improper harvest timing. Agronomy Journal, 2002,94(5):1004-1011.
doi: 10.2134/agronj2002.1004
[40] FAIRCLOTH J C, EDMISTEN K L, WELLS R, STEWART A M . The influence of defoliation timing on yields and quality of two cotton cultivars. Crop Science, 2004,44(1):165-172.
doi: 10.2135/cropsci2004.0165
[41] BANGER M P, LONG R T, CONSTABLE G A, GORDON S G . Minimizing immature fiber and neps in upland cotton. Agronomy Journal, 2010,102(2):781-789.
doi: 10.2134/agronj2009.0454
[42] 张煦怡, 田景山, 随龙龙, 张鹏鹏, 张旺锋 . 新疆棉区脱叶催熟剂喷施时间对棉铃发育的影响. 中国棉花, 2018,45(6):15-20, 35.
ZHANG X Y, TIAN J S, SUI L L, ZHANG P P, ZHANG W F . The impact of defoliation timing on cotton boll development in Xinjiang Region. China Cotton, 2018,45(6):15-20, 35. (in Chinese)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[4] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[5] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[6] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[7] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[8] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[9] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[10] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
[11] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[12] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[13] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[14] ZHOU JingLong,FENG ZiLi,WEI Feng,ZHAO LiHong,ZHANG YaLin,ZHOU Yi,FENG HongJie,ZHU HeQin. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2021, 54(17): 3691-3701.
[15] WEN Ming, LI MingHua, JIANG JiaLe, MA XueHua, LI RongWang, ZHAO WenQing, CUI Jing, LIU Yang, MA FuYu. Effects of Nitrogen, Phosphorus and Potassium on Drip-Irrigated Cotton Growth and Yield in Northern Xinjiang [J]. Scientia Agricultura Sinica, 2021, 54(16): 3473-3487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!