Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (13): 2635-2650.doi: 10.3864/j.issn.0578-1752.2024.13.011

• HORTICULTURE • Previous Articles     Next Articles

Differential Analysis of Aroma Substance Content and Gene Expression in the Berry Skins of Different Grape Germplasms

XU MengYu1(), WANG JiaYang1, WANG JiangBo2, TANG Wen1, CHEN YiHeng1, SHANGGUAN LingFei1, FANG JingGui1, LU SuWen1()   

  1. 1 College of Horticulture, Nanjing Agricultural University, Nanjing 210095
    2 College of Plant Science, Tarim University, Alar 843300, Xinjiang
  • Received:2023-11-22 Accepted:2024-02-02 Online:2024-07-09 Published:2024-07-09
  • Contact: LU SuWen

Abstract:

【Objective】 This study aimed to explore the differences in the types, content, and related gene expression levels of volatile aroma compounds in the mature grape skins of different grape germplasms, so as to provide a reference basis for the analysis of the metabolic regulation mechanism of grape volatile aroma substances and the full utilization of aroma resources. 【Method】 In this study, GC-MS was used to identify the types and content of volatile aroma substances in the pericarp of 13 grape germplasms. The transcriptional level of the entire genome was also analyzed by using Illumina high-throughput sequencing platform.【Result】 A total of 154 volatile aroma substances were detected in the 13 grape germplasms, mainly including aldehydes, esters, terpenoids and other compounds. The germplasm with the highest content of volatile aroma substances in the skin was Kyoho, while the lowest was Cabernet Sauvignon. Esters were the most abundant volatile aroma substances in the skins of Kyoho and Petit Verdot, while aldehydes were the most abundant volatile aroma substances in the other germplasms skins. Twelve characteristic aroma substances such as hexanal, ethyl caprylate and linalool contributed more to the aroma of grape skins. The results of principal component analysis showed that there were large differences in volatile aroma substances in the skins of Kyoho, Thompson Seedless, Red Globe and other germplasm. The results of transcriptome analysis showed that the number of differentially expressed genes (DEGs) varied considerably among different germplasms. DEGs were significantly enriched in the pathways of linoleic acid metabolism, α-linolenic acid metabolism, phenylalanine metabolism, tyrosine metabolism, and monoterpene biosynthesis. The expressions of lipoxygenase (LOX), alcohol acyltransferase (AMAT), deoxyd-xylose-5-phosphate reductase (DXS), alcohol dehydrogenase (ADH) and other genes were highly correlated with the content of aroma compounds. Further analysis revealed that the transcription factors WRKY7, WRKY28, ARF4, and ARF22 were potential regulators of aroma synthesis in grapes.【Conclusion】 The content of aroma substances and the expression of related genes in the pericarp of different grape germplasm varied greatly, and the results of the joint multi-omics analysis provided a reference for further research on the synthesis mechanism of volatile aroma substances in grapes.

Key words: grape (Vitis vinifera), skin, aroma, volatile aroma substance, metabolome, transcriptome

Table 1

Detailed information of 13 grape germplasms"

序号
Number
葡萄品种名称
Name of grape variety
属性
Attribute
果皮颜色
Skin color
类型
Type
1 无核白Thompson Seedless 欧亚Eurasian 白White 鲜食 Table grape
2 阳光玫瑰Shine Muscat 欧美Europe and America 金黄Golden yellow 鲜食 Table grape
3 红地球Red Globe 欧亚Eurasian 紫红Purplish red 鲜食Table grape
4 玫瑰香Muscat Hamburg 欧亚Eurasian 紫红Purplish red 鲜食Table grape
5 巨峰Kyoho 欧美Europe and America 紫黑Atropurpureus 鲜食Table grape
6 贵人香Italian Riesling 欧亚Eurasian 白White 酿酒Wine grape
7 小芒森Petit Manseng 欧亚Eurasian 白White 酿酒Wine grape
8 威代尔Vidal 欧美Europe and America 白White 酿酒Wine grape
9 赤霞珠Cabernet Sauvignon 欧亚Eurasian 紫黑Atropurpureus 酿酒Wine grape
10 蛇龙珠Cabernet Gernischet 欧亚Eurasian 紫黑Atropurpureus 酿酒Wine grape
11 梅鹿辄Merlot 欧亚Eurasian 紫黑Atropurpureus 酿酒 Wine grape
12 小味儿多Petit Verdot 欧亚Eurasian 紫黑Atropurpureus 酿酒 Wine grape
13 马瑟兰Marselan 欧亚Eurasian 深蓝Dark blue 酿酒 Wine grape

Fig. 1

Berries of different grape cultivars at the maturation TS: Thompson Seedless; SM: Shine Muscat; RG: Red Globe; MH: Muscat Hamburg; KY: Kyoho; IR: Italian Riesling; PM: Petit Manseng; VD: Vidal; CS: Cabernet Sauvignon; CG: Cabernet Gernischet; ML: Merlot; PV: Petit Verdot; MS: Marselan. The same as below"

Table 2

Primer sequence"

基因名称
Gene name
基因号
Gene ID
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
LOXA VIT_06s0004g01510 TTTTCTTGGTTTAGGGATGA CTTTGATTTGCCTTACTTCG
LOXC VIT_14s0128g00780 TGAGCCTACCACATCCTAAT TAGCCAGAGTCATTCACAGC
HPL VIT_12s0059g01060 CCGTCCCACTCCAATACGCT TTCGGGTCTGTCATCGCCAC
ADH1 VIT_18s0001g15410 AGCCATTAGTGATAGAAGAAGTG GACATAGGGAGGTGTAGAGGA
LOXO VIT_09s0002g01080 CTCAACGACCCACAACGCTAC CGCACCTGTTTCTTCGGCTA
DXS VIT_05s0020g02130 TTTGGTTGCGTCTTCTTTGC GGACTCCACTTTGTTGTGCC

Table 3

Aroma thresholds for characteristic aroma substances"

化学成分
Compound
阈值[15,20]
Threshold (μg∙L-1)
香气特征[15,20-21]
Aromatic characteristic
正己醛 Hexanal 4.500 绿色蔬菜 Green vegetables
2-己烯醛 2-hexenal 17.000 青草,草本 Grass, herbaceous
反式-2-壬烯醛 Trans-2-Nonenal 0.080 潮湿的,土壤味 Moist, soil odor
(E,Z)-2,6-壬二烯醛 (E,Z)-2,6-nonadienal 0.020 紫罗兰和黄瓜香味 Violet and cucumber aromas
壬醛 Nonanal 1.000 脂肪,柑橘,青菜,果味 Fat, citrus, vegetables, fruity taste
异丁酸乙酯 Ethyl isobutyrate 0.100 果香 Fruity aroma
正己酸乙酯 Ethyl caproate 1.000 水果,青苹果,香蕉,葡萄酒,白兰地 Fruits, green apples, bananas, wine, brandy
辛酸乙酯 Ethyl octanoate 0.100 甜味,花香,水果味,香蕉,梨,白兰地 Sweet, floral, fruity, banana, pear, brandy
芳樟醇 Linalool 6.000 柑橘,花香,甜味 Citrus, floral aroma, sweet taste
香叶醇 Geraniol 10.000 柠檬味,花香,橙子味,玫瑰味 Lemon flavor, floral aroma, orange flavor, rose flavor
(E)-氧化玫瑰 (E)-Oxidized roses 0.100 玫瑰香,天竺兰香 Rose fragrance, geranium fragrance
β-紫罗兰酮 β-ionone 0.007 脂膏香,玫瑰香味,紫罗兰香 Cream fragrance, rose fragrance, violet fragrance

Fig. 2

Characters of volatile substances in grape berry skins among different cultivars A: Types of volatile aroma substances; B: Content of volatile aroma substances; C: Content of volatile aroma substances in each metabolic pathway; D: OAV of volatile aroma substances"

Fig. 3

Principal component analysis of volatile aroma substances in different grape cultivars"

Table 4

Quality assessment of grape skin transcriptome sequencing"

样品 Sample 原始数据 Raw reads 高质量数据 Clean reads Q20 (%) Q30 (%) GC (%)
TS 7509114100 7377606868 97.63 93.23 46.38
SM 7984925800 7885274082 97.64 93.11 45.46
RG 6797327000 6629690349 97.57 93.21 46.49
MH 6863553200 6699407763 97.57 93.00 46.20
KY 6529118900 6378759691 97.83 93.82 46.20
IR 8716216500 8624849243 97.62 93.02 45.81
PM 6548941700 6424235773 97.72 93.61 46.40
VD 7417100700 7300033789 97.55 93.14 46.24
CS 7019247100 6845200698 97.39 92.48 46.67
CG 6581499100 6444723077 97.69 93.63 46.12
ML 7391406100 7271554342 97.56 93.24 46.43
PV 8206753300 8086178375 97.63 93.15 46.36
MS 7488201600 7299543929 97.36 92.31 46.20

Fig. 4

Statistics of DEGs among different grape cultivars A: DEGs; B: Down-regulated DEGs; C: Up-regulated DEGs; D: Venn diagram of DEGs"

Fig. 5

KEGG enrichment pathways of DEGs in five comparison groups"

Fig. 6

Metabolic pathways and related genes’ expression of aroma in grape A: Fatty acid metabolic pathway; B: Amino acid metabolic pathway; C: Terpenoid synthetic pathway; D: Heat map of expression of aroma-related genes"

Fig. 7

Relative expression levels of aroma related genes in grape"

Fig. 8

WGCNA analysis A: Hierarchical cluster tree illustrating the modules identified by WGCNA; B: KEGG enrichment analysis of genes in the darkorange module; C: Diagram of the gene regulatory network"

Fig. 9

Conjoint analysis of transcriptome and metabolome A: Association between characteristic aroma substances and DEGs; B: The O2PLS loading plots for volatile aroma substances; C: The O2PLS loading plots for DEGs. The top ten main aromatic substances and DEGs that had greater effect on the other omics were indicated by red dots"

[1]
MATEO J J, JIMÉNEZ M. Monoterpenes in grape juice and wines. Journal of Chromatography A, 2000, 881(1/2): 557-567.
[2]
刘翠霞. 葡萄果实单萜化合物含量的QTL定位及其合成调控的候选基因筛选[D]. 武汉: 中国科学院武汉植物园, 2017.
LIU C X. QTL mapping of monoterpene content in grape berrry and screening of candidate genes related to regulation[D]. Wuhan: Wuhan Botanical Garden, Chinese Academy of Sciences, 2017. (Chinese)
[3]
BARBERA D, AVELLONE G, FILIZZOLA F, MONTE L G, CATANZARO P, AGOZZINO P. Determination of terpene alcohols in Sicilian Muscat wines by HS-SPME-GC-MS. Natural Product Research, 2013, 27(6): 541-547.

doi: 10.1080/14786419.2012.676553 pmid: 22502739
[4]
YANG C X, WANG Y J, LIANG Z C, FAN P G, WU B H, YANG L, WANG Y N, LI S H. Volatiles of grape berries evaluated at the germplasm level by headspace-SPME with GC-MS. Food Chemistry, 2009, 114(3): 1106-1114.
[5]
DUDAREVA N, PICHERSKY E, GERSHENZON J. Biochemistry of plant volatiles. Plant Physiology, 2004, 135(4): 1893-1902.

doi: 10.1104/pp.104.049981 pmid: 15326281
[6]
DEFILIPPI B G, MANRÍQUEZ D, LUENGWILAI K, GONZÁLEZ- AGÜERO M. Aroma volatiles: Biosynthesis and mechanisms of modulation during fruit ripening. Advances in Botanical Research, 2009, 50: 1-37.
[7]
李海燕. ‘阳光玫瑰’葡萄香气物质积累规律及其调控研究[D]. 杭州: 浙江大学, 2017.
LI H Y. The research of the volatile aroma accumulation and regulation of ‘Shine Muscat’ grape[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
[8]
姜文广, 李记明, 徐岩, 范文来, 于英. 4种酿酒红葡萄果实的挥发性香气成分分析. 食品科学, 2011, 32(6): 225-229.

doi: 10.7506/spkx1002-6630-201106052
JIANG W G, LI J M, XU Y, FAN W L, YU Y. Analysis of aroma components in four red grape varieties. Food Science, 2011, 32(6): 225-229. (in Chinese)
[9]
满坤. 不同光质对‘阳光玫瑰’葡萄香气组分及风味的影响[D]. 杭州: 浙江大学, 2020.
MAN K. Effect of different light quality on aroma components and flavor of ‘Shine Muscat’ grape[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
[10]
杨晓帆, 高媛, 韩梅梅, 彭振雪, 潘秋红. 云南高原区酿酒葡萄果实香气物质的积累规律. 中国农业科学, 2014, 47(12): 2405-2416. doi: 10.3864/j.issn.0578-1752.2014.12.013.
YANG X F, GAO Y, HAN M M, PENG Z X, PAN Q H. Accumulation characteristics of volatile compounds in wine grape berries grown in high altitude regions of Yunnan. Scientia Agricultura Sinica, 2014, 47(12): 2405-2416. doi: 10.3864/j.issn.0578-1752.2014.12.013. (in Chinese)
[11]
殷梦婷, 代红军, 贺琰, 汪月宁, 郭学良, 刘妍, 王振平. 水分胁迫对马瑟兰葡萄果实挥发性物质合成的影响. 果树学报, 2023, 40(8): 1592-1605.
YIN M T, DAI H J, HE Y, WANG Y N, GUO X L, LIU Y, WANG Z P. Effects of water stress on the synthesis of volatile compounds in Marselan grape berries. Journal of Fruit Science, 2023, 40(8): 1592-1605. (in Chinese)
[12]
张克坤, 陈可钦, 李婉平, 乔浩蓉, 张俊霞, 刘凤之, 房玉林, 王海波. 灌水量对限根栽培‘阳光玫瑰’葡萄果实发育与香气物质积累的影响. 中国农业科学, 2023, 56(1): 129-143. doi: 10.3864/j.issn. 0578-1752.2023.01.010.
ZHANG K K, CHEN K Q, LI W P, QIAO H R, ZHANG J X, LIU F Z, FANG Y L, WANG H B. Effects of irrigation amount on berry development and aroma components accumulation of Shine Muscat grape in root-restricted cultivation. Scientia Agricultura Sinica, 2023, 56(1): 129-143,doi: 10.3864/j.issn.0578-1752.2023.01.010. (Chinese)
[13]
孙磊, 王晓玥, 王慧玲, 闫爱玲, 张国军, 任建成, 徐海英. 不同砧木对鲜食葡萄生长和香气品质的影响. 中国农业科学, 2021, 54(20): 4405-4429. doi: 10.3864/j.issn.0578-1752.2023.01.010.
SUN L, WANG X Y, WANG H L, YAN A L, ZHANG G J, REN J C, XU H Y. The influence of rootstocks on the growth and aromatic quality of two table grape varieties. Scientia Agricultura Sinica, 2021, 54(20): 4405-4429. doi: 10.3864/j.issn.0578-1752.2023.01.010. (in Chinese)
[14]
张乐, 张亚红, 乔振羽, 王亚楠, 陈璐, 周娟, 黄嘉俊. 不同昼夜温差对赤霞珠葡萄果实香气的影响及转录组分析. 核农学报, 2023, 37(4): 865-878.

doi: 10.11869/j.issn.1000-8551.2023.04.0865
ZHANG L, ZHANG Y H, QIAO Z Y, WANG Y N, CHEN L, ZHOU J, HUANG J J. Effect of diurnal amplitude on fruit aroma of Cabernet sauvignon and transcriptome analysis. Journal of Nuclear Agricultural Sciences, 2023, 37(4): 865-878. (in Chinese)

doi: 10.11869/j.issn.1000-8551.2023.04.0865
[15]
张文文. 鲜食葡萄香气特征与感官品评的研究[D]. 上海: 上海交通大学, 2018.
ZHANG W W. Study on the characteristics of aroma and sensory evaluation of table grapes[D]. Shanghai: Shanghai Jiao Tong University, 2018. (in Chinese)
[16]
DALLA COSTA L, EMANUELLI F, TRENTI M, MORENO-SANZ P, LORENZI S, COLLER E, MOSER S, SLAGHENAUFI D, CESTARO A, LARCHER R, GRIBAUDO I, COSTANTINI L, MALNOY M, GRANDO M S. Induction of terpene biosynthesis in berries of microvine transformed with VvDXS1 alleles. Frontiers in Plant Science, 2017, 8: 2244.
[17]
ZHU B Q, XU X Q, WU Y W, DUAN C Q, PAN Q H. Isolation and characterization of two hydroperoxide lyase genes from grape berries: HPL isogenes in Vitis vinifera grapes. Molecular Biology Reports, 2012, 39(7): 7443-7455.
[18]
MAGGU M, WINZ R, KILMARTIN P A, TROUGHT M C T, NICOLAU L. Effect of skin contact and pressure on the composition of Sauvignon Blanc must. Journal of Agricultural and Food Chemistry, 2007, 55(25): 10281-10288.

pmid: 18020411
[19]
LI Y Z, HE L L, SONG Y H, ZHANG P, CHEN D D, GUAN L P, LIU S J. Comprehensive study of volatile compounds and transcriptome data providing genes for grape aroma. BMC Plant Biology, 2023, 23(1): 171.

doi: 10.1186/s12870-023-04191-1 pmid: 37003985
[20]
孙宝国, 刘玉平, 郑福平. 食用调香术. 2版. 北京: 化学工业出版社, 2010.
SUN B G, LIU Y P, ZHENG F P. Edible Flavoring. 2nd ed. Beijing: Chemical Industry Press, 2010. (in Chinese)
[21]
PALMA-HARRIS C, MCFEETERS R F, FLEMING H P. Fresh cucumber flavor in refrigerated pickles: Comparison of sensory and instrumental analysis. Journal of Agricultural and Food Chemistry, 2002, 50(17): 4875-4877.
[22]
CABRITA M J, FREITAS A M C, LAUREANO O, DI STEFANO R,. Glycosidic aroma compounds of some Portuguese grape cultivars. Journal of the Science of Food and Agriculture, 2006, 86(6): 922-931.
[23]
张明霞, 吴玉文, 段长青. 葡萄与葡萄酒香气物质研究进展. 中国农业科学, 2008, 41(7): 2098-2104. doi: 10.3864/j.issn.0578-1752. 2008.07.030.
ZHANG M X, WU Y W, DUAN C Q. Progress in study of aromatic compounds in grape and wine. Scientia Agricultura Sinica, 2008, 41(7): 2098-2104. doi: 10.3864/j.issn.0578-1752.2008.07.030. (in Chinese)
[24]
CANOSA P, OLIVEIRA J M, MASA A, VILANOVA M. Study of the volatile and glycosidically bound compounds of minority Vitis vinifera red cultivars from NW Spain. Journal of the Institute of Brewing, 2011, 117(3): 462-471.
[25]
YANG C X, WANG Y J, WU B H, FANG J B, LI S H. Volatile compounds evolution of three table grapes with different flavour during and after maturation. Food Chemistry, 2011, 128(4): 823-830.
[26]
孙婷. 草莓香型葡萄果实香气物质分析与QTL定位[D]. 沈阳: 沈阳农业大学, 2019.
SUN T. QTL mapping and study for labrusca flavor compounds in grape[D]. Shenyang: Shenyang Agricultural University, 2019. (in Chinese)
[27]
张文文, 吴玉森, 陈毓谨, 郑奇志, 马超, 许文平, 张才喜, 王世平. 3种巨峰系葡萄的香气特征. 上海交通大学学报(农业科学版), 2018, 36(5): 51-59, 66.
ZHANG W W, WU Y S, CHEN Y J, ZHENG Q Z, MA C, XU W P, ZHANG C X, WANG S P. Aroma characteristics of three Kyoho grapevine series. Journal of Shanghai Jiao Tong University (Agricultural Science), 2018, 36(5): 51-59, 66. (in Chinese)
[28]
韩洁, 郑艳, 陈存坤, 董成虎, 王文生. 不同贮藏条件对无核白葡萄香气组分变化及品质的影响. 食品与发酵工业, 2015, 41(9): 181-187.
HAN J, ZHENG Y, CHEN C K, DONG C H, WANG W S. Effects of different storage conditions on volatile substance changes and quality of Thompson seedless grape. Food and Fermentation Industries, 2015, 41(9): 181-187. (in Chinese)
[29]
PODOLYAN A, WHITE J, JORDAN B, WINEFIELD C. Identification of the lipoxygenase gene family from Vitis vinifera and biochemical characterisation of two 13-lipoxygenases expressed in grape berries of Sauvignon Blanc. Functional Plant Biology, 2010, 37(8): 767.
[30]
GARDNER H W. Recent investigations into the lipoxygenase pathway of plants. Biochimica et Biophysica Acta, 1991, 1084(3): 221-239.

pmid: 1909580
[31]
KALUA C M, BOSS P K. Evolution of volatile compounds during the development of cabernet sauvignon grapes (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 2009, 57(9): 3818-3830.
[32]
DOLIGEZ A, BOUQUET A, DANGLOT Y, LAHOGUE F, RIAZ S, MEREDITH P, EDWARDS J, THIS P. Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. TAG Theoretical and Applied Genetics, 2002, 105(5): 780-795.
[33]
张海朋, 刘翠华, 刘园, 温欢, 施要强, 张红艳, 徐娟. 柑橘中挥发性萜类物质代谢研究进展. 园艺学报, 2020, 47(8): 1610-1624.

doi: 10.16420/j.issn.0513-353x.2020-0100
ZHANG H P, LIU C H, LIU Y, WEN H, SHI Y Q, ZHANG H Y, XU J. Research advances of volatile terpenoids metabolism in Citrus. Acta Horticulturae Sinica, 2020, 47(8): 1610-1624. (in Chinese)
[34]
JOSHI A, JEENA G S, SHIKHA, KUMAR R S, PANDEY A, SHUKLA R K. Ocimum sanctum, OscWRKY1, regulates phenylpropanoid pathway genes and promotes resistance to pathogen infection in Arabidopsis. Plant Molecular Biology, 2022, 110(3): 235-251.
[35]
WANG N, SONG G W, ZHANG F J, SHU X C, CHENG G H, ZHUANG W B, WANG T, LI Y H, WANG Z. Characterization of the WRKY gene family related to anthocyanin biosynthesis and the regulation mechanism under drought stress and methyl jasmonate treatment in Lycoris radiata. International Journal of Molecular Sciences, 2023, 24(3): 2423.
[36]
SUN P W, XU Y H, YU C C, LV F F, TANG X L, GAO Z H, ZHANG Z, WANG H, LIU Y, WEI J H. WRKY44 represses expression of the wound-induced sesquiterpene biosynthetic gene ASS1 in Aquilaria sinensis. Journal of Experimental Botany, 2020, 71(3): 1128-1138.
[37]
ABBAS F, KE Y G, ZHOU Y W, YU Y Y, WASEEM M, ASHRAF U, LI X Y, YU R C, FAN Y P. Genome-wide analysis of ARF transcription factors reveals HcARF5 expression profile associated with the biosynthesis of β-ocimene synthase in Hedychium coronarium. Plant Cell Reports, 2021, 40(7): 1269-1284.
[38]
LOPEZ PINAR A, RAUHUT D, RUEHL E, BUETTNER A. Effects of bunch rot (Botrytis cinerea) and powdery mildew (Erysiphe necator) fungal diseases on wine aroma. Frontiers in Chemistry, 2017, 5: 20.
[39]
石莹, 刘园, 陈嘉景, 张海朋, 曾继吾, 黄宏建, 田静, 彭抒昂, 徐娟. 黄龙病病菌侵染对茶枝柑果实类黄酮和挥发性物质的影响. 华中农业大学学报, 2020, 39(1): 24-33.
SHI Y, LIU Y, CHEN J J, ZHANG H P, ZENG J W, HUANG H J, TIAN J, PENG S A, XU J. Effects of Huanglongbing infection on profiles of flavonoids and volatiles in fruits of Citrus reticulata cv. Chachiensis. Journal of Huazhong Agricultural University, 2020, 39(1): 24-33. (in Chinese)
[1] QI RenJie, NING Yu, LIU Jing, LIU ZhiYang, XU Hai, LUO ZhiDan, CHEN LongZheng. Identification and Analysis of Genes Related to Bitter Gourd Saponin Synthesis Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2024, 57(9): 1779-1793.
[2] LIN Wei, WU ShuiJin, LI YueSen. Transcriptome and Proteome Association Analysis to Revealthe Molecular Mechanism of Baxi Banana Seedlings in Response to Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(8): 1575-1591.
[3] FENG Fan, JIANG XingRui, WANG LingYun, ZHANG YongGang, LI AiHua, TAO YongSheng. The Stabilization of Aroma and Color During Hutai-8 Rose Winemaking by Gallic Acid Treatment [J]. Scientia Agricultura Sinica, 2024, 57(8): 1592-1605.
[4] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[5] ZHANG HaiQing, ZHANG HengTao, GAO QiMing, YAO JiaLong, WANG YaRong, LIU ZhenZhen, MENG XiangPeng, ZHOU Zhe, YAN ZhenLi. Transcriptome Analysis for Screening Key Genes Related to Regulating Branching Ability in Apple [J]. Scientia Agricultura Sinica, 2024, 57(10): 1995-2009.
[6] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[7] SHENG HongJie, LU SuWen, ZHENG XuanAng, JIA HaiFeng, FANG JingGui. Identification and Comparative Analysis of Metabolites in Grape Seed Based on Widely Targeted Metabolomics [J]. Scientia Agricultura Sinica, 2023, 56(7): 1359-1376.
[8] LI Hui, ZHANG YuFeng, LI XiaoGang, WANG ZhongHua, LIN Jing, CHANG YouHong. Identification of Salt-Tolerant Transcription Factors in the Roots of Pyrus betulaefolia by the Association Analysis of Genome-Wide DNA Methylation and Transcriptome [J]. Scientia Agricultura Sinica, 2023, 56(7): 1377-1390.
[9] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[10] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[11] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[12] WANG ChunXiao, YU JunZhu, ZHOU WenYa, XU YinHu. Research Progress on the Application of Non-Saccharomyces During Wine Fermentation [J]. Scientia Agricultura Sinica, 2023, 56(3): 529-548.
[13] AN Yong, QIN ShiZhen, SHI ZhaoGuo, GONG LiYuan, ZHANG Shuai, JI Feng. Influences of Phosphorus Level in Diet of Parent Pigeons on Biochemical Index, Untargeted Metabolomics Profile of Serum, and Gene Expression of Phosphate Transporters in Squabs [J]. Scientia Agricultura Sinica, 2023, 56(23): 4772-4788.
[14] TANG ZhenSan, YUAN JianLong, KANG LiangHe, CHENG LiXiang, LÜ Tai, YANG Chen, ZHANG Feng. Potato Tuber Skin Roughness Classification Analysis Based on Image Characteristics Recognition [J]. Scientia Agricultura Sinica, 2023, 56(22): 4428-4440.
[15] YI ZeHui, ZHAO Jing, MAO LiPing. Development and Transferability of EST-SSR Markers Based on Transcriptome Data from Asparagus officinalis [J]. Scientia Agricultura Sinica, 2023, 56(22): 4490-4505.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!