Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (8): 1592-1605.doi: 10.3864/j.issn.0578-1752.2024.08.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

The Stabilization of Aroma and Color During Hutai-8 Rose Winemaking by Gallic Acid Treatment

FENG Fan1(), JIANG XingRui1, WANG LingYun2, ZHANG YongGang3, LI AiHua4, TAO YongSheng1,5()   

  1. 1 College of Enology, Northwest A&F University, Yangling 712100, Shaanxi
    2 Guiding Center for Featured Industries and Leisure Agriculture, Shangluo 726000, Shaanxi
    3 Shaanxi Danfeng Winery Co., Ltd., Danfeng 726200, Shaanxi
    4 College of Food Science and Engineering, Northwest A&F University, Yangling 712100,Shaanxi
    5 Shaanxi Key Laboratory of Viticulture and Enology, Yangling 712100, Shaanxi
  • Received:2023-09-22 Accepted:2024-01-31 Online:2024-04-16 Published:2024-04-24
  • Contact: TAO YongSheng

Abstract:

【Objective】This study was aimed to investigate the effects of gallic acid treatment on color and aroma preservation during the aging process of Hutai-8 rosé wine, in order to optimize the design of color and aroma enhancement techniques for rosé wine production. 【Method】In this study, Hutai-8 grape was used as raw material. Gallic acid was added at three different stages, including pre-fermentation (Pr), mid-fermentation (M), and post-fermentation (Po), with the concentrations of 200 and 300 mg∙L-1. After a 6-month storage period following fermentation, the aroma compounds of the wine samples were analyzed by headspace solid-phase microextraction-Gaschromatography-mass spectrometry (HS-SPME-GC-MS). The color parameters (L*, a*, b*, C*ab, Hab, and Δ*Eab) were determined by the CIELab color space parameters, and the color indices were measured by ultraviolet spectrophotometer (UV). Finally, the sensory evaluation was conducted to analyze the influences of different treatments on the aroma characteristics of the wine samples. 【Result】The post-fermentation treatments significantly increased the content of fermentation aroma compounds compared with CK, with an increase of approximately 16%. However, there was little difference between treatments of the two additive concentrations. The pre-fermentation treatments positively contributed to the preservation of varietal aroma compounds, with an increase of approximately 65%-73% compared with CK. The mid-fermentation treatments had a lesser stabilizing effect on the aroma compounds of the wine. Sensory evaluation results showed that post-fermentation treatment had the best effect on improving the overall aroma of the wine, and the pre-fermentation treatment was more effective than the mid-fermentation treatment. PLSR models revealed that terpenols, fatty acids, higher alcohols, acetates and fatty acid ethyl esters were the main aroma contributors (regression coefficients>0.1) to floral and citrus attributes (R2c>0.80 & R2v>0.70), with fatty acid ethyl esters and acetates being particularly prominent contributors. The color analysis results showed that pre-fermentation had a significant color-preserving effect, and the treatment with 200 mg∙L-1 (Pr1) was more effective than the treatment with 300 mg∙L-1 (Pr2). Comparied with CK, Pr1 treatment group’s, L* value decreased by 0.58% and a* value increased by 45.38%. Furthermore, the color characterization results showed that pre-fermentation treatment enhanced the purple-red tone of Hutai-8 rosé wine and the treatment with 200 mg∙L-1 was more effective than the treatment with 300 mg∙L-1. 【Conclusion】The addition of 200 mg∙L-1 gallic acid before fermentation had a significant effect on stabilizing the color of Hutai-8 rose wine, while the post-fermentation treatments could significantly increase the fermentative aroma content of wine.

Key words: grapes, wine, gallic acid, color, aroma, winemaking

Table 1

Aroma compounds in the wine samples with different treatments (μg·L-1)"

保留
指数
RI
化合物
Compounds
酒样 Wine sample 阈值
Odor
threshold
气味
活性值
OAV
气味描述
Odor description
Pr1 Pr2 M1 M2 Po1 Po2 CK
品种香气
Varietal aroma compound
903.1±71.2a 861.9±107.3a 549.0±52.4b 557.1±19.5b 567.2±19.0b 545.7±20.5b 522.9±13.6b
C6化合物 C6 compounds 534.8±41.8a 475.1±81.3a 244.0±32.7b 245.1±5.4b 229.5±11.6b 221.7±8.5b 252.6±8.2b
1472 1-己醇
1-Hexanol
73.5±2.6a 56.3±10.1b 37.7±12.7c 41.8±01.6c 33.4±2.0c 32.9±1.1c 42.1±1.8c 8000[22] <0.1 生青,果香
Green, Fruity
1503 (Z)-3-己烯醇
Z-3-Hexen-1-ol
461.3±39.8a 418.8±71.2a 206.4±20.5b 203.3±4.0b 196.1±11.9b 188.8±7.5b 210.5±9.2b 400[23] 0.1-1 绿叶,草本
Green, herb
萜烯类 Terpenols 355.9±31.2a 371.6±30.4a 293.3±20.4c 297.6±17.7bc 326.6±8.4b 314.8±14.9bc 260.9±7.8d
1665 里哪醇
Linalool
6.5±0.5 7.0±0.3 7.7±1.3 6.5±0.2 7.3±0.3 7.1±0.3 7.2±0.7 25[24] 0.1-1 花香,橙子
Flower, orange
1697 4-萜烯醇 Terpinen-4-ol# 4.2±0.1a 4.3±0.1a 4.3±0.4a 4.0±0.6ab 3.7±0.3ab 3.2±0.1c 3.4±0.2c NF 木香,土壤 Wood, soil
1825 α-萜品醇
α-Terpineol
5.2±0.2c 5.5±0.1bc 5.7±0.1b 5.8±0.4b 5.7±0.1b 5.7±0.2b 6.1±0.2a 250[22] <0.1 甜香,蘑菇
Sweet, mushroom
1881 香茅醇 Citronellol 339.9±31.4a 354.8±30.1ab 275.6±19.0cd 281.3±17.7cd 310.0±8.5abc 298.8±14.9bc 244.2±9.9d 100[24] >1 橙子,玫瑰 Orange, rose
C13-去甲类异戊二烯
C13-norisoprenoids
2.2±0.0a 2.2±0.1a 2.1±0.0b 2.1±0.0b 2.1±0.0b 2.2±0.0ab 2.1±0.0b
2252 β-紫罗兰酮
β-Ionone
2.2±0.0a 2.2±0.1a 2.1±0.0b 2.1±0.0b 2.1±0.0b 2.2±0.0ab 2.1±0.0b 0.09[25] >1 紫罗兰,果香
Violet, fruity
挥发性酚 Volatile phenols 9.4±2.3b 12.2±1.6a 8.7±1.9b 11.5±0.8a 8.2±0.8bc 6.2±1.7d 6.5±0.5d
2501 丁子香酚 Eugenol 9.4±2.3b 12.2±1.6a 8.7±1.9b 11.5±0.8a 8.2±0.8bc 6.2±1.7d 6.5±0.5d 6[26] >1 丁子花香
醛酮类 Aldoketones 0.8±0.0bc 0.8±0.0c 0.8±0.0bc 0.8±0.0bc 0.8±0.0bc 0.8±0.0a 0.8±0.0ab
1408 辛醛
Octanal#
0.4±0.0 0.4±0.0 0.4±0.0 0.4±0.0 0.4±0.0 0.4±0.0 0.4±0.0 15 <0.1 不良化学气味,苦味,柠檬味
Adverse chemical odor, bitterness, lemon flavor
1515 壬醛 Nonanal# 0.4±0.0b 0.4±0.0b 0.4±0.0b 0.4±0.0b 0.4±0.0b 0.4±0.0a 0.4±0.0ab 15[24] <0.1 橙子 Orange
发酵香气
Fermentative aroma compounds
87544.8±2670.8b 87848.5±3560.8b 84646.9±5894.5bc 82512.0±1010.6c 98294.6±2708.7a 97196.8±1539.3a 84054.9±2612.5bc
高级醇 Higher alcohols 60686.7±952.4ab 59828.4±2762.8ab 59042.9±5289.3b 58659.0±772.4b 64512.1±1746.2a 63646.8±1255.9ab 59583.1±1537.1ab
1212 异丁醇
Isobutyl alcohol
7777.1±241.4 8098.6±419.7 7651.9±615.8 7557.4±62.3 8314.8±253.1 8136.1±196.3 7691.2±451.2 40000[24] 0.1-1 淡甜,醇香
Mild sweet, alcohol
1330 异戊醇
Isoamyl alcohol
52447.1±1146.0ab 51241.2±2404.1ab 50975.3±4589.5b 50625.5±784.2b 55746.4±1499.9a 55071.3±1055.3ab 51406.2±1285.6ab 30000[24] >1 威士忌,香蕉
Whisky, banana
1446 3-甲基-1-戊醇
Isohexyl alcohol#
301.7±32.6ab 287.6±16.5ab 239.3±56.7c 263.3±5.0bc 326.6±13.2a 321.6±7.9a 273.5±13.4bc 5000[25] <0.1 杏仁,烤面包
Almond, toasted
1575 1-庚醇 1-Heptanol 157.6±14.9c 197.9±4.3ab 173.0±42.8bc 209.5±33.2a 120.8±3.5d 114.4±2.8d 209.0±15.0a 1000[25] <0.1 生青,甜香 Green, sweet
1677 1-辛醇 1-Octanol 2.1±0.2 2.2±0.1 2.3±0.0 2.2±0.0 2.2±0.0 2.2±0.0 2.1±0.0 120[24] <0.1 柑橘,玫瑰 Citrus, rose
1881 1-癸醇
1-Decanol
0.7±0.0d 0.7±0.1cd 0.7±0.0bcd 0.7±0.1bc 0.8±0.0a 0.8±0.0b 0.7±0.0bd 400[24] <0.1 果香,花香
Fruity, flowery
2265 1-月桂醇 1-Dodecanol# 0.3±0.0 0.3±0.0 0.3±0.1 0.3±0.0 0.4±0.0 0.4±0.1 0.3±0.1 1000[22] <0.1 花香 Flowery
乙酸酯 Acetates 19066.0±945.3bc 20085.3±1191.5b 18190.8±327.7c 16428.2±202.7d 25725.1±747.2a 25594.2±245.3a 16952.6±993.3d
897 乙酸乙酯
Ethyl acetate
17737.8±776.7bc 18658.4±1016.4b 17191.2±343.0c 15573.2±211.8d 23919.8±705.2a 23821.4±223.3a 15989.1±882.1d 7500[24] >1 菠萝,果香
Pineapple, fruity
1029 乙酸异丁酯
Isobutyl acetate
106.4±11.6b 109.4±23.0b 77.1±11.1c 59.4±3.5c 138.9±6.5a 135.7±2.6a 67.8±13.4c 1600[24] 0.1-1 梨,香蕉
Pear, banana
1093 乙酸丁酯
Butyl acetate
8.6±1.9ab 8.8±0.8ab 7.2±0.8bc 6.5±1.2c 9.5±0.4a 10.3±0.5a 7.3±1.1bc 1800[23] <0.1 苦杏仁味,青草味
Bitter almond flavor, grassy flavor
1238 乙酸异戊酯
Isoamyl acetate
1195.4±159.6b 1283.5±159.0b 903.1±53.4c 776.7±28.1c 1638.0±45.5a 1609.0±42.1a 875.3±102.5c 30[24] >1 香蕉 Banana
1390 乙酸己酯
Hexyl acetate
10.9±2.9a 12.7±0.1a 6.7±0.2b 6.8±1.6b 12.2±0.8a 11.4±0.4a 7.0±0.6b 1500[25] <0.1 梨,甜果
Pear, sweet fruity
1493 乙酸庚酯
Heptyl acetate#
7.0±0.7b 12.5±1.0a 5.4±0.8c 5.6±1.0c 6.8±0.7b 6.4±0.3bc 6.1±0.1bc NF 樱桃,梨
Cherry, pear
C4—C14脂肪酸乙酯
C4-C14 Ethyl esters
1053.6±104.4bc 1144.7±30.4b 992.4±56.5c 948.3±40.4c 1294.2±70.0a 1299.6±42.4a 1001.9±66.8c
1056 丁酸乙酯
Ethyl butyrate
431.5±30.7c 477.6±19.8b 384.7±17.5de 351.8±19.3e 561.2±33.4a 571.2±21.7a 403.2±46.6cd 20[22] >1 草莓,苹果
Strawberry, apple
1074 2-甲基丁酸乙酯
Ethyl 2-methylbutyrate
28.2±10.8a 26.4±6.7a 13.6±2.0b 13.0±0.5b 21.0±3.9ab 24.7±4.7ab 17.4±4.2ab 18[24] >1 生青,果香
Green, fruity
1089 异戊酸乙酯
Ethyl isovalerate
15.2±0.5ab 14.0±1.6ab 15.5±1.7ab 16.4±1.8a 16.9±0.3a 16.7±1.0a 13.2±1.7b 3[25] >1 甜果,苹果
Sweet fruity, apple
1353 己酸乙酯
Ethyl hexanoate
172.0±31.8bc 192.2±13.4b 174.6±8.4bc 167.1±3.0bc 224.5±11.1a 227.6±2.2a 164.1±15.1c 5[24] >1 苹果,草莓
Apple, strawberry
Pr1 Pr2 M1 M2 Po1 Po2 CK
1559 辛酸乙酯
Ethyl octanoate
216.0±45.1b 219.3±21.0b 203.9±14.4b 193.2±4.0bc 262.6±16.2a 266.2±5.3a 172.4±9.7c 5[25] >1 苹果,梨,花香
Apple, pear, flowery
1762 癸酸乙酯
Ethyl decanoate
92.0±3.5c 94.3±3.6c 95.6±13.2c 95.8±7.5c 125.5±13.8a 125.1±10.8a 111.2±6.3c 100[25] >1 蜡味,果香
Wax, fruity
1966 月桂酸乙酯
Ethyl laurate
97.2±6.3ab 119.7±2.9a 103.5±17.8ab 110.3±26.9a 81.7±33.4ab 67.3±9.2b 119.2±9.6a 1500[27] <0.1 花香,果香,奶油
Flowery, fruity, cream
2371 肉豆蔻酸乙酯
Ethyl tetradecanoate
1.5±0.4a 1.3±0.4ab 0.8±0.0c 0.8±0.1c 0.8±0.1c 0.9±0.1bc 1.3±0.4ab 800[22] <0.1 NF
其他酯类 Other esters 3616.3±506.6 3668.9±346.9 3721.1±398.1 3752.9±241.1 3819.1±135.9 3791.9±50.0 3722.0±145.4
1462 乳酸乙酯
Ethyl lactate
2416.6±476.5 2432.2±281.4 2615.8±183.0 2627.8±24.8 2515.5±75.4 2488.7±46.5 2683.6±27.4 14000[22] 0.1-1 乳香,树莓
Lactic, raspberry
1510 辛酸甲酯
Methyl caprylate#
13.4±0.0b 13.5±0.0a 13.5±0.0a 13.5±0.0a 13.5±0.1a 13.5±0.0a 13.3±0.0c 200[27] <0.1 柑橘
Citrus
1795 琥珀酸二乙酯
Diethyl succinate
1174.9±49.6ab 1212.4±67.0ab 1079.9±215.0ab 1100.1±237.5ab 1277.0±69.0a 1277.3±8.0a 1012.7±140.8b 200000[22] <0.1 生青,果香
Green, fruity
1876 癸酸异丁酯
Isobutyl caprate#
2.7±0.0c 2.7±0.0b 2.7±0.0b 2.7±0.0b 2.8±0.0a 2.8±0.0a 2.8±0.0a NF NF
1984 癸酸异戊酯
Isoamyl caprate#
8.8±1.8ab 8.1±1.2b 9.2±1.0ab 8.8±0.9ab 10.2±0.8a 9.6±0.8ab 9.5±0.8ab NF NF
脂肪酸 Fatty acids 744.2±161.1b 787.1±114.6b 774.7±83.7b 740.5±37.8b 931.4±77.5a 929.7±66.8a 769.1±35.4b
1975 己酸 Hexanoic acid# 134.4±37.1b 139.8±18.7ab 135.7±7.0b 129.6±2.7b 162.5±4.2a 161.5±3.1a 149.1±8.7ab 420[25] 0.1-1 奶油,果香 Cream, fruity
2378 辛酸 Octanoic acid 366.4±68.8b 392.7±49.7ab 378.3±26.8b 352.2±14.9b 444.8±17.0a 442.1±29.0a 363.2±17.6b 500[25] 0.1-1 刺激,腐败 Harsh, rancid
2531 壬酸 Nonanoic acid# 61.8±2.2abc 60.4±1.8bc 59.4±3.0a 62.2±0.4abc 63.8±2.9a 62.6±1.4ab 59.2±1.1a 500-800[24] <0.1 脂肪,椰子 Fat, coconut
2775 癸酸 Decanoic acid 181.6±53.8b 194.3±45.0ab 201.2±52.0ab 196.5±21.3ab 260.4±63.0a 263.5±37.1a 197.5±25.5ab 1000[25] 0.1-1 脂肪,奶油 Fat, cream
苯衍生物 Phenylethyls 2378.0±123.7a 2334.0±73.9a 1925.0±215.2b 1983.3±26.9b 2012.6±64.5b 1934.7±66.5b 2026.3±111.3b
1949 乙酸苯乙酯
Phenylethyl acetate
112.6±25.7b 136.0±2.4a 82.3±10.0c 70.6±7.8c 122.3±5.7ab 112.0±7.2b 88.4±15.2c 250[25] 0.1-1 花香,果香,木香
Flowery, fruity, wood
2085 苯乙醇 2-Phenylethanol 2265.4±98.9a 2198.0±71.6a 1842.8±221.6b 1912.7±29.7b 1890.3±60.7b 1822.6±59.8b 1937.8±97.7b 14000[25] 0.1-1 玫瑰,香水 Rose, perfume

Fig. 1

Loadings of aroma components and distribution of wine samples on the first two PCs"

Fig. 2

Aroma quantification of different sample wines by sensory analysis * denote the differences between treatments were significant at 0.05 level by Duncan test"

Table 2

PLS regression of four aroma attributes by aroma volatiles"

香气特征
Aroma trait
花香
Floral fragrance
柑橘
Orange
酸果
Sour fruit
甜果
Sweet fruit
萜烯类 Terpenols 0.121 0.113 -0.060 0.102
C6化合物 C6 compounds 0.016 0.015 -0.008 0.014
C13-去甲类异戊二烯 C13-norisoprenoids 0.084 0.079 -0.041 0.071
挥发性酚 Volatile phenols -0.068 -0.064 0.033 -0.057
高级醇 Higher alcohols 0.205 0.193 -0.101 0.173
乙酸酯 Acetates 0.214 0.201 -0.105 0.180
C4—C14脂肪酸乙酯 C4-C14 Ethyl esters 0.215 0.202 -0.106 0.181
其他酯类 Other esters -0.159 -0.150 0.079 -0.134
脂肪酸 Fatty acids 0.188 0.177 -0.093 0.159
苯衍生物 Phenylethyls 0.019 0.018 -0.010 0.016
B0w 0.117 3.642 23.548 8.471
R2 (calibration/validation) 0.995/0.877 0.878/0.701 0.242/NA 0.708/0.451
RMSE 0.002 0.015 0.026 0.013

Table 3

Phenolics content and color attributes of wine samples with different treatments"

颜色参数
Chromatic parameter
Pr1 Pr2 M1 M2 Po1 Po2 CK
L* 96.41±0.28b 96.88±0.11ab 96.83±0.44ab 96.78±0.16ab 97.08±0.12a 96.86±0.04ab 96.97±0.05a
a* 3.78±0.23a 3.18±0.46b 2.56±0.12c 2.76±0.06bc 2.29±0.05c 2.75±0.00bc 2.60±0.32bc
b* 2.35±1.04bc 1.82±0.27c 4.73±1.17a 4.30±0.53a 3.71±0.10ab 3.63±0.04ab 3.82±0.11a
C*ab 4.50±0.35abc 3.67±0.26c 5.39±1.08a 5.11±0.41abc 4.36±0.11abc 4.56±0.03abc 4.14±0.54bc
h*ab (°) 31.35±12.87d 30.01±7.24d 61.03±4.93a 57.16±3.80b 58.27±0.12ab 52.92±0.31c 55.02±15.93c
ΔE*ab 2.04±0.81a 2.10±0.39a 1.01±1.10ab 0.57±0.48b 0.36±0.11b 0.26±0.01b 0.23±0.14b
颜色表征
Color representation

Table 4

Physicochemical indexes of wine samples under different treatments"

指标 Index Pr1 Pr2 M1 M2 Po1 Po2 CK
总花色苷
Anthocyanins (mg∙L-1)
70.00±6.43a 70.00±0.00a 58.64±3.21ab 49.55±3.21b 60.91±6.43b 54.09±3.21ab 58.64±5.87ab
游离花色苷比例FA (%) 23.16±4.47bc 33.81±0.67a 17.58±3.43c 19.10±2.76c 22.90±4.11bc 29.46±3.95ab 19.78±2.39c
多聚体花色苷比例PA (%) 61.17±4.63b 55.49±2.33b 73.59±3.06a 71.35±4.15a 59.03±1.37b 62.37±6.08b 71.21±2.62a
辅色花色苷比例CA (%) 15.67±0.17a 10.70±3.00b 8.83±0.37b 9.55±1.38b 18.06±2.74a 8.17±2.13b 9.01±1.21b
黄酮醇
Xanthone alcohol (mg∙L-1)
56.00±6.76a 44.57.89±2.02b 46.00±4.54b 47.43.00±3.22b 44.57±3.18b 44.32±2.86b 45.99±0.53b
酒石酸酯
Tartaric acid ester (mg∙L-1)
66.76±6.23ab 66.76±2.07ab 55.00±2.98ab 50.59±1.56b 60.88±6.24ab 74.12±10.80a 59.41±3.13ab
离子化指数
Ionization index (%)
17.71±0.87d 12.41±1.50e 32.05±2.33a 27.54±1.05ab 21.97±0.21cd 23.55±2.43bc 26.16±0.98bc
[1]
刘寅喆, 于祎飞, 刘俊, 梁志涛, 刘雯斐. 葡萄产业现状与发展对策研究. 河北林业科技, 2019(2): 50-56.
LIU Y Z, YU Y F, LIU J, LIANG Z T, LIU W F. Current situation and development strategy of grape industry in mountainous areas of Hebei Province. The Journal of Hebei Forestry Science and Technology, 2019(2): 50-56. (in Chinese)
[2]
ZHANG L, TAO Y S, LIANG Y Y, WANG H. On-vine grape freezing effect on volatile compounds in must from ‘Hutai No. 8’ grape. Proceedings of the Eighth International Symposium on Viticulture and Enology, 2013: 123-129.
[3]
王海波, 王宝亮, 王孝娣, 魏长存, 聂继云, 刘凤之. 我国葡萄产业现状与存在问题及发展对策. 中国果树, 2010(6): 69-71.
WANG H B, WANG B L, WANG X D, WEI C C, NIE J Y, LIU F Z. Present situation, existing problems and development countermeasures of grape industry in China. China Fruits, 2010(6): 69-71. (in Chinese)
[4]
都晗, 梁艳英, 王鑫, 李华, 王华. 酿酒和鲜食葡萄酿造起泡葡萄酒品质差异研究. 中国酿造, 2018, 37(12): 22-27.
DU H, LIANG Y Y, WANG X, LI H, WANG H. Quality difference in sparkling wines fermented by wine grape and table grape. China Brewing, 2018, 37(12): 22-27. (in Chinese)
[5]
MASSERA A, ASSOF M, SARI S, CIKLIC I, MERCADO L, JOFRÉ V, COMBINA M. Effect of low temperature fermentation on the yeast-derived volatile aroma composition and sensory profile in Merlot wines. LWT-Food Science and Technology, 2021, 142: 111069.

doi: 10.1016/j.lwt.2021.111069
[6]
COMITINI F, GOBBI M, DOMIZIO P, ROMANI C, LENCIONI L, MANNAZZU I, CIANI M. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiology, 2011, 28(5): 873-882.

doi: 10.1016/j.fm.2010.12.001
[7]
LI N, WANG L Y, YIN J, MA N, TAO Y S. Adjustment of impact odorants in Hutai-8 rose wine by co-fermentation of Pichia fermentans and Saccharomyces cerevisiae. Food Research International, 2022, 153: 110959.

doi: 10.1016/j.foodres.2022.110959
[8]
CHEN K, ESCOTT C, LOIRA I, DEL FRESNO J M, MORATA A, TESFAYE W, CALDERON F, SUÁREZ-LEPE J A, HAN S Y, BENITO S. Use of non-Saccharomyces yeasts and oenological tannin in red winemaking: Influence on colour, aroma and sensorial properties of young wines. Food Microbiology, 2018, 69: 51-63.

doi: 10.1016/j.fm.2017.07.018
[9]
JEREMIC J, VONGLUANNGAM I, RICCI A, PARPINELLO G P, VERSARI A. The oxygen consumption kinetics of commercial oenological tannins in model wine solution and Chianti red wine. Molecules, 2020, 25(5): 1215.

doi: 10.3390/molecules25051215
[10]
ZHANG X K, HE F, ZHANG B, REEVES M J, LIU Y, ZHAO X, DUAN C Q. The effect of prefermentative addition of Gallic acid and ellagic acid on the red wine color, copigmentation and phenolic profiles during wine aging. Food Research International, 2018, 106: 568-579.

doi: 10.1016/j.foodres.2017.12.054
[11]
HERAS-ROGER J, DÍAZ-ROMERO C, DARIAS-MARTÍN J. What gives a wine its strong red color? Main correlations affecting copigmentation. Journal of Agricultural and Food Chemistry, 2016, 64(34): 6567-6574.

doi: 10.1021/acs.jafc.6b02221
[12]
CHEN K, ESCOTT C, LOIRA I, DEL FRESNO J M, MORATA A, TESFAYE W, CALDERON F, BENITO S, SUÁREZ-LEPE J A. The effects of pre-fermentative addition of oenological tannins on wine components and sensorial qualities of red wine. Molecules, 2016, 21(11): 1445.

doi: 10.3390/molecules21111445
[13]
WANG X J, LI Y K, SONG H C, TAO Y S, RUSSO N. Phenolic matrix effect on aroma formation of terpenes during simulated wine fermentation-Part I: Phenolic acids. Food Chemistry, 2021, 341: 128288.

doi: 10.1016/j.foodchem.2020.128288
[14]
ARONSON J, EBELER S E. Effect of polyphenol compounds on the headspace volatility of flavors. American Journal of Enology and Viticulture, 2004, 55(1): 13-21.

doi: 10.5344/ajev.2004.55.1.13
[15]
LAMBROPOULOS I, ROUSSIS I G. Inhibition of the decrease of volatile esters and terpenes during storage of a white wine and a model wine medium by caffeic acid and Gallic acid. Food Research International, 2007, 40(1): 176-181.

doi: 10.1016/j.foodres.2006.09.003
[16]
TAO Y S, LI H, WANG H, ZHANG L. Volatile compounds of young Cabernet Sauvignon red wine from Changli County (China). Journal of Food Composition and Analysis, 2008, 21(8): 689-694.

doi: 10.1016/j.jfca.2008.05.007
[17]
TAO Y S, LIU Y Q, LI H. Sensory characters of Cabernet Sauvignon dry red wine from Changli County (China). Food Chemistry, 2009, 114(2): 565-569.

doi: 10.1016/j.foodchem.2008.09.087
[18]
李运奎, 韩富亮, 张予林, 王华. 基于CIELAB色空间的红葡萄酒颜色直观表征. 农业机械学报, 2017, 48(6): 296-301.
LI Y K, HAN F L, ZHANG Y L, WANG H. Visualization for representation of red wine color based on CIELAB color space. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(6): 296-301. (in Chinese)
[19]
彭传涛, 贾春雨, 文彦, 陶永胜. 苹果酸-乳酸发酵对干红葡萄酒感官质量的影响. 中国食品学报, 2014, 14(2): 261-268.
PENG C T, JIA C Y, WEN Y, TAO Y S. Influence of Malo-lactic fermentation on the sensory quality of dry red wine. Journal of Chinese Institute of Food Science and Technology, 2014, 14(2): 261-268. (in Chinese)
[20]
CLIFF M A, KING M C, SCHLOSSER J. Anthocyanin, phenolic composition, colour measurement and sensory analysis of BC commercial red wines. Food Research International, 2007, 40(1): 92-100.

doi: 10.1016/j.foodres.2006.08.002
[21]
BOULTON R. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. American Journal of Enology and Viticulture, 2001, 52(2): 67-87.

doi: 10.5344/ajev.2001.52.2.67
[22]
LI H, TAO Y S, WANG H, ZHANG L. Impact odorants of Chardonnay dry white wine from Changli county (China). European Food Research and Technology, 2008, 227(1): 287-292.

doi: 10.1007/s00217-007-0722-9
[23]
CULLERÉ L, ESCUDERO A, CACHO J, FERREIRA V. Gas chromatography-olfactometry and chemical quantitative study of the aroma of six premium quality Spanish aged red wines. Journal of Agricultural and Food Chemistry, 2004, 52(6): 1653-1660.

pmid: 15030226
[24]
PENG C T, WEN Y, TAO Y S, LAN Y Y. Modulating the formation of Meili wine aroma by prefermentative freezing process. Journal of Agricultural and Food Chemistry, 2013, 61(7): 1542-1553.

doi: 10.1021/jf3043874
[25]
WANG X J, TAO Y S, WU Y, AN R Y, YUE Z Y. Aroma compounds and characteristics of noble-rot wines of Chardonnay grapes artificially botrytized in the vineyard. Food Chemistry, 2017, 226: 41-50.

doi: 10.1016/j.foodchem.2017.01.007
[26]
LÓPEZ R, AZNAR M, CACHO J, FERREIRA V. Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. Journal of Chromatography A, 2002, 966(1/2): 167-177.

doi: 10.1016/S0021-9673(02)00696-9
[27]
HU K, JIN G J, MEI W C, LI T, TAO Y S. Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement. Food Chemistry, 2018, 239: 495-501.

doi: 10.1016/j.foodchem.2017.06.151
[28]
EBELER S E, THORNGATE J H. Wine chemistry and flavor: Looking into the crystal glass. Journal of Agricultural and Food Chemistry, 2009, 57(18): 8098-8108.

doi: 10.1021/jf9000555 pmid: 19719127
[29]
PEREZ-JIMÉNEZ M, CHAYA C, POZO-BAYÓN M Á. Individual differences and effect of phenolic compounds in the immediate and prolonged in-mouth aroma release and retronasal aroma intensity during wine tasting. Food Chemistry, 2019, 285: 147-155.

doi: 10.1016/j.foodchem.2019.01.152
[30]
JUNG D M, DE ROPP J S, EBELER S E. Application of pulsed field gradient NMR techniques for investigating binding of flavor compounds to macromolecules. Journal of Agricultural and Food Chemistry, 2002, 50(15): 4262-4269.

doi: 10.1021/jf020229t
[31]
DUFOUR C, SAUVAITRE I. Interactions between anthocyanins and aroma substances in a model system. Effect on the flavor of grape- derived beverages. Journal of Agricultural and Food Chemistry, 2000, 48(5): 1784-1788.

doi: 10.1021/jf990877l
[32]
YANG Y, JIN G J, WANG X J, KONG C L, LIU J B, TAO Y S. Chemical profiles and aroma contribution of terpene compounds in Meili (Vitis vinifera L.) grape and wine. Food Chemistry, 2019, 284: 155-161.

doi: 10.1016/j.foodchem.2019.01.106
[33]
ROUSSIS I G, PATRIANAKOU M, DROSSIADIS A. Protection of aroma volatiles in a red wine with low sulphur dioxide by a mixture of glutathione, caffeic acid and Gallic acid. South African Journal of Enology and Viticulture, 2016, 34(2): 262-265.
[34]
GÓMEZ-MÍGUEZ M, GONZÁLEZ-MANZANO S, ESCRIBANO- BAILÓN M T, HEREDIA F J, SANTOS-BUELGA C. Influence of different phenolic copigments on the color of malvidin 3- glucoside. Journal of Agricultural and Food Chemistry, 2006, 54(15): 5422-5429.

doi: 10.1021/jf0604586
[35]
LIU Y, ZHANG B, HE F, DUAN C Q, SHI Y. The influence of prefermentative addition of Gallic acid on the phenolic composition and chromatic characteristics of cabernet sauvignon wines. Journal of Food Science, 2016, 81(7): C1669-C1678.
[36]
WANG L H, SUN X Y, LI F, YU D, LIU X Y, HUANG W D, ZHAN J C. Dynamic changes in phenolic compounds, colour and antioxidant activity of mulberry wine during alcoholic fermentation. Journal of Functional Foods, 2015, 18: 254-265.

doi: 10.1016/j.jff.2015.07.013
[37]
STERNEDER S, STOEGER V, DUGULIN C A, LISZT K I, PIZIO A D, KORNTHEUER K, DUNKEL A, EDER R, LEY J P, SOMOZA V. Astringent Gallic acid in red wine regulates mechanisms of gastric acid secretion via activation of bitter taste sensing receptor TAS2R4. Journal of Agricultural and Food Chemistry, 2021, 69(36): 10550-10561.

doi: 10.1021/acs.jafc.1c03061
[38]
ROBICHAUD J L, NOBLE A C. Astringency and bitterness of selected phenolics in wine. Journal of the Science of Food and Agriculture, 1990, 53(3): 343-353.

doi: 10.1002/jsfa.v53:3
[1] LIU ChuanXia, CHEN Xin, WANG Xiao, LI XueWen, LI TingTing, WENG ChangJiang, ZHENG Jun. Preparation and Application of Polyclonal Antibodies Against Pig CD1d Protein [J]. Scientia Agricultura Sinica, 2024, 57(8): 1620-1628.
[2] ZHOU XinYan, CHEN SiYu, WEI YuFei, ZHU Yu, FENG JunQian, DING DianCao, LU GuiFeng, YANG ShangDong. Characteristics of Endophytic Microbial Community Structures in Stems Between Hylocereus undatus and H. polyrhizus [J]. Scientia Agricultura Sinica, 2024, 57(2): 416-428.
[3] SHI HaoLei, CAO HongXia, ZHANG WeiJie, ZHU Shan, HE ZiJian, ZHANG Ze. Leaf Area Index Inversion of Cotton Based on Drone Multi-Spectral and Multiple Growth Stages [J]. Scientia Agricultura Sinica, 2024, 57(1): 80-95.
[4] WU SiHui, ZHU HuanHuan, ZHANG JunWei, BAO ManZhu, ZHANG Jie. Determination and Analysis of Flavonoids Metabolites in Different Colors Cultivars and Blooming Stages of Prunus mume [J]. Scientia Agricultura Sinica, 2023, 56(9): 1760-1774.
[5] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[6] GU WenDong, LIU ChunJuan, LI Bang, LIU Chang, ZHOU YuFei. Effects of Exogenous Tryptophan on C/N Balance and Senescence Characteristics of Sorghum Seedlings Under Low Nitrogen Stress [J]. Scientia Agricultura Sinica, 2023, 56(7): 1295-1310.
[7] FAN Shuai, ZHONG Han, YANG ZhongYuan, HE WenRui, WAN Bo, WEI ZhanYong, HAN ShiChong, ZHANG GaiPing. African Swine Fever Virus MGF110-5L-6L Induces Host Cell Translation Arrest and Stress Granule Formation by Activating the PERK/PKR-eIF2α Pathway [J]. Scientia Agricultura Sinica, 2023, 56(7): 1401-1416.
[8] WANG ChunXiao, YU JunZhu, ZHOU WenYa, XU YinHu. Research Progress on the Application of Non-Saccharomyces During Wine Fermentation [J]. Scientia Agricultura Sinica, 2023, 56(3): 529-548.
[9] ZHU PeiPei, QIN HaoXiang, ZHANG JianXia. Changes of Endogenous Hormones and Polyamines During Ovule Development of Stenospermocarpic Seedless Grape [J]. Scientia Agricultura Sinica, 2023, 56(23): 4789-4800.
[10] CHEN JinRong, LÜ ZiJian, FAN LiSha, YOU Qian, LI Tao, GONG Chao, SUN GuangWen, LI ZhiLiang, SUN BaoJuan. Analysis of Genetic Effect of Fruit Color Controlled by Epistatic Genes in Eggplant [J]. Scientia Agricultura Sinica, 2023, 56(23): 4729-4741.
[11] CHENG Li, YANG ShengNan, ZHU YanSong, WANG Xu, ZHAO WanTong, LI RenJing, LI Pei, YUAN ZhongJie, JIANG Dong. Genetic Variation Analysis and Candidate Genes Mining of Regulating Flesh Color in Pomelo [J]. Scientia Agricultura Sinica, 2023, 56(17): 3420-3434.
[12] CHEN Qiu, HUANG JingJing, WANG ZhePeng. Establishment of Quantization Method and Genetic Basis Analysis of Brown Eggshell Color in the Lüeyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2023, 56(17): 3452-3460.
[13] CAO Jie, GU YongZhe, HONG HuiLong, WU HaiTao, ZHANG Xia, SUN JianQiang, BAO LiGao, QIU LiJuan. Pigment Identification and Gene Mapping in Red Seed Coat of Soybean [J]. Scientia Agricultura Sinica, 2023, 56(14): 2643-2659.
[14] ZHANG NaiXin, XU ChengZhi, YANG YuYing, ZHANG YaPing, WAN YunFei, QIAO ChuanLing, CHEN HuaLan. Identification of Key Amino Acids in the Antigenic Variation of Eurasian Avian-Like H1N1 Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2023, 56(14): 2828-2836.
[15] WANG Tao, LUO Rui, SUN Yuan, QIU HuaJi. Development Strategies and Application Prospects of African Swine Fever Vaccines: Feasibility and Probability [J]. Scientia Agricultura Sinica, 2023, 56(11): 2212-2222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!