Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (19): 3870-3893.doi: 10.3864/j.issn.0578-1752.2024.19.012

• HORTICULTURE • Previous Articles     Next Articles

Influence of Pre-Harvest Application of Benzothiadiazole on Color and Aroma of Cabernet Gernischt Grapes During Fruit Development

WANG JianFeng1(), HAN YuQi1, WANG Kai1, ZHAO Man1, LI JiXin1, FENG LiDan1, ZHANG Bo1, ZHAO Yong2, JIANG YuMei1()   

  1. 1 College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070
    2 Gansu Mogao Industrial Development Co., Ecological Agriculture Demonstration Plantation Area, Wuwei 733008, Gansu
  • Received:2024-03-05 Accepted:2024-06-24 Online:2024-10-01 Published:2024-10-09
  • Contact: JIANG YuMei

Abstract:

【Objective】This study aimed to investigate the impact of benzothiadiazole (BTH) on the expression of pigments and related genes in grapevines during fruit ripening, and to elucidate its influence on the composition and concentration of free and bound volatile compounds, thereby exploring the underlying mechanisms of BTH in regulating anthocyanin and aroma biosynthesis in grape berries.【Method】Wine grapes Cabernet Gernischt were used as test material, and the whole grapevine was sprayed with 0.37 mmol∙L-1 BTH solution containing 0.1% Tween 80 at the swelling period. A control group (CK) was sprayed with an equivalent solution of Tween 80 alone. The impact of BTH treatment on grape quality was evaluated by measuring chlorophyll, carotenoids, total anthocyanins, total proanthocyanidins and anthocyanin, as well as changes in concentration and composition of free and bound aroma in grapes.【Result】BTH application notably decreased chlorophyll a, b, and total carotenoid content while enhancing total proanthocyanidins, anthocyanins, and color index of red grapes, thus facilitating grape color development. In addition, BTH significantly upregulated the expression of anthocyanin synthesis-related genes, including VvCHS1, VvF3H1, VvDFR, VvLDOX, VvUFGT, and VvMYBA. It also significantly decreased the content of free and bound C6/C9 compounds, free straight-chain aliphatic compounds, free branched aliphatics compounds, but increased bound straight-chain aliphatic compounds, free and bound aromatic compounds, bound branched aliphatic compounds, free and bound terpenes, and free and bound norisoprenoids concentrations. By defining qualitative and quantitative biomarkers for grape ripening stages, it was found that aroma evolution from two adjacent developmental stages was markedly different, and BTH significantly influenced the trend of aroma evolution in both free and bound. BTH significantly altered the trend of free aroma at 9 weeks post-flowering (wpf) and 11 wpf as well as in the bound aroma of 11 wpf. The six major categories of aroma, free C6/C9 compounds, straight-chain aliphatic compounds, and terpenes, and bound C6/C9 compounds, straight-chain aliphatic compounds, and terpenes, were the major contributing components that differentiated aroma performance between CK and BTH grapes. A total of 23 active aroma components including 3-hexenal and β-ionone were identified by using the odor activity value>0.1 as threshold. BTH mainly attenuated the vegetal and fatty flavors of grapes and enhances the floral and fruity odors.【Conclusion】BTH promoted grape coloration and changed the aroma content and composition by altering expression pattern of chlorophyll, carotenoid, anthocyanin synthesis and related genes, which in turn improved the quality of grapes.

Key words: wine grape, Cabernet Gernischt, benzothiadiazole, aroma, color, ripening process

Table 1

Real-time quantitative polymerase chain reaction primer sequences"

基因名称
Gene name
Genebank登录号
Genebank accession number
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
VvCHS1 AB015872 CTATGTGCTACAGTCCTGCA TGGAACGTAGACTACAGTTC
VvF3H1 X75965 CCAATCATAGCAGACTGTCC TCAGAGGATACACGGTTGCC
VvDFR X75964 GAAACCTGTAGATGGCAAGA GGCCAAATCAAACTACCAGA
VvLDOX X75966 AGGGAAGGGAAAACAAGTAG ACTCTTTGGGGATTGACTGG
VvUFGT AF000372 GGGATGGTGATGGCTGTGG ACATGGGTGGAGAGTGAGTT
VvMYBA1 AB047093 TCCAGGAAGAAGGGAGAGAT ATGGCTTCCTGGAAGTACTG
Vvactin NB000705 CTTGCATCCCTCAGCACCTT TCCTGTGGACAATGGATGGA

Fig. 1

Changes in berry morphology during ripening of Cabernet Gernischt grapes Weeks post-flowering"

Fig. 2

Effect of BTH treatment on color quality of grapes Different uppercase letters indicate significant differences between BTH and CK (P<0.05), while different lowercase letters indicate significant differences within CK or BTH between different weeks of post-flowering (P<0.05). The same as below"

Fig. 3

Effect of BTH treatment on the expression of genes related to anthocyanin synthesis"

Fig. 4

Effect of BTH treatment on free aroma compounds during grapes ripening The left column for the same sampling date denotes CK, and the right column denotes BTH. The same below"

Fig. 5

Effect of BTH treatment on bound aroma compounds during grapes ripening"

Table 2

Qualitative and quantitative labeling compounds for different stages of grape ripening"

成熟阶段
Maturity stage
CK BTH
定性标记物
Qualitative marker
定量标记物
Quantitative marker
定性标记物
Qualitative marker
定量标记物
Quantitative marker
膨大前期
Pre-swelling stage(3wpf
(F)萘*、(B)3-乙基甲苯,(B)环己酮*、(B)乙酸叶醇酯*、(B)E-2-己烯醇*、(B)异戊酸*、(B)十二醛*(B)十一酸乙酯*、(B)正戊酸*
(F)Naphthalene*, (B)3-Ethyltoluene, (B)Cyclohexanone*, (B)(3Z)-3-Hexen-1-yl acetate*, (B)(E)-2-hexenol*, (B)3-Methylbutanoic acid*, (B)Lauryl aldehyde*, (B)Ethyl undecanoate*, (B)Pentanoic acid*
(F)萘、(F)α-律草烯、(B)对二甲苯、(B)邻乙基甲苯、(B)2-庚醇、(B)苯甲醛、(B)壬醇、(B)α-松油醇
(F)Naphthalene, (F)α-Caryophyllene, (B)p-Xylene, (B)2-Ethyltoluene, (B)2-Heptanol, (B)Benzaldehyde, (B)1-Nonanol, (B)α-Terpineol
(F)十二醛*、(F)萘*、(F)3,4-二甲基苯乙酮*、(B)3-乙基甲苯*、(B)乙酸己酯*、(B)环己酮*、(B)乙酸叶醇酯*、(B)E-2-己烯醇*、(B)丁酸*、(B)十二醛*、(B)十一酸乙酯*、(B)正戊酸*
(F)Lauryl aldehyde*, (F)Naphthalene*, (F)3,4- Dimethylacetophenone*, (B)3-Ethyltoluene*, (B)Hexyl acetate*, (B)Cyclohexanone*, (B) (3Z)-3-Hexen-1-yl acetate*, (B)(E)-2-Hexenol*, (B)Butyric acid*, (B)Lauryl aldehyde*, (B) Ethyl undecanoate*, (B)Pentanoic acid*
(F)E,E-2,4-己二烯醛、(F)α-律草烯、(B)对二甲苯、(B)2-庚醇、(B)壬醛
(F)(E,E)-2,4-Hexadienal, (F)α-Caryophyllene, (B)p- Xylene, (B)2-Heptanol, (B)Nonanal
膨大中期
Mid-swelling stage(5wpf
(F)2,4-壬二烯醛、(B)Z-3,7-二甲基-2,6-辛二烯醛*、(B)橙花醇*
(F)nona-2,4-dien-1-al, (B)(Z)-citral*, (B)cis-3,7- Dimethyl-2,6-octadien-1-ol*, (B)Nerol*
(F)香叶醇、(F)β-紫罗兰酮、(F)2,4-壬二烯醛、(B)乙苯、(B)3-甲基-3-丁烯-1-醇、(B)乙酸叶醇酯、(B)3-羟基己酸乙酯
(F)2,7-Dimethyl-2,6-octadiene, (F)β-Ionone, (F)nona- 2,4-dien-1-al, (B)ether, (B)Isoprenol, (B)(3Z)-3- Hexen-1-yl acetate, (B)Ethyl 3-hydroxyhexanoate
(B)3-甲基-3-丁烯-1-醇*、(B)橙花醇*、(B)4-甲基戊酸*
(B)Isoprenol*, (B)cis-3,7-Dimethyl-2,6-octadien -1-ol*, (B)4-Methylpentanoic acid*
(F)乙酸叶醇酯、(F)E-2-庚烯醛(F)E,E-2,4-庚二烯醛(F)壬醇(F)香叶醇(B)乙苯(B)2-庚醇(B)2-辛烯醛
(F)(3Z)-3-Hexen-1-yl acetate, (F)Heptenal, (F)(E,E)- 2,4-Heptadienal, (F)1-Nonanol, (F)2,7-Dimethyl-2,6- octadiene, (B)ether, (B)2-Heptanol, (B)2-octen-1-al
膨大后期
End-swelling stage(7wpf
(F)正辛醛(F)十一醛(B)环己酮(B)2-辛烯醛(B)异戊酸(B)月桂醇
(F)Octanal, (F)Undecanal, (B)Cyclohexanone, (B)2-octen-1-al, (B)3-Methylbutanoic acid, (B)1- Dodecanol
(F)正辛醛、(B)正戊醇、(B)乙酸己酯、(B)6-甲基-5-庚烯-2-醇、(B)壬酸乙酯、(B)α-松油醇
(F)Octanal, (B)Pentanol, (B)Hexyl acetate, (B)6- Methyl-5-hepten-2-ol, (B)Ethyl nonanoate, (B)α- Terpineol
转色中期
Mid-veraison stage(9wpf
(B)6-甲基-5-庚烯-2-醇
(B)6-Methyl-5-hepten-2-ol
(F)香叶醇(B)正己醛、(B)间二甲苯、(B)己酸乙酯、(B)2-甲基苯乙烯、(B)6-甲基-5-庚烯-2-醇、(B)E-2-壬醛、(B)苯乙酮
(F)2,7-Dimethyl-2,6-octadiene, (B)Hexanal, (B)m- Xylene, (B)Ethyl hexanoate, (B)2-Vinyltoluene, (B)6-Methyl-5-hepten-2-ol, (B)(2E)-2-Nonenal, (B)Acetophenone
(F)乙酸己酯、(B)2-乙基己醇、(B)癸酸乙酯
(F)Hexyl acetate, (B)2-ethyl-1-hexanol, (B)Ethyl caprate
转色结束
End-veraison stage(11wpf
(F)2-乙基己醇(F)E-2-辛烯醇、(B)戊醛、(B)辛酸乙酯、(B)Z-3,7-二甲基-2,6-辛二烯醛、(B)十二醛、(B)香茅醇
(F)2-Ethylhexanol, (F)E-2-Octen-1-ol, (B)Valeraldehyde, (B)Ethyl caprylate, (B)(Z)-citral, (B)Lauryl aldehyde, (B)Citronellol
(F)1-辛烯-3-酮*、(B)邻乙基甲苯*
(F)1-Octen-3-one*, (B)2-Ethyltoluene*
(F)E-3-己烯醇(F)叶醇(F)辛酸乙酯(F)1-辛烯-3-醇(F)癸醛(F)十一醛(F)十二醛(F)2,6-二叔丁基对甲酚(B)己酸乙酯(B)仲辛酮(B)己醇(B)辛酸乙酯(B)正辛醇(B)E-2-壬醛(B)壬醇(B)异戊酸(B)正戊酸(B)正己酸(B)庚酸
(F)E-3-Hexen-1-ol, (F)cis-3-Hexen-1-ol, (F)Ethyl caprylate, (F)Oct-1-en-3-ol, (F)Decanal, (F)Undecanal, (F)Lauryl aldehyde, (F)Butylated hydroxytoluene, (B)Ethyl hexanoate, (B)2-Octanone, (B)1-Hexanol, (B)Ethyl caprylate, (B)1-Octanol, (B)(2E)-2- Nonenal, (B)1-Nonanol, (B)3-Methylbutanoic acid, (B)Pentanoic acid, (B)1-Hexanoic acid, (B)6- Heptynoic acid
成熟中期
Mid-ripening stage(13wpf
(F)香叶基丙酮*、(B)己酸乙酯
(F)Geranylacetone*, (B)Ethyl hexanoate
(F)1-十三烯、(F)2-乙基己醇、(F)1-十六烯、(F)香叶基丙酮(F)E-2-己烯酸(B)己酸乙酯(B)己醇(B)叶醇(B)E-2-己烯醇(B)丁酸(B)十一酸乙酯(B)庚酸(B)辛酸
(F)1-Tridecene, (F)2-ethyl-1-hexanol, (F)1-Hexadecene, (F)Geranylacetone, (F)E-Hex-2-enoic acid, (B)Ethyl hexanoate, (B)1-Hexanol, (B)cis-3-Hexen-1-ol, (B)(E)-2-Hexenol, (B)Butyric acid, (B)Ethyl undecanoate, (B)6-Heptynoic acid, (B)Octanoic acid
(F)苯乙烯*、(F)6-甲基-5-庚烯-2-酮*、(B)4-甲基-3-戊烯-1-醇
(F)Styrene*, (F)6-Methylhept-5-en-2-one*, (B)4-methyl-3-penten-1-ol
(F)乙酸乙酯(F)正癸烯(F)苯乙烯(F)仲辛酮(F)醋酸-2-乙基己酯(F)2-壬酮(F)1-十三烯(F)2-乙基己醇(F)甲基壬基甲酮(F)1-十六烯(B)己醛(B)环辛四烯(B)4-甲基-3-戊烯-1-醇(B)6-甲基庚醇(B)香茅醇(B)2-甲基己酸(B)2-丁基辛醇(B)月桂醇
(F)Ethyl acetate, (F)1-decene, (F)Styrene, (F)2- Octanone, (F)2-ethylhexyl acetate, (F)2-Nonanone, (F)1-Tridecene, (F)2-Ethylhexanol, (F)Methyl nonyl ketone, (F)1-Hexadecene, (B)Hexanal, (B)1,3,5,7- Cyclooctatetraene, (B)4-methyl-3-penten-1-ol, (B) isooctanols, (B)Citronellol, (B)2-Methylhexanoic acid, (B)2-butyl-1-Octanol, (B)1-Dodecanol
全熟期
Ripe stage
15wpf
(F)乙酸乙酯、(F)乙酸异戊酯、(F)正戊醇、(F)2,4-二甲基-3-庚醇、(F)6-甲基庚醇、(F)癸酸乙酯、(F)2-十二酮、(F)正癸醇、(F)香茅醇、(F)乙酸苯乙酯、(F)月桂酸乙酯、(F)苯乙醇、(B)2-己烯醛、(B)仲辛酮*、(B)辛酸甲酯、 (F)乙酸乙酯(F)乙酸异戊酯(F)正戊醇(F)2,4-二甲基-3-庚醇、(F)1-十三烯、(F)2-乙基己醇(F)癸醛(F)E-2-壬醛(F)6-甲基庚醇(F)癸酸乙酯(F)1-十六烯(F)苯乙酮(F)2-十二酮(F)正癸醇(F)香茅醇(F)乙酸苯乙酯(F)月桂酸 (F)乙酸异戊酯、(F)正戊醇、(F)1-十二烯、(F)2,4-二甲基-3-庚醇、(F)己醇、(F)丙烯酸异辛酯、(F)2-十二酮、(F)柠檬醛、(F)香茅醇、(F)β-大马士酮*、(F)乙酸苯乙酯、(F)月桂酸乙酯、(F)苯乙醇、(F)2,4-壬二烯 (F)乙酸乙酯、(F)乙酸异戊酯(F)正戊醇(F)1-十二烯(F)2,4-二甲基-3-庚醇(F)E-2-己烯醇(F)正庚醇(F)丙烯酸异辛酯(F)E-2-壬醛(F)E-2-,Z-6-壬二烯醛(F)癸酸乙酯(F)2-十二酮(F)柠檬醛(F)香茅醇(F)4-异丙基苯甲醛
(B)E,E-2,4-己二烯醛、(B)乙酸壬酯、(B)β-环柠檬醛、(B)月桂酸乙酯、(B)2-甲基己酸、(B)水杨酸甲酯、(B)2-丁基辛醇、(B)十三酸甲酯、(B)β-紫罗兰酮
(F)Ethyl acetate, (F)Isoamyl acetate, (F)Pentanol, (F)2,4-dimethyl-3-Heptanol, (F)isooctanols, (F) Ethyl caprate, (F)2-Dodecanone, (F)Decan-1- ol, (F)Citronellol, (F)Phenethyl acetate, (F)Ethyl laurate, (F)Phenethyl alcohol, (B)2-hexen-1-al, (B)2-Octanone*, (B)Methyl octylate, (B)(E,E)- 2,4-Hexadienal, (B)Nonyl acetate, (B)β-Cyclocitral, (B)Ethyl laurate, (B)2-Methylhexanoic acid, (B)Methyl salicylate, (B)2-butyl-1-Octanol, (B)Methyl tridecanoate, (B)β-Ionone
乙酯(F)苯乙醇(B)戊醛(B)2-己烯醛(B)E-2-己烯醛(B)辛酸甲酯(B)E,E-2,4-己二烯醛(B)正庚醇(B)6-甲基庚醇(B)芳樟醇(B)正辛醇(B)十一醛(B)乙酸壬酯(B)β-环柠檬醛(B)正癸醇(B)2-甲基己酸(B)水杨酸甲酯(B)2-丁基辛醇(B)十一醇(B)十三酸甲酯(B)β-紫罗兰酮
(F)Ethyl acetate, (F)Isoamyl acetate, (F)Pentanol, (F)2,4-dimethyl-3-Heptanol, (F)1-Tridecene, (F)2- ethyl-1-hexanol, (F)Decanal, (F)(2E)-2-Nonenal, (F)Isooctanols, (F)Ethyl caprate, (F)1-Hexadecene, (F)Acetophenone, (F)2-Dodecanone, (F)Decan-1- ol, (F)Citronellol, (F)Phenethyl acetate, (F)Ethyl laurate, (F)Phenethyl alcohol, (B)Valeraldehyde, (B)2-Hexen-1-al, (B)E-2-Hexenal, (B)Methyl octylate, (B)(E,E)-2,4-Hexadienal, (B)Heptan-1- ol, (B)isooctanols, (B)Linalool, (B)1-Octanol, (B) Undecanal, (B)Nonyl acetate, (B)β-Cyclocitral, (B)Decan-1-ol, (B)2-Methylhexanoic acid, (B) Methyl salicylate, (B)2-butyl-1-Octanol, (B)1- Undecanol, (B)Methyl tridecanoate, (B)β-Ionone
醛、(B)2-己烯醛、(B)5-甲基-3-己醇、(B)辛酸甲酯、(B)β-环柠檬醛、(B)β-紫罗兰酮
(F)Isoamyl acetate, (F)Pentanol, (F)dodecene, (F)2,4-dimethyl-3-Heptanol, (F)1-Hexanol, (F)Isooctyl acrylate, (F)2-Dodecanone, (F)Citral, (F)Citronellol, (F)β-Damascone*, (F)Phenethyl acetate, (F)Ethyl laurate, (F)Phenethyl alcohol, (F)nona-2,4-dien-1- al, (B)2-hexen-1-al, (B)5-methyl-3-Hexanol, (B)Methyl octylate, (B)β-Cyclocitral, (B)β- Ionone
(F)乙酸苯乙酯(F)月桂酸乙酯(F)香叶基丙酮(F)苯乙醇(F)E-2-己烯酸(F)2,4-壬二烯醛(B)2-己烯醛(B)正辛醛(B)5-甲基-3-己醇(B)环己酮(B)辛酸甲酯(B)E,E-2,4-己二烯醛(B)E-2-辛烯醛(B)正庚醇(B)芳樟醇(B)十一醛(B)β-环柠檬醛(B)3-羟基己酸乙酯(B)月桂酸乙酯(B)柠檬醛(B)正癸醇(B)水杨酸甲酯(B)香叶基丙酮(B)十一醇(B)苯甲醇(B)十三酸甲酯(B)β-紫罗兰酮
(F)Ethyl acetate, (F)Isoamyl acetate, (F)Pentanol, (F)Dodecene, (F)2,4-Dimethyl-3-heptanol, (F)(E)-2- Hexenol, (F)Heptan-1-ol, (F)Isooctyl acrylate, (F) (2E)-2-Nonenal, (F)(2E,6Z)-2,6-Nonadienal, (F)Ethyl caprate, (F)2-Dodecanone, (F)Citral, (F)Citronellol, (F)4-Isopropylbenzaldehyde, (F)Phenethyl acetate, (F)Ethyl laurate, (F)Geranylacetone, (F)Phenethyl alcohol, (F)E-Hex-2-enoic acid, (F)nona-2,4-dien-1- al, (B)2-hexen-1-al, (B)Octanal, (B)5-methyl-3- Hexanol, (B)Cyclohexanone, (B)Methyl octylate, (B) (E,E)-2,4-Hexadienal, (B)(2E)-2-Octenal, (B)Heptan- 1-ol, (B)Linalool, (B)Undecanal, (B)β-Cyclocitral, (B)Ethyl 3-hydroxyhexanoate, (B)Ethyl laurate, (B)Citral, (B)Decan-1-ol, (B)Methyl salicylate, (B) Geranylacetone, (B)1-Undecanol, (B)Benzyl alcohol, (B)Methyl tridecanoate, (B)β-Ionone

Fig. 6

Principal component analysis of aroma concentration during grape ripening"

Fig. 7

Mufzz analysis of BTH treatment on free aroma during ripening A:CK;B:BTH"

Fig. 8

Mufzz trend analysis of BTH treatment on bound aroma during grape ripening A:CK;B:BTH"

Fig. 9

OPLS-DA of the influence of BTH treatment on free and bound aroma"

Table 3

Aroma compounds with OAV >0.1 and their thresholds during the development of grapes"

香气名称
Aroma Name
OAV 阈值
Threshold (μg∙L-1)[9]
香味描述
Fragrance description
气味
系列
Odor Series
3wpf-
CK
3wpf-
BTH
5wpf-
CK
5wpf-
BTH
7wpf-
CK
7wpf-
BTH
9wpf-
CK
9wpf-
BTH
11wpf-CK 11wpf-
BTH
13wpf-
CK
13wpf-
BTH
15wpf-
CK
15wpf-
BTH
1-戊烯-
3-酮
1-Penten-3-one
<0.1 <0.1 11.78±1.28 15.72±8.91 <0.1 11.19±0.93 <0.1 <0.1 5.97±0.53 4.65±0.17 <0.1 <0.1 1.83±0.78 1.67±0.34 0.1 蘑菇香,青草,鱼腥味
Mushroom, grassy, fish
3, 4
正己醛
Hexanal
64.54±4.22 65.49±3.44 55.55±3.99 54.17±0.94 42.43±3.27 44.27±2.10 32.55±4.30 40.75±2.35 134.11±2.09 111.44±9.91 106.80±5.94 113.47±3.08 95.11±9.17 99.04±10.17 4.5 青草味
Grassy
3
Z-3-
己烯醛
Z-3-
hexenal
50.67±4.03 51.00±4.13 40.56±4.81 34.12±3.57 35.16±8.22 28.99±3.94 8.83±1.26 6.20±0.68 28.84±1.02 24.64±3.30 26.79±4.81 16.24±3.13 32.88±10.35 42.53±14.21 0.25 青草味
Grassy
3
3-己烯醛
3-Hexenal
240.98±62.40 247.62±45.55 269.86±55.02 209.31±49.64 290.92±31.99 235.83±61.43 48.86±10.42 4.61±0.91 60.24±2.21 42.09±8.54 34.87±3.70 12.25±3.74 36.78±25.50 21.27±23.18 0.25 青草味
Grassy
3
庚醛
Heptanal
0.10±0.02 <0.1 0.17±0.05 0.16±0.06 0.35±0.13 0.15±0.04 <0.1 <0.1 0.20±0.03 0.15±0.00 0.81±0.29 0.18±0.01 0.48±0.34 0.30±0.35 3 鱼干味,柑橘,脂肪味,
Dried fish,
citrus, fat
3, 4
2-己烯醛
2-Hexenal
1.07±0.08 1.02±0.06 1.05±0.12 0.98±0.08 0.99±0.12 0.70±0.04 0.54±0.01 0.69±0.14 1.16±0.02 0.81±0.04 1.07±0.16 0.95±0.10 1.00±0.10 0.96±0.10 30 绿叶清香,水果香
Green leafy,
fruity
2, 3
E-2-
己烯醛
E-2-
Hexenal
37.44±1.95 39.21±1.60 35.06±3.74 42.85±4.60 38.04±3.90 51.51±4.42 55.39±3.56 59.01±6.83 107.58±3.10 79.91±7.31 88.52±5.69 80.66±5.91 81.18±6.83 82.74±3.95 17 青草味,绿叶气味
Grass, green leafy
3
苯乙烯
Styrene
1.60±0.21 1.50±0.04 1.66±0.07 1.92±0.16 2.33±0.32 2.34±0.29 2.07±0.25 1.91±0.12 1.18±0.09 1.50±0.20 1.06±0.11 <0.1 1.95±0.12 2.16±0.12 10 蜜蜡,花香
Beeswax, floral
1, 2
正辛醛
Octanal
3.46±0.41 3.62±0.52 5.29±0.65 4.92±0.80 9.97±2.54 6.83±0.83 3.80±0.24 3.17±0.96 4.88±0.62 4.78±0.45 3.31±1.59 2.48±0.58 3.14±0.84 2.87±0.64 0.7 脂肪味,果香
Fat, fruity
2, 4
E-2-
庚烯醛
E-2-
Heptenal
0.78±0.09 0.81±0.08 0.66±0.11 1.34±0.16 0.51±0.03 0.70±0.07 0.27±0.03 0.25±0.07 0.78±0.06 0.28±0.05 0.26±0.05 0.24±0.01 0.25±0.06 0.20±0.04 13 甜橙,橘子,油脂
Sweet orange, tangerine, grease
2, 4
叶醇
Z-3-
Hexenol
<0.1 <0.1 <0.1 0.17±0.01 <0.1 <0.1 0.26±0.04 0.39±0.09 0.11±0.01 0.25±0.07 <0.1 <0.1 <0.1 <0.1 70 草本植物,青草味
Herbal, grassy
3
壬醛
1-Nonanal
16.47±1.21 16.46±1.66 11.68±1.35 13.90±0.76 22.57±0.38 17.51±0.40 9.76±0.41 8.92±0.23 11.81±0.12 11.65±0.48 9.02±0.44 8.18±0.42 10.94±1.68 10.90±0.63 1 脂肪,柑橘,绿色,水果味
Fat, citrus,
green, fruity
2, 3, 4
2-辛烯醛
2-Octenal
1.04±0.03 1.10±0.06 <0.1 1.46±0.28 1.70±0.29 1.74±0.12 0.79±0.13 0.68±0.27 1.53±0.30 0.43±0.09 1.47±0.08 0.55±0.09 0.73±0.20 0.62±0.18 3 湿土,金属,黄瓜,脂肪
Wet soil, metal, cucumber, fat
2, 4, 8
1-辛烯-
3-醇
Oct-1-en-3-ol
<0.1 <0.1 1.40±0.07 <0.1 <0.1 2.92±0.62 1.85±0.10 2.11±0.40 5.81±0.96 3.77±0.20 1.70±0.49 1.47±0.22 2.21±1.93 0.95±1.65 1 蘑菇味,青草,鱼腥味
Mushroom, grassy, fishy
3, 4
癸醛
Decanal
43.85±7.36 43.96±8.21 48.81±0.15 70.28±11.96 108.47±6.79 75.58±2.47 39.76±4.75 50.27±1.48 31.24±1.81 54.07±7.13 55.08±3.66 70.11±2.89 57.85±9.60 90.35±14.43 0.1 酸味,玫瑰,椪柑味
Sour, rose, ponkan
1, 2, 5
茶螺烷
Theaspirane
5.37±0.10 4.91±0.35 6.30±0.14 6.75±1.71 6.81±1.56 7.87±2.14 3.71±0.68 3.50±0.92 3.14±0.78 3.30±0.48 3.04±0.67 4.06±0.07 5.06±0.82 3.38±1.56 0.5 紫罗兰,
覆盆子
Violets, raspberries
1, 2
E-2-壬醛
(2E)-2-
Nonenal
4.79±2.56 5.08±0.54 4.40±0.41 7.83±1.25 12.18±2.13 7.25±1.76 10.08±0.26 11.36±0.96 29.56±2.70 19.23±2.15 22.42±1.95 19.91±2.37 49.22±11.01 44.38±8.18 0.08 柑橘香,花香
Citrus, floral
1, 2
E-2-,Z-6-壬二烯醛
(2E,6Z)-Nonadienal
0.15±0.05 0.15±0.02 0.12±0.02 0.19±0.03 0.26±0.04 0.17±0.06 0.93±0.06 0.54±0.10 1.48±0.26 1.94±0.19 1.27±0.18 1.53±0.15 2.85±0.52 3.11±0.53 0.65 苦杏仁,
植物味
Bitter almonds, vegetal
3, 5
β-环柠
檬醛
β-
Cyclocitral
0.41±0.02 0.42±0.03 0.38±0.04 0.35±0.08 0.39±0.03 0.38±0.13 0.15±0.02 0.14±0.01 0.15±0.01 0.22±0.03 0.15±0.04 0.18±0.01 0.14±0.03 0.17±0.05 5.5 紫丁香,
玫瑰味
Lilac, rose
1
β-大马
士酮
β-Damascenone
3.75±0.39 4.34±0.93 5.85±0.04 5.34±1.20 11.14±1.72 8.36±1.18 <0.1 4.58±1.15 5.42±1.97 8.81±0.88 1.52±0.16 2.57±0.77 <0.1 <0.1 0.056 玫瑰,花香
Rose, floral
1
香叶醇
Geraniol
<0.1 <0.1 3.05±0.62 6.90±0.83 <0.1 2.61±0.74 1.56±0.21 1.95±0.47 <0.1 <0.1 <0.1 <0.1 1.51±0.08 2.58±1.52 0.1 橙花,玫瑰花,天竺葵
Orange blossom, Rose flower,
geranium
1
2,6-二叔
丁基对
甲酚
Butylated hydroxytoluene
0.83±0.08 0.86±0.08 0.82±0.08 1.01±0.11 1.01±0.08 0.89±0.18 0.90±0.24 0.85±0.21 0.65±0.03 0.42±0.06 1.28±0.21 1.94±0.15 1.82±0.15 1.96±0.18 50 蜡质,脂肪,绿色植物
Waxes, fat,
green
3, 4
β-紫罗
兰酮
β-Ionene
12.71±3.49 13.82±2.32 19.17±3.10 15.72±3.88 5.92±0.18 64.47±0.30 49.53±5.79 57.83±11.93 71.95±9.27 83.58±6.75 66.92±12.17 92.86±11.58 33.04±29.44 59.54±7.31 0.007 香料,玫瑰,紫罗兰
Spice, rose,
violet
1, 6

Fig. 10

Effect of BTH treatment on the aroma profile during grapes ripening"

[1]
ZHU X, YANG X S, YANG L, FANG Y, JIANG Y P, LI Y C. Preharvest salicylic acid application improves the amino acid content and volatile profile in Vitis vinifera L. cv. Chardonnay during development. Plant Physiology and Biochemistry, 2023, 204: 108103.
[2]
LOMBARDO V A, OSORIO S, BORSANI J, LAUXMANN M A, BUSTAMANTE C A, BUDDE C O, ANDREO C S, LARA M V, FERNIE A R, DRINCOVICH M F. Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiology, 2011, 157(4): 1696-1710.

doi: 10.1104/pp.111.186064 pmid: 22021422
[3]
WU Y S, ZHANG W W, SONG S R, XU W P, ZHANG C X, MA C, WANG L, WANG S P. Evolution of volatile compounds during the development of Muscat grape ‘Shine Muscat’ (Vitis labrusca×V. vinifera). Food Chemistry, 2020, 309: 125778.
[4]
WANG J F, HAN Y Q, CHEN C X, SAM F E, GUAN R W, WANG K, ZHANG Y, ZHAO M, CHEN C X, LIU X, JIANG Y M. Influence of benzothiadiazole on the accumulation and metabolism of C6 compounds in Cabernet Gernischt grapes (Vitis vinifera L.). Foods, 2023, 12(19): 3710.
[5]
SALIFU R. 肥料和苯并噻二唑(BTH)处理对红葡萄香气特征的影响[D]. 兰州: 甘肃农业大学, 2022.
SALIFU R. Influence of fertilizer and benzothiadiazole (BTH) treatments on the aroma profile of red grapes application[D]. Lanzhou: Gansu Agricultural University, 2022. (in Chinese)
[6]
JIANG Y M, SAM F E, LI J X, BI Y, MA T Z, ZHANG B. Pre-harvest benzothiadiazole spraying promotes the cumulation of phenolic compounds in grapes. Foods, 2022, 11(21): 3345.
[7]
KALUA C M, BOSS P K. Evolution of volatile compounds during the development of cabernet sauvignon grapes (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 2009, 57(9): 3818-3830.
[8]
POUDEL P R, AZUMA A, KOBAYASHI S, KOYAMA K, GOTO-YAMAMOTO N. VvMYBAs induce expression of a series of anthocyanin biosynthetic pathway genes in red grapes (Vitis vinifera L.). Scientia Horticulturae, 2021, 283: 110121.
[9]
ALEM H, RIGOU P, SCHNEIDER R, OJEDA H, TORREGROSA L. Impact of agronomic practices on grape aroma composition: A review. Journal of the Science of Food and Agriculture, 2019, 99(3): 975-985.

doi: 10.1002/jsfa.9327 pmid: 30142253
[10]
陈春霞, 张祯, 孔祥锦, 赵勇, 梁玉浩, 张煜, 李霁昕, 蒋玉梅. 转色期BTH诱抗改变霞多丽葡萄果实理化品质和香气构成. 农业工程学报, 2023, 39(3): 237-247.
CHEN C X, ZHANG Z, KONG X J, ZHAO Y, LIANG Y H, ZHANG Y, LI J X, JIANG Y M. Physicochemical quality and aroma composition of Chardonnay berries changed by spraying BTH during veraison. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(3): 237-247. (in Chinese)
[11]
PALADINES-QUEZADA D F, MORENO-OLIVARES J D, FERNÁNDEZ- FERNÁNDEZ J I, BLEDA-SÁNCHEZ J A, MARTÍNEZ-MORENO A, GIL-MUÑOZ R. Elicitors and pre-fermentative cold maceration: effects on polyphenol concentration in monastrell grapes and wines. Biomolecules, 2019, 9(11): 671.
[12]
张祯. 采前BTH多次处理对‘霞多丽’葡萄降异戊二烯香气物质代谢的影响分析[D]. 兰州: 甘肃农业大学, 2022.
ZHANG Z. Effects analysis of pre-harvest BTH multiple treatment on norisoprenoids metabolism in ‘Chardonnay’ grapes[D]. Lanzhou: Gansu Agricultural University, 2022. (in Chinese)
[13]
PALADINES-QUEZADA D F, FERNÁNDEZ-FERNÁNDEZ J I, MORENO-OLIVARES J D, BLEDA-SÁNCHEZ J A, GÓMEZ- MARTÍNEZ J C, MARTÍNEZ-JIMÉNEZ J A, GIL-MUÑOZ R. Application of elicitors in two ripening periods of Vitis vinifera L. cv Monastrell: Influence on anthocyanin concentration of grapes and wines. Molecules, 2021, 26(6): 1689.
[14]
VITALINI S, RUGGIERO A, RAPPARINI F, NERI L, TONNI M, IRITI M. The application of chitosan and benzothiadiazole in vineyard (Vitis vinifera L. cv Groppello Gentile) changes the aromatic profile and sensory attributes of wine. Food Chemistry, 2014, 162: 192-205.
[15]
GONG D, BI Y, ZHANG X M, HAN Z H, ZONG Y Y, LI Y C, SIONOV E, PRUSKY D. Benzothiadiazole treatment inhibits membrane lipid metabolism and straight-chain volatile compound release in Penicillium expansum-inoculated apple fruit. Postharvest Biology and Technology, 2021, 181: 111671.
[16]
MILIORDOS D E, TSIKNIA M, KONTOUDAKIS N, DIMOPOULOU M, BOUYIOUKOS C, KOTSERIDIS Y. Impact of application of abscisic acid, benzothiadiazole and chitosan on berry quality characteristics and plant associated microbial communities of Vitis vinifera L var. mouhtaro plants. Sustainability, 2021, 13(11): 5802.
[17]
LENG X P, WANG P P, WANG C, ZHU X D, LI X P, LI H Y, MU Q, LI A, LIU Z J, FANG J G. Genome-wide identification and characterization of genes involved in carotenoid metabolic in three stages of grapevine fruit development. Scientific Reports, 2017, 7: 4216.

doi: 10.1038/s41598-017-04004-0 pmid: 28652583
[18]
ZHOU Y L, YUAN C L, RUAN S C, ZHANG Z W, MENG J F, XI Z M. Exogenous 24-epibrassinolide interacts with light to regulate anthocyanin and proanthocyanidin biosynthesis in Cabernet Sauvignon (Vitis vinifera L.). Molecules, 2018, 23(1): 93.
[19]
YUE X F, JU Y L, ZHANG T Y, YU R Z, XU H D, ZHANG Z W. Application of salicylic acid to cv. Muscat Hamburg grapes for quality improvement: Effects on typical volatile aroma compounds and anthocyanin composition of grapes and wines. LWT-Food Science and Technology, 2023, 182: 114828.
[20]
JAVED H U, WANG D, WU G F, KALEEM Q M, DUAN C Q, SHI Y. Post-storage changes of volatile compounds in air- and sun-dried raisins with different packaging materials using HS-SPME with GC/MS. Food Research International, 2019, 119: 23-33.

doi: S0963-9969(19)30007-9 pmid: 30884653
[21]
XIE P D, YANG Y Y, OYOM W, SU T T, TANG Y B, WANG Y, LI Y C, PRUSKY D, BI Y. Chitooligosaccharide accelerated wound healing in potato tubers by promoting the deposition of suberin polyphenols and lignin at wounds. Plant Physiology and Biochemistry, 2023, 199: 107714.
[22]
PARKER M, CAPONE D L, FRANCIS I L, HERDERICH M J. Aroma precursors in grapes and wine: Flavor release during wine production and consumption. Journal of Agricultural and Food Chemistry, 2018, 66(10): 2281-2286.

doi: 10.1021/acs.jafc.6b05255 pmid: 28220693
[23]
GÓMEZ-PLAZA E, MESTRE-ORTUÑO L, RUIZ-GARCÍA Y, FERNÁNDEZ-FERNÁNDEZ J I, LÓPEZ-ROCA J M. Effect of benzothiadiazole and methyl jasmonate on the volatile compound composition of Vitis vinifera L. monastrell grapes and wines. American Journal of Enology and Viticulture, 2012, 63(3): 394-401.
[24]
GUTIÉRREZ-GAMBOA G, MARÍN-SAN ROMÁN S, JOFRÉ V, RUBIO-BRETÓN P, PÉREZ-ÁLVAREZ E P, GARDE-CERDÁN T. Effects on chlorophyll and carotenoid contents in different grape varieties (Vitis vinifera L.) after nitrogen and elicitor foliar applications to the vineyard. Food Chemistry, 2018, 269: 380-386.
[25]
ROSSOUW G C, ŠUKLJE K, SMITH J P, BARRIL C, DELOIRE A, HOLZAPFEL B P. Vitis vinifera berry metabolic composition during maturation: Implications of defoliation. Physiologia Plantarum, 2018, 164(2): 120-133.
[26]
IRITI M, ROSSONI M, BORGO M, FERRARA L, FAORO F. Induction of resistance to gray mold with benzothiadiazole modifies amino acid profile and increases proanthocyanidins in grape: Primary versus secondary metabolism. Journal of Agricultural and Food Chemistry, 2005, 53(23): 9133-9139.

pmid: 16277413
[27]
WEN Y Q, ZHONG G Y, GAO Y, LAN Y B, DUAN C Q, PAN Q H. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC Plant Biology, 2015, 15: 240.
[28]
LUO J Q, BROTCHIE J, PANG M, MARRIOTT P J, HOWELL K, ZHANG P Z. Free terpene evolution during the berry maturation of five Vitis vinifera L. cultivars. Food Chemistry, 2019, 299: 125101.
[29]
FENOLL J, MANSO A, HELLIN P, RUIZ L, FLORES P. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chemistry, 2009, 114(2): 420-428.
[30]
MENG N, REN Z Y, YANG X F, PAN Q H. Effects of simple rain-shelter cultivation on fatty acid and amino acid accumulation in ‘Chardonnay’ grape berries. Journal of the Science of Food and Agriculture, 2018, 98(3): 1222-1231.
[31]
GIL-MUÑOZ R, BAUTISTA-ORTÍN A B, RUIZ-GARCÍA Y, FERNÁNDEZ-FERNÁNDEZ J, GÓMEZ-PLAZA E. Improving phenolic and chromatic characteristics of Monastrell, Merlot and Syrah wines by using methyl jasmonate and benzothiadiazole. OENO One, 2017, 51(1): 17-27.
[32]
BECKERS G J M, SPOEL S H. Fine-tuning plant defence signalling: Salicylate versus jasmonate. Plant Biology, 2006, 8(1): 1-10.

doi: 10.1055/s-2005-872705 pmid: 16435264
[33]
LORRAIN B, CHIRA K, TEISSEDRE P L. Phenolic composition of Merlot and Cabernet-Sauvignon grapes from Bordeaux vineyard for the 2009-vintage: Comparison to 2006, 2007 and 2008 vintages. Food Chemistry, 2011, 126(4): 1991-1999.
[34]
TAN Y P, YANG J, JIANG Y Y, SUN S F, WEI X Y, WANG R S, BU J L, LI D Y, KANG L P, CHEN T, GUO J, CUI G H, TANG J F, HUANG L Q. Identification and characterization of two Isatis indigotica O-methyltransferases methylating C-glycosylflavonoids. Horticulture Research, 2022, 1: 1848-1863.
[35]
WEI X F, WANG W Y, MIN Z, LI Z Y, OUYANG Y N, RUAN X R, FANG Y L, LI D M. Transcriptomics combined with metabolisms reveals the effect of light-exclusive films on the quality and polyphenols of ‘Cabernet Sauvignon’ grapes. Food Research International, 2023, 170: 112754.
[36]
POUDEL P R, KOYAMA K, GOTO-YAMAMOTO N. Light modulates the transcriptomic accumulation of anthocyanin biosynthetic pathway genes in red and white grapes. Journal of Plant Biotechnology, 2022, 49(4): 292-299.
[37]
BENNETT J, MEIYALAGHAN S, NGUYEN H M, BOLDINGH H, COONEY J, ELBOROUGH C, ARAUJO L D, BARRELL P, KUI L W, PLUNKETT B J, MARTIN D, ESPLEY R V. Exogenous abscisic acid and sugar induce a cascade of ripening events associated with anthocyanin accumulation in cultured Pinot Noir grape berries. Frontiers in Plant Science, 2023, 14: 1324675.
[38]
PALADINES-QUEZADA D F, MORENO-OLIVARES J D, FERNÁNDEZ- FERNÁNDEZ J I, BAUTISTA-ORTÍN A B, GIL-MUÑOZ R. Influence of methyl jasmonate and benzothiadiazole on the composition of grape skin cell walls and wines. Food Chemistry, 2019, 277: 691-697.
[39]
FUMAGALLI F, ROSSONI M, IRITI M, DI GENNARO A, FAORO F, BORRONI E, BORGO M, SCIENZA A, SALA A, FOLCO G. From field to health: A simple way to increase the nutraceutical content of grape as shown by NO-dependent vascular relaxation. Journal of Agricultural and Food Chemistry, 2006, 54(15): 5344-5349.

pmid: 16848515
[40]
RUIZ-GARCÍA Y, ROMERO-CASCALES I, GIL-MUÑOZ R, FERNÁNDEZ-FERNÁNDEZ J I, LÓPEZ-ROCA J M, GÓMEZ- PLAZA E. Improving grape phenolic content and wine chromatic characteristics through the use of two different elicitors: Methyl jasmonate versus benzothiadiazole. Journal of Agricultural and Food Chemistry, 2012, 60(5): 1283-1290.
[1] FENG Fan, JIANG XingRui, WANG LingYun, ZHANG YongGang, LI AiHua, TAO YongSheng. The Stabilization of Aroma and Color During Hutai-8 Rose Winemaking by Gallic Acid Treatment [J]. Scientia Agricultura Sinica, 2024, 57(8): 1592-1605.
[2] ZHAO HaiJuan, ZHANG YuPing, ZHANG YuJun, LIU Ning, XU Ming, LIU JiaCheng, WANG BiJun, LIU WeiSheng, LIU Shuo. Evaluation of Fruit Aroma in Chinese Plum Germplasm Based on Electronic Nose Technology [J]. Scientia Agricultura Sinica, 2024, 57(21): 4328-4341.
[3] ZHOU XinYan, CHEN SiYu, WEI YuFei, ZHU Yu, FENG JunQian, DING DianCao, LU GuiFeng, YANG ShangDong. Characteristics of Endophytic Microbial Community Structures in Stems Between Hylocereus undatus and H. polyrhizus [J]. Scientia Agricultura Sinica, 2024, 57(2): 416-428.
[4] XU MengYu, WANG JiaYang, WANG JiangBo, TANG Wen, CHEN YiHeng, SHANGGUAN LingFei, FANG JingGui, LU SuWen. Differential Analysis of Aroma Substance Content and Gene Expression in the Berry Skins of Different Grape Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(13): 2635-2650.
[5] GUO RongKun, DONG NingGuang, NONG HuiLan, WANG Han, TENG WeiChao, MENG JiaXin. Targeted Metabolomics-Based Analysis of Peel Color Differences Between Yellow and Red Hawthorn [J]. Scientia Agricultura Sinica, 2024, 57(12): 2439-2453.
[6] SHI HaoLei, CAO HongXia, ZHANG WeiJie, ZHU Shan, HE ZiJian, ZHANG Ze. Leaf Area Index Inversion of Cotton Based on Drone Multi-Spectral and Multiple Growth Stages [J]. Scientia Agricultura Sinica, 2024, 57(1): 80-95.
[7] WU SiHui, ZHU HuanHuan, ZHANG JunWei, BAO ManZhu, ZHANG Jie. Determination and Analysis of Flavonoids Metabolites in Different Colors Cultivars and Blooming Stages of Prunus mume [J]. Scientia Agricultura Sinica, 2023, 56(9): 1760-1774.
[8] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[9] GU WenDong, LIU ChunJuan, LI Bang, LIU Chang, ZHOU YuFei. Effects of Exogenous Tryptophan on C/N Balance and Senescence Characteristics of Sorghum Seedlings Under Low Nitrogen Stress [J]. Scientia Agricultura Sinica, 2023, 56(7): 1295-1310.
[10] WANG ChunXiao, YU JunZhu, ZHOU WenYa, XU YinHu. Research Progress on the Application of Non-Saccharomyces During Wine Fermentation [J]. Scientia Agricultura Sinica, 2023, 56(3): 529-548.
[11] CHEN JinRong, LÜ ZiJian, FAN LiSha, YOU Qian, LI Tao, GONG Chao, SUN GuangWen, LI ZhiLiang, SUN BaoJuan. Analysis of Genetic Effect of Fruit Color Controlled by Epistatic Genes in Eggplant [J]. Scientia Agricultura Sinica, 2023, 56(23): 4729-4741.
[12] CHENG Li, YANG ShengNan, ZHU YanSong, WANG Xu, ZHAO WanTong, LI RenJing, LI Pei, YUAN ZhongJie, JIANG Dong. Genetic Variation Analysis and Candidate Genes Mining of Regulating Flesh Color in Pomelo [J]. Scientia Agricultura Sinica, 2023, 56(17): 3420-3434.
[13] CHEN Qiu, HUANG JingJing, WANG ZhePeng. Establishment of Quantization Method and Genetic Basis Analysis of Brown Eggshell Color in the Lüeyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2023, 56(17): 3452-3460.
[14] CAO Jie, GU YongZhe, HONG HuiLong, WU HaiTao, ZHANG Xia, SUN JianQiang, BAO LiGao, QIU LiJuan. Pigment Identification and Gene Mapping in Red Seed Coat of Soybean [J]. Scientia Agricultura Sinica, 2023, 56(14): 2643-2659.
[15] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!