Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (17): 3420-3434.doi: 10.3864/j.issn.0578-1752.2023.17.015

• HORTICULTURE • Previous Articles     Next Articles

Genetic Variation Analysis and Candidate Genes Mining of Regulating Flesh Color in Pomelo

CHENG Li(), YANG ShengNan, ZHU YanSong, WANG Xu, ZHAO WanTong, LI RenJing, LI Pei, YUAN ZhongJie, JIANG Dong()   

  1. Citrus Research Institute of Southwest University, Chongqing 400712
  • Received:2023-02-13 Accepted:2023-05-17 Online:2023-09-01 Published:2023-09-08
  • Contact: JIANG Dong

Abstract:

【Objective】 The flesh color is an important appearance and quality trait of pomelo varieties. The aim of this study was to excavate variation loci and genes significantly related to the flesh color of pomelo varieties, so as to lay a foundation for further understanding the flesh color development mechanism and marker-assisted breeding of pomelo varieties. 【Method】 100 pomelo accessions were used to identify their flesh color with a color difference meter, and classified based on their phenotype results. The simplified genome sequencing of 100 pomelo accessions was carried out using GBS (genotyping-by-sequencing) technology. The eigenvalues and eigenvectors of the genotype data obtained from sequencing were calculated by GCTA software to analyze the population structure, and the genetic differentiation index (Fst) of two different flesh color populations were calculated using Plink 2.0 software. The GLM model in GEMMA software was adopted to perform genome-wide association analysis, and the variation loci significantly associated with color phenotype were identified for further allelic variation analysis. According to the citrus linkage disequilibrium (LD) distance, the candidate genes located in the 25 kb adjacent region around the variation loci that might be related to the forming of flesh color were screened out, four white and four red pomelo accessions were randomly selected to perform qPCR to obtain the candidate genes expression at different fruit development stages. 【Result】 According to the phenotype of flesh color, 100 accessions were divided into two categories corresponding to white and red pomelo accessions, including 58 white flesh pomelos and 42 red flesh pomelos. Six SNP sites with Fst index greater than 0.4 and -log10 (P)>9 were screened out after Fst genetic differentiation analysis and GWAS genome-wide association analysis. The genotypes of six variation SNPs sites were extracted from 100 pomelos accessions and the genotypes of these SNPs could be used to predict the flesh color of pomelos. A total of 14 genes that function annotated as isoprene synthesis, plastid development, abscisic acid signal regulation, ethylene response related genes and transcription factors were screened and selected. Genes expression analysis showed that Cg7g013760 (mitogen-activated protein kinase kinase MAPKKK17), Cg7g013840 (chloroplast porphyrinogen deaminase), Cg7g014020 (transcription factor TCP7), Cg7g014120 (chloroplast superoxide dismutase SOD3), Cg7g014190 (FAD synthetase 2) were related to the forming of flesh color in pomelos. 【Conclusion】 A total of 6 SNP sites significantly associated with flesh color in pomelos accessions were identified by GWAS and Fst analysis. A total of 14 genes within the 25 kb regions around the mutation SNPs site were screened and annotated. The gene expression analysis showed that five genes might be involved in the forming of flesh color in pomelo accessions.

Key words: pomelo, flesh color, Fst, GWAS, candidate genes

Table 1

100 pomelo accessions and the flesh color phenotype information"

编号
Code
材料名称
Accession name
果肉颜色
Flesh color
编号
Code
材料名称
Accession name
果肉颜色
Flesh color
1 暹罗低酸柚 Siamese Acidless Pomelo 白 White 36 垫江黄沙白心柚 Dian Jiang Huang Sha Bai Pomelo 白 White
2 卫寺蜜柚 Wei Si Honey Pomelo 白 White 37 暹罗蜜柚 Xian Luo Mi Pomelo 白 White
3 白玉霜 Bai Yu Shuang Pomelo 白 White 38 晚白柚 Wan Bai Pomelo 白 White
4 晚白柚 Wan Bai Pomelo 白 White 39 安江香柚 An Jiang Xiang Pomelo 白 White
5 杭晚蜜柚实生2 Hang Wan Mi You Seedling No.2 白 White 40 水晶文旦 Suisyo Buntan 白 White
6 高浦柚 Kao Phuang Pomelo 白 White 41 垫江沙田柚 Dian Jiang Sha Tian You 白 White
7 琯溪蜜柚 Guan Xi Honey Pomelo 白 White 42 宜安倭柚 Yi An Wo You 白 White
8 福建文旦 Wen Dan Pomelo 白 White 43 脆柚 Cui You 白 White
9 沙田柚 Sha Tian You 白 White 44 垫江曾家白心柚 Dian Jiang Zeng Jia Bai You 白 White
10 东风早柚 Dong Feng Zao Pomelo 白 White 45 段氏柚 Duan Shi You 白 White
11 刘氏柚 Liu Shi Pomelo 白 White 46 岭南沙田柚 Ling Nan Sha Tian Pomelo 白 White
12 梁平柚1号 Liang Ping Pomelo No.1 白 White 47 14-4柚 Pomelo 14-4 白 White
13 岭南沙田柚 Ling Nan Sha Tian Pomelo 白 White 48 长寿沙田柚 Chang Shou Sha Tian You 白 White
14 通贤柚 Tong Xian Pomelo 白 White 49 古老钱沙田柚 Gu Lao Qian Sha Tian Pomelo 白 White
15 垫江白柚杂种-3 Hybrid of Dian Jiang Pomelo No.3 白 White 50 盘谷文旦 Pan Gu Wen Dan Pomelo 白 White
16 左氏柚 Zuo Shi Pomelo 白 White 51 太极图柚 Tai Ji Tu You 白 White
17 垫江白柚 Dian Jiang White Flesh Pomelo 白 White 52 古巴柚 Guba Pomelo 白 White
18 30-16柚 Pomelo 30-16 白 White 53 白玉霜 Bai Yu Shuang Pomelo 白 White
19 28-11柚 Pomelo 28-11 白 White 54 金沙柚 Jing Sha Pomelo 白 White
20 陈氏柚 Chen Shi You 白 White 55 无核沙田柚 Seedless Sha Tian You 白 White
21 华蓥山香柚 Hua Ying Shan Fragrant Pomelo 白 White 56 琯溪蜜柚 Guan Xi Honey Pomelo 白 White
22 段氏柚 Duan Shi You 白 White 57 玉环文旦柚 Yu Huan Wen Dan 白 White
23 泰国柚(暹罗低酸柚)Tailand Pomelo 白 White 58 安江无核蜜柚 An Jiang Seedless Honey Pomelo 白 White
24 玉环柚 Yu Huan Pomelo 白 White 59 垫江红心杂种3号 Dian Jiang Red Flesh pomelo Hybrid 3 红 Red
25 蒲莲柚(子代) Pu Lian Pomelo (Offspring tree) 白 White 60 垫江红心杂种2号 Dian Jiang Red Flesh pomelo Hybrid 2 红 Red
26 蒲莲柚(母树) Pu Lian Pomelo (Mother Tree) 白 White 61 红肉琯溪蜜柚 Red Flesh Mi You 红 Red
27 彭氏柚 Peng Shi pomelo 白 White 62 红琯溪蜜柚 Red Guan Xi Honey Pomelo 红 Red
28 越南小柚 Vietnam Small Pomelo 白 White 63 贡水红柚 Gong Shui Hong You 红 Red
29 合江柚 He Jiang You 白 White 64 平阳柚 Duong Da Lang Pomelo 红 Red
30 安江橙(安江香柚) An Jiang Cheng 白 White 65 菊花芯柚 Ju Hua Xin Pomelo 红 Red
31 正形沙田柚 Normal Shape Sha Tian You 白 White 66 光皮柚 Smooth Peel Pomelo 红 Red
32 梁砂柚 Liang Sha You 白 White 67 延城柚 Yan Cheng You 红 Red
33 北碚柚 Bei Bei Pomelo 白 White 68 23-13柚 Pomelo 23-13 红 Red
34 垫江周家白心柚 Dian Jiang Zhou Jia Bai You 白 White 69 22-13柚 Pomelo 22-13 红 Red
35 梅塆柚 Mei Wan Pomelo 白 White 70 强德勒柚-1 Chandler Pomelo No.1 红 Red
71 勐仑早柚 Meng Lun Early Pomelo 红 Red 86 彭县暹罗柚 Peng Xian Xian Luo You 红 Red
72 龙安柚 Long An Pomelo 红 Red 87 强德勒柚-2 Chandler Pomelo No.2 红 Red
73 红绵蜜柚 Hong Mian Honey Pomelo 红 Red 88 锅魁柚 Guo Kui Pomelo 红 Red
74 红绵蜜柚 Hong Mian Honey Pomelo 红 Red 89 江津红心柚 Jiang Jin Red Pomelo 红 Red
75 安农一号香柚 An Nong Xiang Pomelo No.1 红 Red 90 坪山柚 Ping Shan Pomelo 红 Red
76 垫江红心柚 Dian Jiang Hong Pomelo 红 Red 91 39-6柚 Pomelo 39-6 红 Red
77 29-12柚 Pomelo 29-12 红 Red 92 五布红心柚 Wu Bu Pomelo 红 Red
78 14-1柚 Pomelo 14-1 红 Red 93 毛化红柚 Mao Hua Hong You 红 Red
79 三红蜜柚 San Hong Honey Pomelo 红 Red 94 勐仑早柚 Meng Lun Early Pomelo 红 Red
80 红肉蜜柚 Red Flesh Mi You 红 Red 95 大庸菊花芯柚-1 Ju Hua Xin Pomelo No.1 红 Red
81 8088柚 8088 Pomelo 红 Red 96 金兰柚 Jin Lan Pomelo 红 Red
82 四季抛柚 Si Ji Pao You 红 Red 97 纳溪樱桃柚 Na Xi Ying Tao Pomelo 红 Red
83 14-7柚 Pomelo 14-7 红 Red 98 龙安柚 Long An Pomelo 红 Red
84 安农1号香柚 An Nong No.1 Pomelo 红 Red 99 大庸菊花芯柚-2 Ju Hua Xin Pomelo No.2 红 Red
85 缅甸柚 Burma Pomelo 红 Red 100 红肉柚 Red flesh Pomelo 红 Red

Table 2

Nucleotide sequences of qPCR primers"

编号 Code 基因 Gene 正向引物序列 Forward primer sequences 反向引物序列 Reverse primer sequences
1 Cg7g013650 GCGGCAACAACAAACCATCT CGTCCCGATCGGCTTATCAA
2 Cg7g013760 GTTGCCCTTTTGTGCTGGAG GAACAACAGTTTCGGGTGCC
3 Cg7g013780 TTGGGTCAAGCTGCATCCAT GCTTGCCCACTATACCCTCC
4 Cg7g013840 ATTGGTGGGAAGGGCTTGTT CTTTCATCGAGTGCACAGCG
5 Cg7g013890 CATGCTCTTCCGGATACTACCC ATCAATGCCAAAGAGCCACCTA
6 Cg7g013910 GGCGTCATCAAACCTGGAGA TTGCCCTAGACCAACTGCAG
7 Cg7g014000 GCCCAGGAATACGGAGACAG TCCTGCTTTCCGGAACTTCC
8 Cg7g014020 CCTCCTGGTAATGGCGTGTT AGGGCTTATGTTCCAACGCA
9 Cg7g014120 CCACCTAGTACTCGTCTTCTGC CGATGAAGCTCTCCCCAATGTA
10 Cg7g014130 GCTGGTTGGGCTTTCACGTA AAACTCCTGGCCACCGAATT
11 Cg7g014190 AATGCCTACTCTCCCCAGCT ACTATCCCTCCTGCCACTGA
12 Cg7g014220 AGCTCCAGTCATTTGCCGAA ACTCGGCCGATGACTGATTC
13 Cg7g014430 GTCGTTTCGTCCGTGAGATT AGGGGTTTTGGCTTTTGACT
14 Cg7g014530 ACTCCCCTTTCAAACACCCC CCGGACGGTGAGAATGAAGT

Table 3

Changes and distribution characteristics of color index of 100 pomelo accessions"

果肉性状
Pulp color trait
颜色参数
Color index
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
变异系数
CV (%)
白肉
White pulp
L 46.00 77.00 59.68 7.92 13.26
A -2.00 10.00 3.29 2.58 78.37
B 3.25 20.25 11.26 3.42 30.42
C 6.14 45.97 18.20 9.40 51.60
CI -3.27 29.81 20.88 15.29 73.21
红肉
Red pulp
L 29.50 65.25 48.11 7.55 15.69
A 8.75 39.50 22.19 8.82 39.73
B 4.75 29.50 13.68 5.08 37.15
C 13.10 45.97 26.59 8.74 32.86
CI 18.37 65.00 35.42 9.70 27.38

Fig. 1

The scatter plot of pulp color index of 100 pomelo accessions"

Fig. 2

The principal component analysis of 100 pomelo accessions"

Fig. 3

Fst analysis with white and red pulp pomelo populations"

Table 4

Information of 6 SNP sites from Fst analysis"

编号 Code 染色体 Chromosome 物理位置 Physical position (bp) 遗传分化系数 Fst 基因型 Genotype
1 7 15825706 0.43 A/C
2 7 15987387 0.43 C/T
3 7 15795993 0.42 C/T
4 7 15755408 0.42 C/T
5 7 16111951 0.41 C/T
6 7 15744770 0.40 G/A

Fig. 4

GWAS association analysis was performed using 100 accessions of pomelo flesh color"

Table 5

Information of 12 SNP sites from GWAS analysis"

编号 Code 染色体 Chrmosome 位置 Physical position (bp) -log10(P)值 -log10(P) value 基因型 Genotype
1 7 15825706 13.62 A/C
2 7 15932621 12.00 A/C
3 7 4757754 10.69 A/C
4 7 15987387 10.69 C/T
5 7 15795993 10.21 C/T
6 7 16560622 10.14 A/C
7 7 15755408 9.87 C/T
8 7 15816519 9.60 G/T
9 7 15744770 9.60 G/A
10 7 16111951 9.57 C/T
11 7 5240390 9.43 C/A
12 7 15286146 9.30 A/C

Fig. 5

Analysis of six SNPs genotypes of 100 pomelo accessions"

Table 6

Annotation information of the 14 candidate genes"

编号
Code
基因
Gene
基因位置
Gene position
基因注释
Gene annotation
1 Cg7g013650 15559599...15563683 4-羟基苯甲酸聚壬基转移酶4-hydroxybenzoate polyprenyltransferase
2 Cg7g013760 15674549…15675866 丝裂原活化蛋白激酶激酶激酶17 Mitogen-activated protein kinase kinase kinase 17 (MAPKKK17)
3 Cg7g013780 15693273…15695508 线粒体ATP依赖性蛋白CLPP2 ATP-dependent Clp protease proteolytic subunit 2
4 Cg7g013840 15729956…15733863 胆色素原脱氨酶PBGD Porphobilinogen deaminase
5 Cg7g013890 15751668…15754112 伴侣蛋白dnaJ C76 Chaperone protein dnaJ C76
6 Cg7g013910 15765878…15770273 琥珀酰辅酶A Succinate-CoA ligase
7 Cg7g014000 15830671…15833556 硫氧还蛋白X Thioredoxin X
8 Cg7g014020 15845810…15846907 转录因子TCP7 Transcription factor TCP7
9 Cg7g014120 15926265…15929264 超氧化物歧化酶SOD3 Superoxide dismutase [Fe] 3
10 Cg7g014130 15929785…15930656 蛋白质S-异丙基半胱氨酸O-甲基转移酶A Protein-S-isoprenylcysteine O-methyltransferase A
11 Cg7g014190 15964951...15968470 FAD合成酶2 FAD synthetase 2
12 Cg7g014220 15980384...15986623 叶绿体外膜蛋白80 Outer envelope protein 80
13 Cg7g014430 16176520…16177533 ERF119乙烯应答转录因子 Ethylene-responsive transcription factor
14 Cg7g014530 16270001…16274137 丙酮酸脱氢酶复合物的二氢脂赖氨酸残基乙酰转移酶组分4
Dihydrolipoyllysine-residue acetyltransferase component 4 of pyruvate dehydrogenase complex

Fig. 6

The flesh coloration of the materials used for candidate gene verification (A: White flesh pomelo; B: Red flesh pomelo) S1: The expansion period; S2: The turning period; S3: The mature period. The same as below"

Fig. 7

The color parameter change of the materials used for candidate gene verification"

Fig. 8

The relative expression of 14 genes in 4 red and 4 white pulp of pomelo accessions at different fruit development stages The expression level of each gene in Wei Si Honey Pomelo S1 period was set as 1. The cultivar indicated by the code is the same as table 1"

[1]
YAN J, LIU J, XIONG Y B, QIN W, TANG C. Identification of the geographical origins of pomelos using multielement fingerprinting. Journal of Food Science, 2015, 80(2): C228-C233.

doi: 10.1111/jfds.2015.80.issue-2
[2]
张太平, 彭少麟. 柚的起源、演化及分布初探. 生态学杂志, 2000, 19(5): 58-61, 66.
ZHANG T P, PENG S L. Introduction to the origin and evolution of pomelo and ItsDistribution in China. Chinese Journal of Ecology, 2000, 19(5): 58-61, 66. (in Chinese)
[3]
JIANG Q H, YE J L, ZHU K J, WU F F, CHAI L J, XU Q, DENG X X. Transcriptome and co-expression network analyses provide insights into fruit shading that enhances carotenoid accumulation in pomelo (Citrus grandis). Horticultural Plant Journal, 2022, 8(4): 423-434.

doi: 10.1016/j.hpj.2022.01.007
[4]
KATO M, IKOMA Y, MATSUMOTO H, SUGIURA M, HYODO H, YANO M. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiology, 2004, 134(2): 824-837.

pmid: 14739348
[5]
张太平, 彭少麟, 王峥峰, 陈碧琛. 柚类种质资源研究与保护概况. 生态科学, 2001, 20(3): 8-13.
ZHANG T P, PENG S L, WANG Z F, CHEN B C. Introduction to the study and protection of pomelo germplasm. Eological Science, 2001, 20(3): 8-13. (in Chinese)
[6]
GILL K, KUMAR P, KUMAR A, KAPOOR B, SHARMA R, JOSHI A K. Comprehensive mechanistic insights into the citrus genetics, breeding challenges, biotechnological implications, and omics-based interventions. Tree Genetics & Genomes, 2022, 18(2): 9.
[7]
WU G A, PROCHNIK S, JENKINS J, SALSE J, HELLSTEN U, MURAT F, PERRIER X, RUIZ M, SCALABRIN S, TEROL J, et al. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nature Biotechnology, 2014, 32(7): 656-662.

doi: 10.1038/nbt.2906 pmid: 24908277
[8]
YU Y, CHEN C X, GMITTER F G. QTL mapping of mandarin (Citrus reticulata) fruit characters using high-throughput SNP markers. Tree Genetics & Genomes, 2016, 12(4): 77.
[9]
BERNET G P, FERNANDEZ-RIBACOBA J, CARBONELL E A, ASINS M J. Comparative genome-wide segregation analysis and map construction using a reciprocal cross design to facilitate citrus germplasm utilization. Molecular Breeding, 2010, 25(4): 659-673.

doi: 10.1007/s11032-009-9363-y
[10]
MA G, ZHANG L C, KATO M. Molecular regulation of carotenoid biosynthesis in citrus juice sacs: New advances. Scientia Horticulturae, 2023, 309: 111629.

doi: 10.1016/j.scienta.2022.111629
[11]
FUJII H, NONAKA K, MINAMIKAWA M F, ENDO T, SUGIYAMA A, HAMAZAKI K, IWATA H, OMURA M, SHIMADA T. Allelic composition of carotenoid metabolic genes in 13 founders influences carotenoid composition in juice sac tissues of fruits among Japanese citrus breeding population. PLoS ONE, 2021, 16(2): e0246468.

doi: 10.1371/journal.pone.0246468
[12]
IKOMA Y, MATSUMOTO H, KATO M. Diversity in the carotenoid profiles and the expression of genes related to carotenoid accumulation among citrus genotypes. Breeding Science, 2016, 66(1): 139-147.

doi: 10.1270/jsbbs.66.139 pmid: 27069398
[13]
徐娟. 几个柑桔产区果实色泽评价及红肉脐橙(Citrus sinensis L.cv.Cara cara)果肉呈色机理初探[D]. 武汉: 华中农业大学, 2002.
XU J. Evaluation of fruit color in several Citrus producing areas and preliminary study on the mechanism of pulp color of Citrus sinensis L. cv. Cara cara[D]. Wuhan: Huazhong Agricultural University, 2002. (in Chinese)
[14]
袁悦. 血橙和紫皮柚果实花青苷积累响应光和低温的机制研究[D]. 武汉: 华中农业大学, 2019.
YUAN Y. Study on the mechanism of anthocyanin accumulation in blood orange and purple pomelo fruits in response to light and low temperature[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[15]
HUANG D, WANG X, TANG Z Z, YUAN Y, XU Y T, HE J X, JIANG X L, PENG S, LI L, BUTELLI E, DENG X X, XU Q. Subfunctionalization of the Ruby2-Ruby1 gene cluster during the domestication of citrus. Nature Plants, 2018, 4(11): 930-941.

doi: 10.1038/s41477-018-0287-6 pmid: 30374094
[16]
SUN T H, TADMOR Y, LI L. Pathways for carotenoid biosynthesis, degradation, and storage. Methods in Molecular Biology, 2020, 2083: 3-23.

doi: 10.1007/978-1-4939-9952-1_1 pmid: 31745909
[17]
MINAMIKAWA M F, NONAKA K, KAMINUMA E, KAJIYA- KANEGAE H, ONOGI A, GOTO S, YOSHIOKA T, IMAI A, HAMADA H, HAYASHI T, MATSUMOTO S, KATAYOSE Y, TOYODA A, FUJIYAMA A, NAKAMURA Y, SHIMIZU T, IWATA H. Genome-wide association study and genomic prediction in citrus: potential of genomics-assisted breeding for fruit quality traits. Scientific Reports, 2017, 7: 4721.

doi: 10.1038/s41598-017-05100-x pmid: 28680114
[18]
王霞. 柑橘精细定位平台构建及其在多胚和色泽芽变研究中的应用[D]. 武汉: 华中农业大学, 2018.
WANG X. Construction of citrus fine positioning platform and its application in the study of multi-embryo and color bud change[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
[19]
WRIGHT S. The genetical structure of populations. Annals of Eugenics, 1951, 15(4): 323-354.

doi: 10.1111/j.1469-1809.1949.tb02451.x pmid: 24540312
[20]
周蕊. 我国柚类市场与产业调查分析报告. 农产品市场, 2021(24): 47-49.
ZHOU R. Investigation and analysis report on China’s pomelo market and industry. Agricultural Products Market, 2021(24): 47-49. (in Chinese)
[21]
张亚飞, 彭洁, 朱延松, 杨胜男, 王旭, 赵婉彤, 江东. 柑橘CCD基因家族鉴定及CcCCD4a对果肉颜色的影响. 中国农业科学, 2020, 53(9): 1874-1889. doi: 10.3864/j.issn.0578-1752.2020.09.014.

doi: 10.3864/j.issn.0578-1752.2020.09.014
ZHANG Y F, PENG J, ZHU Y S, YANG S N, WANG X, ZHAO W T, JIANG D. Genome wide identification of CCD gene family in Citrus and effect of CcCCD4a on the color of Citrus flesh. Scientia Agricultura Sinica, 2020, 53(9): 1874-1889. doi: 10.3864/j.issn.0578-1752.2020.09.014. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.09.014
[22]
LADO J, ALÓS E, MANZI M, CRONJE P J R, GÓMEZ-CADENAS A, RODRIGO M J, ZACARÍAS L. Light regulation of carotenoid biosynthesis in the peel of mandarin and sweet orange fruits. Frontiers in Plant Science, 2019, 10: 1288.

doi: 10.3389/fpls.2019.01288 pmid: 31681382
[23]
LU P J, WANG S S, GRIERSON D, XU C J. Transcriptomic changes triggered by carotenoid biosynthesis inhibitors and role of Citrus sinensis phosphate transporter 4;2 (CsPHT4;2) in enhancing carotenoid accumulation. Planta, 2019, 249(1): 257-270.

doi: 10.1007/s00425-018-2970-2
[24]
邬庆江. 柚果肉色泽和果形调控基因的克隆与鉴定[D]. 武汉: 华中农业大学, 2021.
WU Q J. Cloning and identification of genes regulating flesh color and fruit shape in pummelo[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese)
[25]
ROMERO-HERNANDEZ G, MARTINEZ M. Opposite roles of MAPKKK17 and MAPKKK21 against Tetranychus urticae in Arabidopsis. Frontiers in Plant Science, 2022, 13: 1038866.

doi: 10.3389/fpls.2022.1038866
[26]
DANQUAH A, DE ZÉLICOURT A, BOUDSOCQ M, NEUBAUER J, FREI DIT FREY N, LEONHARDT N, PATEYRON S, GWINNER F, TAMBY J P, ORTIZ-MASIA D, MARCOTE M J, HIRT H, COLCOMBET J. Identification and characterization of an ABA- activated MAP kinase cascade in Arabidopsis thaliana. The Plant Journal, 2015, 82(2): 232-244.

doi: 10.1111/tpj.2015.82.issue-2
[27]
TAN B C, JOSEPH L M, DENG W T, LIU L J, LI Q B, CLINE K, MCCARTY D R. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. The Plant Journal, 2003, 35(1): 44-56.

doi: 10.1046/j.1365-313X.2003.01786.x
[28]
XIE J, YAO S X, MING J, DENG L L, ZENG K F. Variations in chlorophyll and carotenoid contents and expression of genes involved in pigment metabolism response to oleocellosis in citrus fruits. Food Chemistry, 2019, 272: 49-57.

doi: S0308-8146(18)31410-9 pmid: 30309573
[29]
YUAN H, ZHANG J X, NAGESWARAN D, LI L. Carotenoid metabolism and regulation in horticultural crops. Horticulture Research, 2015, 2: 15036.

doi: 10.1038/hortres.2015.36 pmid: 26504578
[30]
LIM S H, WITTY M, WALLACE-COOK A D M, ILAG L I, SMITH A G. Porphobilinogen deaminase is encoded by a single gene in Arabidopsis thaliana and is targeted to the chloroplasts. Plant Molecular Biology, 1994, 26(3): 863-872.

doi: 10.1007/BF00028854
[31]
LIN Y F, CHEN Y Y, HSIAO Y Y, SHEN C Y, HSU J L, YEH C M, MITSUDA N, OHME-TAKAGI M, LIU Z J, TSAI W C. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris. Journal of Experimental Botany, 2016, 67(17): 5051-5066.

doi: 10.1093/jxb/erw273
[32]
周延培. 柑橘TCP家族生物信息学分析及CsTCP1转录因子参与果实成熟的功能验证[D]. 武汉: 华中农业大学, 2016.
ZHOU Y P. Bioinformatics analysis of Citrus TCP family and functional verification of CsTCP1 transcription factor involved in fruit ripening[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[33]
BYCHKOV I A, ANDREEVA A A, KUDRYAKOVA N, POJIDAEVA E S, KUSNETSOV V V. The role of PAP4/FSD3 and PAP9/FSD2 in heat stress responses of chloroplast genes. Plant Science, 2022, 322: 111359.

doi: 10.1016/j.plantsci.2022.111359
[34]
YU Q J, SCHAUB P, GHISLA S, AL-BABILI S, KRIEGER- LISZKAY A, BEYER P. The lycopene cyclase CrtY from Pantoea ananatis (formerly Erwinia uredovora) catalyzes and FADred- dependent non-redox reaction. Journal of Biological Chemistry, 2010, 285(16): 12109-12120.

doi: 10.1074/jbc.M109.091843
[1] JIANG Dong, WANG Xu, LI RenJing, ZHAO XiaoDong, DAI XiangSheng, LIU ZhengWei. Population Genomic Structure of Pomelo Germplasm and Fruit Acidity Associated Genes Identification by Genotyping-by-Sequencing Technology [J]. Scientia Agricultura Sinica, 2023, 56(8): 1547-1560.
[2] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[3] SUN YanFa, WU Qiong, LIN RuLong, CHEN HongPing, GAN QiuYun, SHEN Yue, WANG YaRu, XUE PengFei, CHEN FeiFan, LIU JianTao, ZHOU ChenXin, LAN ShiShi, PAN HaoZhe, DENG Fan, YUE Wen, JIANG XiaoBing, LI Yan. Genome-Wide Association Study of Egg Quality Traits in Longyan Shan-Ma Duck [J]. Scientia Agricultura Sinica, 2023, 56(3): 572-586.
[4] LI RenJing, SHEN WanXia, ZHAO WanTong, CHENG Li, LI Pei, JIANG Dong. Mining Genes Related to Fruit Quality in Sweet Oranges Based on Specific Locus Amplified Fragment Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(16): 3168-3182.
[5] DONG YiFan, REN Yi, CHENG YuKun, WANG Rui, ZHANG ZhiHui, SHI XiaoLei, GENG HongWei. Genome-Wide Association Study of Grain Main Quality Related Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(11): 2047-2063.
[6] YIN YanZhen, HOU LiMing, LIU Hang, TAO Wei, SHI ChuanZong, LIU KaiYue, ZHANG Ping, NIU PeiPei, LI Qiang, LI PingHua, HUANG RuiHua. Identifying Quantitative Trait Loci Associated with Teat Number of Pig by Genomic Analysis [J]. Scientia Agricultura Sinica, 2023, 56(10): 1994-2006.
[7] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[8] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[9] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[10] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[11] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[12] Biao SONG,KaiYue XU,XiaoHua WANG,JiuXin GUO,LiangQuan WU,Da SU. Spatial Distribution of Phytic Acid and Minerals’ Availability in Pomelo Fruit [J]. Scientia Agricultura Sinica, 2021, 54(6): 1229-1242.
[13] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[14] ZHANG PengXia,ZHOU XiuWen,LIANG Xue,GUO Ying,ZHAO Yan,LI SiShen,KONG FanMei. Genome-Wide Association Analysis for Yield and Nitrogen Efficiency Related Traits of Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2021, 54(21): 4487-4499.
[15] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!