Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (21): 4328-4341.doi: 10.3864/j.issn.0578-1752.2024.21.012

• HORTICULTURE • Previous Articles     Next Articles

Evaluation of Fruit Aroma in Chinese Plum Germplasm Based on Electronic Nose Technology

ZHAO HaiJuan(), ZHANG YuPing, ZHANG YuJun, LIU Ning, XU Ming, LIU JiaCheng, WANG BiJun, LIU WeiSheng, LIU Shuo()   

  1. Liaoning Institute of Pomology, Yingkou 115009, Liaoning
  • Received:2024-03-11 Accepted:2024-07-31 Online:2024-11-01 Published:2024-11-10
  • Contact: LIU Shuo

Abstract:

【Background】 The plum is one of the most widely distributed and cultivated fruit trees globally. The Chinese plum (Prunus salicina L.), originating from China, is known for its beauty, fragrance, juiciness, and rich nutritional value. It exhibits significant genetic heterogeneity and diversity in fruit traits. In recent years, there has been an increasing demand for the sensory quality of plum fruit aroma, prompting breeders to place greater emphasis on identifying and selecting germplasm with unique aromas. Those onventional methods for detecting fruit aroma involve complex preprocessing, high testing costs, and require high technical skills for operation. Additionally, these methods lack the advantages of rapid response and high detection speed, making non-destructive testing difficult and unable to accurately simulate consumer olfactory experiences. 【Objective】 The aim of this study aimed to use electronic nose technology to evaluate the diversity of aroma composition in Chinese plum germplasm, so as to provid essential materials and data support for plum breeding research and production practices in China. 【Method】 Using electronic nose technology, ten odor sensors were employed to identify the different fruit fragrances of 94 Chinese plum germplasm resources. The samples were then grouped and evaluated based on the results of K-means clustering. 【Result】Overall, the average values of different odors showed a normal distribution, but significant differences existed between different odor channels. The W1W channel exhibited the highest odor response value, while the W1C channel had the lowest value. Additionally, variance analysis of different odor channels revealed that W1W had the highest degree of dispersion in odor response values, followed by W5S, while W1C, W3C, W5C, and W3S showed lower dispersion and relatively concentrated distribution. The aroma data of 94 Chinese plum samples were divided into six groups using K-means clustering analysis, each representing plum fruits with specific aroma characteristics. Group one included germplasm sensitive to aromatic hydrocarbons, Group two to ethanol and nitrogen oxides, Group three to hydrogen, Group four to hydrogen and aromatic hydrocarbons, Group five showed low sensitivity to aromatic hydrocarbons, and Group six to hydrogen sulfide. These groupings provided important insights for further research on the aroma components and sensory quality of Chinese plum fruits. Significant differences in maximum, minimum, and median values of different odors were observed between groups. Further correlation analysis revealed significant positive or negative relationships between some odors. Principal component analysis (PCA), linear discriminant analysis (LDA), and uniform manifold approximation and projection (UMAP) were used for dimensionality reduction and visualization of aroma data, and the results indicated that these methods could distinguish the tested plum germplasm to varying degrees and correspond to their cluster groupings, each with different advantages and disadvantages in feature extraction and data visualization. Particularly, the independent use of LDA analysis had certain limitations and shortcomings. This study screened a batch of plum resources with prominent aroma characteristics, including ‘Wuxiangli’ ‘Zaoshuli’ ‘Lishuihong’ ‘Longnanli’ and ‘Xiangjiaoli (Fuxian)’. 【Conclusion】This study utilized electronic nose technology to analyze the aroma composition and distribution of Chinese plum germplasm, revealing that the W1W, W1S, and W5S channels had higher response values, primarily sensitive to volatile compounds such as hydrogen sulfide, methane, and nitrogen oxides. Six Chinese plum groups had different distinct aroma characteristics. In several response values, the mean difference between cluster 6 and the other five groups was significant, indicating that cluster 6 had unique characteristics in these response values.

Key words: Chinese plum, germplasm resource, electronic nose, aroma analysis, K-means clustering

Table 1

Names of 94 Chinese plum germplasm tested"

序号
No.
品种名称
Variety name
序号
No.
品种名称
Variety name
序号
No.
品种名称
Variety name
序号
No.
品种名称
Variety name
1 红岗峰
Honggangfeng
25 大头李
Datouli
49 密山大紫李
Mishandazili
73 牡丹江1号
Mudanjiang 1 hao
2 国峰17号
Guofeng17 hao
26 吉丰
Jifeng
50 蟠李
Panli
74 木里李
Mulili
3 国色天香
Guosetianxiang
27 滨州黄干核
Bingzhouhuangganhe
51 平顶香(锦西)
Pingdingxiang (Jinxi)
75 石头河子红李
Shitouhezihongli
4 青冬李
Qingdongli
28 昌黎晚红
Changliwanhong
52 齐市2号
Qishi 2 hao
76 天目蜜李
Tianmumili
5 庐山李
Lushanli
29 东北美丽
Dongbeimeili
53 绥李3号
Suili 3 hao
77 晚黄李
Wanhuangli
6 脆红李
Cuihongli
30 横道河子大红李
Hengdaohezidahongli
54 香蕉李(复县)
Xiangjiaoli (Fuxian)
78 晚熟大紫李
Wanshudazili
7 翠屏晚奈
Cuipingwannai
31 红桃李
Hongtaoli
55 大玉索罗达
Dayusuoluoda
79 晚熟紫李
Wanshuzili
8 黑王
Heiwang
32 黄干核实生
Huangganheshisheng
56 青皮李
Qingpili
80 小红李
Xiaohongli
9 黄冬李
Huangdongli
33 乐乐香
Lelexiang
57 青州李
Qinzhouli
81 矮化李
Aihuali
10 沿河空心李
Yanhekongxinli
34 秋空
Qiukong
58 万福大紫李
Wanfudazili
82 东阳红
Dongyanghong
11 奎丰
Kuifeng
35 生漠冰脆李
Shengmobingcuili
59 阿坝州桃李
Abazhoutaoli
83 固安密李
Guanmili
12 昌黎鸡心李
Changlijixinli
36 窑门李
Yaomenli
60 方正晚桃
Fangzhengwantao
84 吉林李梅
Jilinlimei
13 大青稞
Daqingke
37 矮甜李
Aitianli
61 固安桃李
Guantaoli
85 绿空心李
Lvkongxinli
14 黄李(金县)
Huangli (Jinxian)
38 勃利红李梅
Bolihonglimei
62 红美丽
Hongmeili
86 田坎麻李
Tiankanmali
15 五香李
Wuxiangli
39 大伏李(熊岳)
Dafuli (Xiongyue)
63 黄干核矮生
Huangganheaisheng
87 兴义空心李
Xiongyikongxinli
16 五月李
Wuyueli
40 海城苹果李
Haichengpingguoli
64 金秋红
Jinqiuhong
88 胭脂红(枣阳)
Yanzhihong (Zaoyang)
17 红美人
Hongmeiren
41 吉林红干核
Jilinhongganhe
65 金帅
Jinshuai
89 早熟李
Zaoshuli
18 加米勒
Jiamile
42 吉林黄干核
Jilinhuangganhe
66 快食李
Kuaishili
90 吉林石人李
Jilinshirenli
19 金沙李
Jinshali
43 家雀蛋
Jiaquedan
67 宽甸大李
Kuandiandali
91 加庆子
Jiaqingzi
20 离核小黄李
Lihexiaohuangli
44 卡尔赛
Kaersai
68 离核1号
Lihe 1 hao
92 李水红
Lishuihong
21 牡丹江红李
Mudanjianghongli
45 孔雀蛋实生
Kongqiedanshisheng
69 李梅
Limei
93 晚熟花奈
Wanshuhuanai
22 无名李(乐业)
Wumingli (Leye)
46 奎丽
Kuili
70 龙南李
Longnanli
94 永泰芙蓉李
Yongtaifurongli
23 油李
Youli
47 离核2号
Lihe 2 hao
71 龙园秋李
Longyuanqiuli
24 早白花
Zaobaihua
48 离核4号
Lihe 4 hao
72 龙园桃李
Longyuantaoli

Table 2

Statistical information on 94 Chinese plum germplasm"

W1C W5S W3C W6S W5C W1S W1W W2S W2W W3S
均值Mean 0.886 3.481 0.959 1.041 0.957 2.381 9.077 1.632 2.367 1.097
中位数Median 0.927 2.550 0.978 1.036 0.979 1.573 7.579 1.276 2.010 1.093
标准差
Standard deviation
0.133 3.240 0.076 0.047 0.091 3.275 6.684 1.316 1.655 0.056
最小响应值
Minimum response value
0.283 1.540 0.535 0.986 0.405 1.109 2.593 1.045 1.381 0.971
最大响应值
Maximum response value
0.999 21.581 1.004 1.382 1.007 23.183 42.190 10.427 12.381 1.271

Fig. 1

Radar plots of maximum, minimum, median, and mean values for 10 sensors Up: Maximum; Below: Median; Left: Minimum; Right: Mean"

Fig. 2

94 Chinese plum hierarchical clustering (K-means) and distribution information of aroma signals in each cluster a: Clustering analysis of Chinese plum germplasm resources; b: Response values of W1C, W3C, W6S, W5C, and W3S sensors in Clusters 1 to 5; c: Response values of W5S, W1S, W1W, W2S, and W2W sensors in Clusters 1 to 5; d: Response values of 10 sensors in Cluster 6"

Fig. 3

Radar map of aroma enrichment of four Chinese plum"

Fig. 4

Correlation between 94 Chinese plums germplasm resources and grouped sensors *: P<0.05,**: P<0.01,***: P<0.001"

Fig. 5

Principal component analysis of the aroma of Chinese plums and PCA, LDA, and UMAP analyses of different groups a: PCA analysis of Chinese plum; b: LDA analysis of different clusters of Chinese plum; c: PCA analysis of different clusters of Chinese plum; d: UMAP analysis of different clusters of Chinese plum"

[1]
张加延, 周恩. 中国果树志-李卷. 北京: 中国林业出版社, 1998: 13-15.
ZHANG J Y, ZHOU E. China Fruit-Plant Monographs, Plum Flora. Beijing: China Forestry Publishing House, 1998: 13-15. (in Chinese)
[2]
刘威生, 章秋平, 马小雪, 张玉萍, 刘家成, 张玉君, 刘硕, 刘宁, 徐铭. 新中国果树科学研究70年: 李. 果树学报, 2019, 36(10): 1320-1338.
LIU W S, ZHANG Q P, MA X X, ZHANG Y P, LIU J C, ZHANG Y J, LIU S, LIU N, XU M. Fruit scientific research in new China in the past 70 years: Plum. Journal of Fruit Science, 2019, 36(10): 1320-1338. (in Chinese)
[3]
联合国粮农组织数据库[OL]. 2020. 最近更新, 2022年12月23日.
Food and Agriculture Organization of the United Nations Database (FAOSTAT)[OL]. 2020. Last Update, December 23, 2022.
[4]
柴倩倩, 王利军, 吴本宏, 范培格, 段伟, 李绍华. 中国李和樱桃李及其种间杂种果实香气成分分析. 园艺学报, 2011, 38(12): 2357-2364.
CHAI Q Q, WANG L J, WU B H, FAN P G, DUAN W, LI S H. Volatiles in fruit of three plum cultivars belonging to Prunus salicina, P. cerasifera and their interspecific hybrid. Acta Horticulturae Sinica, 2011, 38(12): 2357-2364. (in Chinese)
[5]
严娟, 蔡志翔, 张明昊, 徐子媛, 沈志军, 马瑞娟, 俞明亮. 利用电子鼻评价桃果实香气. 植物遗传资源学报, 2021, 22(1): 274-282.

doi: 10.13430/j.cnki.jpgr.20200616002
YAN J, CAI Z X, ZHANG M H, XU Z Y, SHEN Z J, MA R J, YU M L. Evaluation of aroma in peach fruit by electronic nose. Journal of Plant Genetic Resources, 2021, 22(1): 274-282. (in Chinese)
[6]
王学坤, 胡丽诗, 王浩, 张冬阳, 徐晓召, 于伟建, 原永兵, 杨绍兰, 程晨霞. 威海地区3个苹果品种果实适宜采收期的确定. 果树学报, 2022, 39(9): 1691-1700.
WANG X K, HU L S, WANG H, ZHANG D Y, XU X Z, YU W J, YUAN Y B, YANG S L, CHENG C X. Determination of optimal harvest dates for three apple cultivars in Weihai, Shandong. Journal of Fruit Science, 2022, 39(9): 1691-1700. (in Chinese)
[7]
闫子茹, 张阳, 高聪聪, 程玉豆, 刘金龙, 关军锋. 基于电子鼻检测香红梨腐烂程度. 食品安全质量检测学报, 2021, 12(11): 4529-4535.
YAN Z R, ZHANG Y, GAO C C, CHENG Y D, LIU J L, GUAN J F. Detection of decay degree of Xianghong pear based on electronic nose. Journal of Food Safety & Quality, 2021, 12(11): 4529-4535. (in Chinese)
[8]
范霞, 崔心平. 基于HS-SPME-GC-MS和电子鼻技术研究不同肉质桃子采后贮藏期的香气成分. 食品科学, 2021, 42(20): 222-229.
FAN X, CUI X P. Analysis of aroma compounds of different peach flesh types during postharvest storage by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry and electronic nose. Food Science, 2021, 42(20): 222-229. (in Chinese)

doi: 10.7506/spkx1002-6630-20201026-261
[9]
DEFILIPPI B G, JUAN W S, VALDÉS H, MOYA-LEÓN M A, INFANTE R, CAMPOS-VARGAS R. The aroma development during storage of Castlebrite apricots as evaluated by gas chromatography, electronic nose, and sensory analysis. Postharvest Biology and Technology, 2009, 51(2): 212-219.
[10]
MA Y Y, GUO B L, WEI Y M, WEI S, ZHAO H Y. The feasibility and stability of distinguishing the kiwi fruit geographical origin based on electronic nose analysis. Food Science and Technology Research, 2014, 20(6): 1173-1181.
[11]
李大龙, 郭潇雨, 李铁梅, 王泽珉, 宇航, 张鹏, 王佳明, 杨国慧. 利用电子鼻评价树莓果实香气. 东北农业大学学报, 2022, 53(7): 78-87.
LI D L, GUO X Y, LI T M, WANG Z M, YU H, ZHANG P, WANG J M, YANG G H. Evaluation of aroma in raspberry fruit by electronic nose. Journal of Northeast Agricultural University, 2022, 53(7): 78-87. (in Chinese)
[12]
赵海娟, 刘宁, 张玉萍, 刘威生, 张玉君, 徐铭, 马小雪, 刘家成, 刘硕. 李果皮颜色遗传多样性及其成色因子研究进展. 果树学报, 2022, 39(8): 1479-1489.
ZHAO H J, LIU N, ZHANG Y P, LIU W S, ZHANG Y J, XU M, MA X X, LIU J C, LIU S. Research progress in genetic diversity and related factors of plum peel color. Journal of Fruit Science, 2022, 39(8): 1479-1489. (in Chinese)
[13]
郁香荷, 章秋平, 刘威生, 孙猛, 刘宁, 张玉萍, 徐铭. 中国李种质资源形态性状和农艺性状的遗传多样性分析. 植物遗传资源学报, 2011, 12(3): 402-407.

doi: 10.13430/j.cnki.jpgr.2011.03.011
YU X H, ZHANG Q P, LIU W S, SUN M, LIU N, ZHANG Y P, XU M. Genetic diversity analysis of morphological and agronomic characters of Chinese plum (Prunus salicina Lindl.) germplasm. Journal of Plant Genetic Resources, 2011, 12(3): 402-407. (in Chinese)
[14]
刘硕, 徐铭, 刘家成, 章秋平, 马小雪, 刘宁, 张玉萍, 张玉君, 赵海娟, 刘威生. 世界李育种概况. 中国农业科学, 2023, 56(9): 1744-1759. doi: 10.3864/j.issn.0578-1752.2023.09.011.
LIU S, XU M, LIU J C, ZHANG Q P, MA X X, LIU N, ZHANG Y P, ZHANG Y J, ZHAO H J, LIU W S. An overview of the worldwide plum breeding. Scientia Agricultura Sinica, 2023, 56(9): 1744-1759. doi: 10.3864/j.issn.0578-1752.2023.09.011. (in Chinese)
[15]
郁香荷, 刘威生. 李种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
YU X H, LIU W S. Description and Data Standard for Plum (Prunus spp.). Beijing: China Agriculture Press, 2006. (in Chinese)
[16]
AIRSENSE. PEN3 - Portable Electronic Nose. Available from: https://www.environmental-expert.com/products/airsense-model-pen3-portable-electronic-nose-25714 [Accessed 24 June 2024]
[17]
QIU S S, WANG J. Effects of storage temperature and time on internal quality of Satsuma mandarin (Citrus unshiu Marc.) by means of E-nose and E-tongue based on two-way MANOVA analysis and random forest. Innovative Food Science & Emerging Technologies, 2015, 31: 139-150.
[18]
岳盈肖, 闫子茹, 赵江丽, 程玉豆, 王永霞, 关军锋. 利用电子鼻解析采后深州蜜桃品质变化. 保鲜与加工, 2021, 21(8): 101-108.
YUE Y X, YAN Z R, ZHAO J L, CHENG Y D, WANG Y X, GUAN J F. Analysis on quality changes of postharvest Shenzhou honey peach fruits using electronic nose. Storage and Process, 2021, 21(8): 101-108. (in Chinese)
[19]
KASSAMBARA A, MUNDT F. Factoextra: Extract and visualize the results of multivariate data analyses EB/OL. R package version 1.0.7, 2017.
[20]
MAECHLER M, ROUSSEEUW P, STRUYF A, HUBERT M, HORNIK K. Cluster Analysis Basics and Extensions. R package version 1.14.4, 2013.
[21]
S, JOSSE J, HUSSON F. FactoMineR: An R Package for multivariate analysis. Journal of Statistical Software, 2008, 25(1): 1-18.
[22]
ABDI H, WILLIAMS L J. Principal component analysis// Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459.
[23]
XANTHOPOULOS P, PARDALOS P M, TRAFALIS T B. Linear discriminant analysis//SpringerBriefs in Optimization. New York: Springer New York, 2012: 27-33.
[24]
MCINNES L, HEALY J, MELVILLE J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint, arXiv:1802.03426, 2018.
[25]
SLOWIKOWSKI K, SCHEP A, HUGHES S, DANG T K, LUKAUSKAS S, IRISSON J, KAMVAR Z N, RYAN T, CHRISTOPHE D, HIROAKI Y, GRAMME P, ABDOL A M, BARRETT M, CANNOODT R, KRASSOWSKI M, CHIRICO M, APHALO P, BARTON F. ggrepel: Automatically position non- overlapping text labels with “ggplot2”. Available at Cran and GitHub, 2018.
[26]
SCHLOERKE B, CROWLEY J, COOk D. GGally: Extension to ggplot2. R package version 1.4.0, 2018.
[27]
刘泽静, 张京声, 陈安均, 朱本忠, 罗云波, 汤浩茹. ‘盖县李’果实成熟前后挥发性物质GC-MS分析. 西南大学学报(自然科学版), 2009, 31(8): 13-20.
LIU Z J, ZHANG J S, CHEN A J, ZHU B Z, LUO Y B, TANG H R. GC-MS analysis of volatile components in the unripened and ripened fruit of ‘Gaixian’ plum (Prunus salicina ‘Gaixian’). Journal of Southwest University (Natural Science Edition), 2009, 31(8): 13-20. (in Chinese)
[28]
梁艳萍, 董菲, 黄文静, 陈瑶, 丁仁展, 李坤明. 云南梨地方品种果实表型性状多样性分析. 果树学报, 2024, 41(1): 41-51.
LIANG Y P, DONG F, HUANG W J, CHEN Y, DING R Z, LI K M. Fruit phenotypic characters diversity analysis of pear native varieties in Yunnan. Journal of Fruit Science, 2024, 41(1): 41-51. (in Chinese)
[29]
曾辉, 刘璇, 吴昕烨, 毕金峰, 邓放明, 高琨, 王雪媛. 基于电子鼻技术的不同苹果品种香气的表征与识别. 食品与发酵工业, 2016, 42(4): 197-203.
ZENG H, LIU X, WU X Y, BI J F, DENG F M, GAO K, WANG X Y. Identification of apple cultivars based on aroma analysis by electronic nose. Food and Fermentation Industries, 2016, 42(4): 197-203. (in Chinese)
[30]
魏鑫, 郭丹, 王宏光, 刘成. 不同品种蓝莓果实品质和香气物质差异分析. 食品研究与开发, 2022, 43(6): 149-156.
WEI X, GUO D, WANG H G, LIU C. Fruit quality and aroma substances of different blueberry cultivars. Food Research and Development, 2022, 43(6): 149-156. (in Chinese)
[31]
程焕, 陈健乐, 周晓舟, 陈荣荣, 刘东红, 叶兴乾. 水果香气物质分析及合成途径研究进展. 中国食品学报, 2016, 16(1): 211-218.
CHENG H, CHEN J L, ZHOU X Z, CHEN R R, LIU D H, YE X Q. Advances in identification and biosynthetic pathway of key aroma in fruits. Journal of Chinese Institute of Food Science and Technology, 2016, 16(1): 211-218. (in Chinese)
[32]
潘雪峰, 杨明非. 李子挥发物质的分析. 东北林业大学学报, 2005, 33(3): 113-114.
PAN X F, YANG M F. Analysis of constituents of essential oil from plum. Journal of Northeast Forestry University, 2005, 33(3): 113-114. (in Chinese)
[33]
CRISOSTO C H, GARNER D, CRISOSTO G M, BOWERMAN E. Increasing ‘Blackamber’ plum (Prunus salicina Lindell) consumer acceptance. Postharvest Biology and Technology, 2004, 34(3): 237-244.
[34]
SCHWAB W, DAVIDOVICH-RIKANATI R, LEWINSOHN E. Biosynthesis of plant-derived flavor compounds. The Plant Journal, 2008, 54(4): 712-732.

doi: 10.1111/j.1365-313X.2008.03446.x pmid: 18476874
[35]
席万鹏, 郁松林, 周志钦. 桃果实香气物质生物合成研究进展. 园艺学报, 2013, 40(9): 1679-1690.
XI W P, YU S L, ZHOU Z Q. Advances in aroma compounds biosynthesis of peach fruit. Acta Horticulturae Sinica, 2013, 40(9): 1679-1690. (in Chinese)
[36]
HASTIE T, TIBSHIRANI R, FRIEDMAN J. The elements of statistical learning:Data mining, inference and prediction. Springer Science & Business Media, 2009.
[37]
FISHER R A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 1936, 7(2): 179-188.
[1] ZHANG MingQi, WANG Rui, ZHANG ChunXiao, SUN Bo, REN Jie, LI ShuFang, WANG Lu, ZHU ShaoXi, ZHANG JiangBin, SHI XinChen, WANG HaiJie, ZHANG YunLong, TIAN HongLi, ZHAO YiKun, KUANG Meng, WANG YuanDong, YI HongMei, LI XiaoHui, WANG FengGe. The Construction and Application of SSR and SNP Molecular ID for Maize Germplasm Resources of Jilin Province [J]. Scientia Agricultura Sinica, 2024, 57(2): 236-249.
[2] LI YuShan, XIAO Jing, MA Yue, TIAN Chao, ZHAO LianJia, WANG Fan, SONG Yu, JIANG ChengYao. Identification and Evaluation of Phenotypic Characters and Genetic Diversity Analysis of 169 Tomato Germplasm Resources [J]. Scientia Agricultura Sinica, 2024, 57(18): 3671-3683.
[3] ZHU ChunTao, REN DanDan, LIU ZhengCen, LIU ChangChuang, LIU RuiQi, ZHENG HongJian, HU ErLiang, LIN HaiJian, LI JingWei, LU YanLi, WANG QingJun. Combining Ability Analysis on Quality Traits and Breeding Potential Evaluation of 23 Waxy Maize Lines from Laos [J]. Scientia Agricultura Sinica, 2024, 57(15): 2931-2945.
[4] WANG Shuai, ZHANG RuYang, WANG RongHuan, SONG Wei, ZHAO JiuRan. Research Progress of Southern Corn Rust and Resistance Breeding [J]. Scientia Agricultura Sinica, 2024, 57(14): 2732-2743.
[5] GAO LiBing, CHEN Gang, WANG Jing, QI GuangHai, ZHANG HaiJun, QIU Kai, WU ShuGeng. Effects of Different Caging Regimes on Egg Yolk Flavor of Laying Hens [J]. Scientia Agricultura Sinica, 2023, 56(13): 2609-2619.
[6] LI Huan, YAN XiaoQing, YANG ZhanLie, TAN JinYu, LI XiaoBing, CHEN NengGang, WU RongJu, CHEN HuiCha, RUAN RenChao. Analysis and Comprehensive Evaluation of Phenotype Genetic Diversity in Kam Sweet Rice Germplasm Resources in Guizhou [J]. Scientia Agricultura Sinica, 2023, 56(11): 2035-2046.
[7] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[8] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[9] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[10] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[11] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[12] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[13] YUE YingXiao,HE JinGang,ZHAO JiangLi,YAN ZiRu,CHENG YuDou,WU XiaoQi,WANG YongXia,GUAN JunFeng. Comparison Analysis on Volatile Compound and Related Gene Expression in Yali Pear During Cellar and Cold Storage Condition [J]. Scientia Agricultura Sinica, 2021, 54(21): 4635-4649.
[14] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[15] SHEN ShengFa,XIANG Chao,WU LieHong,LI Bing,LUO ZhiGao. Analysis on the Characteristics of Soluble Sugar Components in Sweetpotato Storage Root and Its Relationship with Taste [J]. Scientia Agricultura Sinica, 2021, 54(1): 34-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!