Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (1): 80-95.doi: 10.3864/j.issn.0578-1752.2024.01.007

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Leaf Area Index Inversion of Cotton Based on Drone Multi-Spectral and Multiple Growth Stages

SHI HaoLei1(), CAO HongXia1(), ZHANG WeiJie1, ZHU Shan1, HE ZiJian1, ZHANG Ze2   

  1. 1 Key Laboratory of Agricultural Soil and Water Engineering in Arid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi
    2 College of Agronomy, Shihezi University, Shihezi 832003, Xinjiang
  • Received:2023-07-05 Accepted:2023-08-23 Online:2024-01-01 Published:2024-01-10
  • Contact: CAO HongXia

Abstract:

【Objective】The leaf area index (LAI) is a vital indicator for evaluating crop growth, photosynthesis, and transpiration. The objective of this study is to explore the cotton LAI estimation models based on multi-spectral data from drones at different growth stages and multiple growth stages, clarify the variation patterns of cotton LAI estimation models during different growth stages, and to provide a basis for real-time understanding of cotton growth and scientific field management tailored to local conditions. 【Method】The DJI Elf 4 multi-spectral UAV was used to acquire multi-spectral images and RGB images of cotton at budding stage, initial flowering stage, boll setting and open-boll stages. Five multi-spectral indices, namely normalized difference vegetation index (NDVI), normalized green difference vegetation index (GNDVI), normalized difference red-edge index (NDRE), leaf chlorophyll index (LCI), optimized soil adjusted vegetation index (OSAVI), and five color indices, namely modified green-red vegetation index (MGRVI), green-red vegetation index (GRVI), green leaf algorithm (GLA), excess red index (EXR), and visible atmospherically resistant vegetation index (VARI), were selected to build a data set for each growth stage of cotton and multiple growth stages of cotton growth, respectively. Combined with the punching method to obtain actual ground LAI data, the machine learning algorithms of partial least squares regression (PLSR), ridge regression (RR), random forest (RF), support vector machine (SVM) and back propagation (BP) were used to construct a cotton LAI prediction model. 【Result】The LAI of cotton exhibited an increasing and then decreasing pattern during the growth stage. Notably, the mean LAI values of cotton at the inner side of the budding stage, initial flowering stage, and boll setting stage were significantly greater than those at the lateral side (P<0.05). The selected indices exhibited significant correlations with each other across the periods (P<0.05). In general, the correlation between multi-spectral index and color index showed a decreasing trend as the growth stage progressed, and the selected indices were significantly correlated with cotton LAI in all stages (P<0.05), the correlation coefficients of multi-spectral index ranged from 0.35 to 0.85, and the correlation coefficients of color index ranged from 0.49 to 0.71, and those with a larger absolute value of the correlation coefficients were mostly multi-spectral indices, while those of the correlation coefficients of color index and cotton LAI were smaller. The estimated model performance results showed that the multi-spectral index was better than the color index in the cotton growth models, the predictive performance of the index models showed certain regularity with the change of growth, and NDVI was the optimal index for predicting cotton LAI. From the model results, the RF model and BP model obtained higher estimation accuracy under each growth stage. The LAI inversion model at the initial flowering stage had the highest accuracy, with the optimal model validation set R2 of 0.809, MAE of 0.288, and NRMSE of 0.120. The optimal model validation set for the multiple growth stages had the R2 of 0.386, MAE of 0.700, and NRMSE of 0.198. 【Conclusion】There are significant differences in LAI between the inner and lateral sides of cotton during the budding stage, initial flowering stage, and boll setting stage. NDVI emerged as the optimal index for predicting cotton LAI at all growth stages, with the RF and BP models demonstrating superior performance. The effectiveness of the multiple growth stages model was notably lower compared to that of the single-growth model, with the optimal index identified as GNDVI and the optimal model as BP. The initial flowering stage appeared to be the optimal window for predicting cotton LAI. These findings can provide theoretical basis and technical support for utilizing UAV remote sensing to monitor cotton LAI.

Key words: cotton, leaf area index (LAI), multi-spectral index, color index, drone multi-spectral, machine learning

Fig. 1

Overview of the test site"

Table 1

Test 1 treatment design"

试验1
Test 1
灌水量Irrigation amount 异次地表地下交替滴灌开始时间
Start time of alternative surface/subsurface
drip irrigation
苗期、现蕾期、初花期的第1次灌水(淋洗水量+灌溉水量)
The first irrigation at seedling stage, budding stage and initial flowering stage (Leaching water+Irrigation water)
其他生育阶段
Other growth stages
W1Z1 40 mm+80% ETC 80% ETC 苗期Seedling stage
W1Z2 40 mm+80% ETC 80% ETC 现蕾期Budding stage
W1Z3 40 mm+80% ETC 80% ETC 初花期Initial flowering stage
W2Z1 80 mm+80% ETC 80% ETC 苗期Seedling stage
W2Z2 80 mm+80% ETC 80% ETC 现蕾期Budding stage
W2Z3 80 mm+80% ETC 80% ETC 初花期Initial flowering stage
W3Z1 120 mm+80% ETC 80% ETC 苗期Seedling stage
W3Z2 120 mm+80% ETC 80% ETC 现蕾期Budding stage
W3Z3 120 mm+80% ETC 80% ETC 初花期Initial flowering stage

Table 2

Test 2 treatment design"

试验2
Test 2
灌水量Irrigation amount 地表、地下滴灌水量分配(地表滴灌+地下滴灌)
Surface and subsurface drip irrigation water distribution (Surface drip irrigation+Subsurface drip irrigation)
苗期、现蕾期、初花期的第1次灌水(淋洗水量+灌溉水量)
The first irrigation at seedling stage, budding stage and initial flowering stage (Leaching water+Irrigation water)
其他生育阶段
Other growth stages
W1F1 40 mm+80% ETC 80% ETC 100%+0
W1F2 40 mm+80% ETC 80% ETC 75%+25%
W1F3 40 mm+80% ETC 80% ETC 50% +50%
W1F4 40 mm+80% ETC 80% ETC 25%+75%
W1F5 40 mm+80% ETC 80% ETC 0+100%
W2F1 80 mm+80% ETC 80% ETC 100%+0
W2F2 80 mm+80% ETC 80% ETC 75%+25%
W2F3 80 mm+80% ETC 80% ETC 50%+50%
W2F4 80 mm+80% ETC 80% ETC 25%+75%
W2F5 80 mm+80% ETC 80% ETC 0+100%
W3F1 120 mm+80% ETC 80% ETC 100%+0
W3F2 120 mm+80% ETC 80% ETC 75%+25%
W3F3 120 mm+80% ETC 80% ETC 50%+50%
W3F4 120 mm+80% ETC 80% ETC 25%+75%
W3F5 120 mm+80% ETC 80% ETC 0+100%

Fig. 2

Schematic diagram of community planting (cm)"

Table 3

Schedule of test data acquisition"

棉花生育期划分
Classification of cotton growth stage
无人机数据采集时间
UAV data collection time
棉花生长指标数据采集时间
Cotton growth indicator data collection time
现蕾期Budding stage 2021-06-17 2021-06-17
初花期Initial flowering stage 2021-07-19 2021-07-19
结铃期Boll setting stage 2021-08-12 2021-08-12
吐絮期Open-boll stage 2021-09-07 2021-09-07

Table 4

Calculation of relevant indices"

相关指数
Correlation index
计算公式
Formula
参考文献
Reference
多光谱指数
Multi-spectral index
归一化差植被指数
Normalized difference vegetation index (NDVI)
$ \mathrm{NDVI}=\frac{\mathrm{NIR}-\mathrm{Red}}{\mathrm{NIR}+\mathrm{Red}} $ [29]
绿度归一化差植被指数
Normalized green difference vegetation index (GNDVI)
$\text{GNDVI}=\frac{\text{NIR-Green}}{\text{NIR}+\text{Green}}$ [30]
归一化差红边指数
Normalized difference red-edge vegetation index (NDRE)
$ \text { NDRE }=\frac{\text { NIR-RedEdge }}{\text { NIR }+ \text { RedEdge }} $ [31]
叶片叶绿素指数
Leaf chlorophyll index (LCI)
$ \mathrm{LCI}=\frac{\text { NIR-RedEdge }}{\text { NIR }+ \text { Red }} $ [32]
优化的土壤调节植被指数
Optimized soil adjusted vegetation index (OSAVI)
$ \text { OSAVI }=\frac{\mathrm{NIR}-\mathrm{Red}}{\mathrm{NIR}+\operatorname{Red}+0.16} $ [33]
颜色指数
Color index
修正红绿植被指数
Modified green-red vegetation index (MGRVI)
$ \text { MGRVI }=\frac{g^{2}-r^{2}}{g^{2}+r^{2}} $ [34]
红绿植被指数
Green-red vegetation index (GRVI)
$ \text { GRVI }=\frac{g-r}{g+r} $ [34]
绿叶指数
Green leaf algorithm (GLA)
$\text{GLA}=\frac{\text{2g-r}+\text{b}}{\text{2g}+\text{r}+\text{b}}$ [35]
超红指数
Excess red index (EXR)
EXR=1.4r-g [36]
大气阻抗植被指数
Visible atmospherically resistant vegetation index (VARI)
$ \mathrm{VARI}=\frac{\mathrm{g}-\mathrm{r}}{\mathrm{g}+\mathrm{r}-\mathrm{b}} $ [37]

Table 5

Sampling point LAI analysis"

生育期
Growth stage
采样点
Sampling point
样本数
Number of samples
均值
Mean value
方差
Variance
变异系数
Variability coefficient (%)
显著性分析
Significance analysis
现蕾期
Budding stage
内侧Inner 18 2.71 0.47 17.51 P<0.05
外侧Lateral 18 2.20 0.57 25.73
初花期
Initial flowering stage
内侧Inner 24 4.79 0.94 19.72 P<0.05
外侧Lateral 24 3.79 0.80 21.09
结铃期
Boll setting stage
内侧Inner 18 4.27 1.02 23.80 P<0.05
外侧Lateral 18 3.51 0.81 23.19
吐絮期
Open-boll stage
内侧Inner 24 3.71 0.80 21.45 0.05<P<0.1
外侧Lateral 24 3.29 0.75 22.87

Fig. 3

Heat map of correlation coefficients between data sets of different growth stages and multiple growth stages, as well as between each index and cotton LAI"

Fig. 4

Performance change of data collection model for each growth stage and multiple growth stages"

Table 6

Optimal model for each growth stage and multiple growth stages"

生育期
Growing stage
最优指数
Optimal index
最优模型
Optimal model
训练集Training set 验证集Validation set
R2 MAE NRMSE R2 MAE NRMSE
现蕾期Budding stage NDVI BP 0.708 0.276 0.101 0.720 0.239 0.163
初花期Initial flowering stage NDVI RF 0.841 0.338 0.167 0.809 0.288 0.120
结铃期Boll setting stage NDVI RF 0.811 0.375 0.180 0.746 0.398 0.147
吐絮期Open-boll stage NDVI BP 0.682 0.361 0.200 0.730 0.371 0.180
多生育期Multiple growth stages GNDVI BP 0.549 0.565 0.549 0.386 0.700 0.198

Fig. 5

Scatterplot of optimal model of data collection for each growth stage and multiple growth stages"

[1]
邓金剑. 美国限制进口新疆棉花: 供应链与产业链之争. 国际经济合作, 2021(5): 79-89.
DENG J J. Analyzing on the implications of U.S.’s restrictions on importing cotton produced in Xinjiang and proposed countermeasures. Journal of International Economic Cooperation, 2021(5): 79-89. (in Chinese)
[2]
马新明, 张娟娟, 席磊, 刘合兵, 高项飞. 基于叶面积指数(LAI)的小麦变量施氮模型研究. 农业工程学报, 2008, 24(2): 22-26.
MA X M, ZHANG J J, XI L, LIU H B, GAO X F. Variable nitrogen fertilization model of wheat based on LAI. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(2): 22-26. (in Chinese)
[3]
鱼欢, 杨改河, 王之杰. 不同施氮量及基追比例对玉米冠层生理性状和产量的影响. 植物营养与肥料学报, 2010, 16(2): 266-273.
YU H, YANG G H, WANG Z J. Nitrogen rate and timing considerations on yield and physiological parameters of corn canopy. Journal of Plant Nutrition and Fertilizers, 2010, 16(2): 266-273. (in Chinese)
[4]
吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞. 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008, 34(3): 447-455.
L H, TAO H B, XIA L K, ZHANG Y J, ZHAO M, ZHAO J R, WANG P. Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agronomica Sinica, 2008, 34(3): 447-455. (in Chinese)

doi: 10.3724/SP.J.1006.2008.00447
[5]
王健, 蔡焕杰, 陈凤, 陈新民. 夏玉米田蒸发蒸腾量与棵间蒸发的试验研究. 水利学报, 2004(11): 108-113.
WANG J, CAI H J, CHEN F, CHEN X M. Experimental study on evapotranspiration and soil evaporation in summer maize field. Journal of Hydraulic Engineering, 2004(11): 108-113. (in Chinese)
[6]
VINA A, GITELSON A A, NGUY-ROBERTSON A L, PENG Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 2011, 115(12): 3468-3478.

doi: 10.1016/j.rse.2011.08.010
[7]
吴伟斌, 洪添胜, 王锡平, 彭万喜, 李震, 张文昭. 叶面积指数地面测量方法的研究进展. 华中农业大学学报, 2007, 26(2): 270-275.
WU W B, HONG T S, WANG X P, PENG W X, LI Z, ZHANG W Z. Advance in ground-based LAI measurement methods. Journal of Huazhong Agricultural University, 2007, 26(2): 270-275. (in Chinese)
[8]
THORP K R, DEJONGE K C, KALEITA A L, BATCHELOR W D, PAZ J O. Methodology for the use of DSSAT models for precision agriculture decision support. Computers and Electronics in Agriculture, 2008, 64(2): 276-285.

doi: 10.1016/j.compag.2008.05.022
[9]
贾玉秋, 李冰, 程永政, 刘婷, 郭燕, 武喜红, 王来刚. 基于GF-1与Landsat-8多光谱遥感影像的玉米LAI反演比较. 农业工程学报, 2015, 31(9): 173-179.
JIA Y Q, LI B, CHENG Y Z, LIU T, GUO Y, WU X H, WANG L G. Comparison between GF-1 images and Landsat-8 images in monitoring maize LAI. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(9): 173-179. (in Chinese)
[10]
JI J Y, LI X J, DU H Q, MAO F J, FAN W L, XU Y X, HUANG Z H, WANG J Y, KANG F F. Multiscale leaf area index assimilation for Moso bamboo forest based on Sentinel-2 and MODIS data. International Journal of Applied Earth Observation and Geoinformation, 2021, 104: 102519.

doi: 10.1016/j.jag.2021.102519
[11]
DONG T F, LIU J, LIU J G, HE L M, WANG R, QIAN B D, MCNAIRN H, POWERS J, SHI Y C, CHEN J M, SHANG J L. Assessing the consistency of crop leaf area index derived from seasonal Sentinel-2 and Landsat 8 imagery over Manitoba, Canada. Agricultural and Forest Meteorology, 2023, 332: 109357.

doi: 10.1016/j.agrformet.2023.109357
[12]
SUN X K, YANG Z Y, SU P Y, WEI K X, WANG Z G, YANG C B, WANG C, QIN M X, XIAO L J, YANG W D, ZHANG M J, SONG X Y, FENG M C. Non-destructive monitoring of maize LAI by fusing UAV spectral and textural features. Frontiers in Plant Science, 2023, 14: 1158837.

doi: 10.3389/fpls.2023.1158837
[13]
HASAN U, SAWUT M, CHEN S S. Estimating the leaf area index of winter wheat based on unmanned aerial vehicle RGB-image parameters. Sustainability, 2019, 11(23): 6829.

doi: 10.3390/su11236829
[14]
ZHU W X, REZAEI E E, NOURI H, SUN Z G, LI J, YU D Y, SIEBERT S. UAV-based indicators of crop growth are robust for distinct water and nutrient management but vary between crop development phases. Field Crops Research, 2022, 284: 108582.

doi: 10.1016/j.fcr.2022.108582
[15]
BUTHELEZI S, MUTANGA O, SIBANDA M, ODINDI J, CLULOW A D, CHIMONYO V G P, MABHAUDHI T. Assessing the prospects of remote sensing maize leaf area index using UAV-derived multi-spectral data in smallholder farms across the growing season. Remote Sensing, 2023, 15(6): 1597.

doi: 10.3390/rs15061597
[16]
冯文斌. 基于无人机多光谱遥感的夏玉米长势监测及产量估测[D]. 泰安: 山东农业大学, 2022.
FENG W B. Summer maize growth monitoring and yield estimation by UAV-based multispectral remote sensing[D]. Taian: Shandong Agricultural University, 2022. (in Chinese)
[17]
刘帅兵, 金秀良, 冯海宽, 聂臣巍, 白怡, 余汛. 基于无人机多源遥感的玉米LAI垂直分布估算. 农业机械学报, 2023, 54(5): 181-193, 287.
LIU S B, JIN X L, FENG H K, NIE C W, BAI Y, YU X. Vertical distribution estimation of maize LAI using UAV multi-source remote sensing. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(5): 181-193, 287. (in Chinese)
[18]
罗小波, 谢天授, 董圣贤. 基于无人机多光谱影像的柑橘冠层叶绿素含量反演. 农业机械学报, 2023, 54(4): 198-205.
LUO X B, XIE T S, DONG S X. Estimation of citrus canopy chlorophyll based on UAV multispectral images. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(4): 198-205. (in Chinese)
[19]
聂松伟. 基于无人机多光谱遥感的冬小麦长势指标监测[D]. 乌鲁木齐: 新疆农业大学, 2022.
NIE S W. Monitoring of winter wheat growth index based on UAV multi-spectral remote sensing[D]. Urumqi: Xinjiang Agricultural University, 2022. (in Chinese)
[20]
张佑铭. 基于多源遥感数据的猕猴桃园LAI反演研究[D]. 杨凌: 西北农林科技大学, 2022.
ZHANG Y M. Leaf area index inversion in kiwifruit orchard based on multi-source remote sensing data[D]. Yangling: Northwest A&F University, 2022. (in Chinese)
[21]
陶惠林, 冯海宽, 杨贵军, 杨小冬, 刘明星, 刘帅兵. 基于无人机成像高光谱影像的冬小麦LAI估测. 农业机械学报, 2020, 51(1): 176-187.
TAO H L, FENG H K, YANG G J, YANG X D, LIU M X, LIU S B. Leaf area index estimation of winter wheat based on UAV imaging hyperspectral imagery. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 176-187. (in Chinese)
[22]
曹中盛, 李艳大, 黄俊宝, 叶春, 孙滨峰, 舒时富, 朱艳, 何勇. 基于无人机数码影像的水稻叶面积指数监测. 中国水稻科学, 2022, 36(3): 308-317.

doi: 10.16819/j.1001-7216.2022.210712
CAO Z S, LI Y D, HUANG J B, YE C, SUN B F, SHU S F, ZHU Y, HE Y. Monitoring rice leaf area index based on unmanned aerial vehicle (UAV) digital images. Chinese Journal of Rice Science, 2022, 36(3): 308-317. (in Chinese)

doi: 10.16819/j.1001-7216.2022.210712
[23]
付虹雨, 王薇, 卢建宁, 岳云开, 崔国贤, 佘玮. 基于无人机多光谱遥感和机器学习的苎麻理化性状估测. 农业机械学报, 2023, 54(5): 194-200, 347.
FU H Y, WANG W, LU J N, YUE Y K, CUI G X, SHE W. Estimation of ramie physicochemical property based on UAV multi-spectral remote sensing and machine learning. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(5): 194-200, 347. (in Chinese)
[24]
田明璐, 班松涛, 常庆瑞, 由明明, 罗丹, 王力, 王烁. 基于低空无人机成像光谱仪影像估算棉花叶面积指数. 农业工程学报, 2016, 32(21): 102-108.
TIAN M L, BAN S T, CHANG Q R, YOU M M, LUO D, WANG L, WANG S. Use of hyperspectral images from UAV-based imaging spectroradiometer to estimate cotton leaf area index. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(21): 102-108. (in Chinese)
[25]
马怡茹, 吕新, 易翔, 马露露, 祁亚琴, 侯彤瑜, 张泽. 基于机器学习的棉花叶面积指数监测. 农业工程学报, 2021, 37(13): 152-162.
MA Y R, X, YI X, MA L L, QI Y Q, HOU T Y, ZHANG Z. Monitoring of cotton leaf area index using machine learning. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(13): 152-162. (in Chinese)
[26]
韩建文, 冯春晖, 彭杰, 王彦宇, 史舟. 不同分辨率无人机多光谱影像的棉花叶面积指数估测研究. 棉花学报, 2022, 34(4): 338-349.
HAN J W, FENG C H, PENG J, WANG Y Y, SHI Z. Estimation of leaf area index of cotton from unmanned aerial vehicle multispectral images with different resolutions. Cotton Science, 2022, 34(4): 338-349. (in Chinese)
[27]
胡清阳, 曹红霞, 何子建, 丁邦新, 张浥. 淋洗定额与覆盖方式对北疆棉花生长和产量的影响. 灌溉排水学报, 2022, 41(5): 27-33.
HU Q Y, CAO H X, HE Z J, DING B X, ZHANG Y. Combined effect of drip irrigation amount and straw mulch on growth and yield of cotton in salinized soils in northern Xinjiang. Journal of Irrigation and Drainage, 2022, 41(5): 27-33. (in Chinese)
[28]
何子建, 史文娟, 杨军强. 膜下滴灌间作盐生植物棉田水盐运移特征及脱盐效果. 农业工程学报, 2017, 33(23): 129-138.
HE Z J, SHI W J, YANG J Q. Water and salt transport and desalination effect of halophytes intercropped cotton field with drip irrigation under film. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 129-138. (in Chinese)
[29]
CARLSON T N, RIPLEY D A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 1997, 62(3): 241-252.

doi: 10.1016/S0034-4257(97)00104-1
[30]
GITELSON A A, MERZLYAK M N, LICHTENTHALER H K. Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. Journal of Plant Physiology, 1996, 148(3/4): 501-508.

doi: 10.1016/S0176-1617(96)80285-9
[31]
FITZGERALD G J, RODRIGUEZ D, CHRISTENSEN L K, BELFORD R, SADRAS V O, CLARKE T R. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precision Agriculture, 2006, 7(4): 233-248.

doi: 10.1007/s11119-006-9011-z
[32]
ZEBARTH B J, YOUNIE M, PAUL J W, BITTMAN S. Evaluation of leaf chlorophyll index for making fertilizer nitrogen recommendations for silage corn in a high fertility environment. Communications in Soil Science and Plant Analysis, 2002, 33(5/6): 665-684.

doi: 10.1081/CSS-120003058
[33]
STEVEN M D. The sensitivity of the OSAVI vegetation index to observational parameters. Remote Sensing of Environment, 1998, 63(1): 49-60.

doi: 10.1016/S0034-4257(97)00114-4
[34]
BENDIG J, YU K, AASEN H, BOLTEN A, BENNERTZ S, BROSCHEIT J, GNYP M L, BARETH G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 2015, 39: 79-87.

doi: 10.1016/j.jag.2015.02.012
[35]
LOUHAICHI M, BORMAN M M, JOHNSON D E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International, 2001, 16(1): 65-70.
[36]
MEYER G E, NETO J C. Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture, 2008, 63(2): 282-293.

doi: 10.1016/j.compag.2008.03.009
[37]
GITELSON A A, KAUFMAN Y J, STARK R, RUNDQUIST D. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 2002, 80(1): 76-87.

doi: 10.1016/S0034-4257(01)00289-9
[38]
范军亮, 王涵, 廖振棋, 戴裕珑, 余江, 冯涵龙. 基于纹理-颜色特征与植被指数融合的冬小麦LAI估测. 农业机械学报, 2023, 54(7): 347-359.
FAN J L, WANG H, LIAO Z Q, DAI Y L, YU J, FENG H L. Winter wheat leaf area index estimation based on texture-color features and vegetation indices. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 347-359. (in Chinese)
[39]
柴付军, 李光永, 张琼, 程鸿, 李富先, 李旌胜, 季枫. 灌水频率对膜下滴灌土壤水盐分布和棉花生长的影响研究. 灌溉排水学报, 2005, 24(3): 12-15.
CHAI F J, LI G Y, ZHANG Q, CHENG H, LI F X, LI J S, JI F. Study on effects of irrigation frequency on moisture and salt regime and growth of cotton under mulch-film drip irrigation. Journal of Irrigation and Drainage, 2005, 24(3): 12-15. (in Chinese)
[40]
王允喜, 李明思, 蓝明菊. 膜下滴灌土壤湿润区对田间棉花根系分布及植株生长的影响. 农业工程学报, 2011, 27(8): 31-38.
WANG Y X, LI M S, LAN M J. Effect of soil wetting pattern on cotton-root distribution and plant growth under plastic mulched drip irrigation in field. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(8): 31-38. (in Chinese)
[41]
张琼, 李光永, 柴付军. 棉花膜下滴灌条件下灌水频率对土壤水盐分布和棉花生长的影响. 水利学报, 2004(9): 123-126.
ZHANG Q, LI G Y, CHAI F J. Effect of mulched drip irrigation frequency on soil salt regime and cotton growth. Journal of Hydraulic Engineering, 2004(9): 123-126. (in Chinese)
[42]
何嘉晨, 何敬, 王彬, 苟静, 林远杨, 刘刚. 基于无人机高光谱影像的水稻叶绿素含量反演. 四川农业大学学报, doi: 10.16036/j.issn.1000-2650.202205194.
HE J C, HE J, WANG B, GOU J, LIN Y Y, LIU G. Inversion of chlorophyll content in rice based on UAV hyperspectral imagery. Journal of Sichuan Agricultural University, doi: 10.16036/j.issn.1000-2650.202205194. (in Chinese)
[43]
董建康, 连懿, 赵之江, 张虎, 冯晨阳. 基于卷积神经网络和特征选择的无人机多光谱影像林地提取方法. 天津师范大学学报(自然科学版), 2022, 42(4): 64-71.
DONG J K, LIAN Y, ZHAO Z J, ZHANG H, FENG C Y. Woodland extraction from UAV multispectral image based on convolution neural network and feature selection. Journal of Tianjin Normal University (Natural Science Edition), 2022, 42(4): 64-71. (in Chinese)
[44]
苏伟, 王伟, 刘哲, 张明政, 边大红, 崔彦宏, 黄健熙. 无人机影像反演玉米冠层LAI和叶绿素含量的参数确定. 农业工程学报, 2020, 36(19): 58-65.
SU W, WANG W, LIU Z, ZHANG M Z, BIAN D H, CUI Y H, HUANG J X. Determining the retrieving parameters of corn canopy LAI and chlorophyll content computed using UAV image. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 58-65. (in Chinese)
[45]
高林, 杨贵军, 王宝山, 于海洋, 徐波, 冯海宽. 基于无人机遥感影像的大豆叶面积指数反演研究. 中国生态农业学报, 2015, 23(7): 868-876.
GAO L, YANG G J, WANG B S, YU H Y, XU B, FENG H K. Soybean leaf area index retrieval with UAV (unmanned aerial vehicle) remote sensing imagery. Chinese Journal of Eco-Agriculture, 2015, 23(7): 868-876. (in Chinese)
[46]
ZHANG J Y, QIU X L, WU Y T, ZHU Y, CAO Q, LIU X J, CAO W X. Combining texture, color, and vegetation indices from fixed-wing UAS imagery to estimate wheat growth parameters using multivariate regression methods. Computers and Electronics in Agriculture, 2021, 185: 106138.

doi: 10.1016/j.compag.2021.106138
[47]
运彬媛, 张昊, 翟勇全, 马健祯, 姬丽, 李稼润, 金学兰, 贾彪. 基于土壤氮素水平的玉米冠层SPAD值估算方法. 生态学杂志, https://kns.cnki.net/kcms/detail/21.1148.Q.20230510.1735.007.html.
YUN B Y, ZHANG H, ZHAI Y Q, MA J Z, JI L, LI J R, JIN X L, JIA B. Estimation method for canopy SPAD values of maize based on soil nitrogen level. Chinese Journal of Ecology, https://kns.cnki.net/kcms/detail/21.1148.Q.20230510.1735.007.html. in Chinese)
[48]
闫成川, 曲延英, 陈全家, 武红旗, 张博, 彭海垒, 陈琴. 基于无人机多光谱影像的棉花SPAD值及叶片含水量估测. 农业工程学报, 2023, 39(2): 61-67.
YAN C C, QU Y Y, CHEN Q J, WU H Q, ZHANG B, PENG H L, CHEN Q. Estimation of cotton SPAD value and leaf water content based on UAV multispectral images. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(2): 61-67. (in Chinese)
[49]
张静, 郭思梦, 韩迎春, 雷亚平, 邢芳芳, 杜文丽, 李亚兵, 冯璐. 基于无人机RGB图像的棉花产量估算. 中国农业科技导报, 2022, 24(11): 112-120.

doi: 10.13304/j.nykjdb.2021.0918
ZHANG J, GUO S M, HAN Y C, LEI Y P, XING F F, DU W L, LI Y B, FENG L. Estimation of cotton yield based on unmanned aerial vehicle RGB images. Journal of Agricultural Science and Technology, 2022, 24(11): 112-120. (in Chinese)

doi: 10.13304/j.nykjdb.2021.0918
[50]
MA Y R, ZHANG Q, YI X, MA L L, ZHANG L F, HUANG C P, ZHANG Z, LV X. Estimation of cotton leaf area index (LAI) based on spectral transformation and vegetation index. Remote Sensing, 2022, 14(1): 136.

doi: 10.3390/rs14010136
[51]
张东彦, 韩宣宣, 林芬芳, 杜世州, 张淦, 洪琪. 基于多源无人机影像特征融合的冬小麦LAI估算. 农业工程学报, 2022, 38(9): 171-179.
ZHANG D Y, HAN X X, LIN F F, DU S Z, ZHANG G, HONG Q. Estimation of winter wheat leaf area index using multi-source UAV image feature fusion. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 171-179. (in Chinese)
[52]
王靖, 彭漪, 刘小娟, 莫佳才, 梁婷. 基于无人机多光谱数据的水稻LAI反演与应用. 中国农业大学学报, 2021, 26(12): 145-156.
WANG J, PENG Y, LIU X J, MO J C, LIANG T. Inversion and application of rice LAI based on UAV multispectral data. Journal of China Agricultural University, 2021, 26(12): 145-156. (in Chinese)
[53]
YAN P C, HAN Q S, FENG Y M, KANG S Z. Estimating LAI for cotton using multisource UAV data and a modified universal model. Remote Sensing, 2022, 14(17): 4272.

doi: 10.3390/rs14174272
[54]
张建华, 冀荣华, 袁雪, 李慧, 祁力钧. 基于径向基支持向量机的棉花虫害识别. 农业机械学报, 2011, 42(8): 178-183.
ZHANG J H, JI R H, YUAN X, LI H, QI L J. Recognition of pest damage for cotton leaf based on RBF-SVM algorithm. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(8): 178-183. (in Chinese)
[55]
邵亚杰, 汤秋香, 崔建平, 李晓娟, 王亮, 林涛. 融合无人机光谱信息与纹理特征的棉花叶面积指数估测. 农业机械学报, 2023, 54(6): 186-196.
SHAO Y J, TANG Q X, CUI J P, LI X J, WANG L, LIN T. Cotton leaf area index estimation combining UAV spectral and textural features. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 186-196. (in Chinese)
[56]
向友珍, 安嘉琪, 赵笑, 金琳, 李志军, 张富仓. 基于无人机多光谱遥感的大豆生长参数和产量估算. 农业机械学报, 2023, 54(8): 230-239.
XIANG Y Z, AN J Q, ZHAO X, JIN L, LI Z J, ZHANG F C. Soybean growth parameters and yield estimation based on UAV multispectral remote sensing. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8): 230-239. (in Chinese)
[1] HE Jing, WANG ZhenHua, LIU Jian, MA ZhanLi, WEN Yue. Effects of Irrigation Water Temperature and Nitrogen Application Rate on Soil Hydrothermal Environment and Cotton Growth and Yield Under Mulched Drip Irrigation [J]. Scientia Agricultura Sinica, 2024, 57(2): 319-335.
[2] KAN JiaQiang, LIU Yu, ZHOU ZhiGuo, CHEN BingLin, ZHAO WenQing, HU Wei, HU ShaoHong, CHEN Yang, WANG YouHua. Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves [J]. Scientia Agricultura Sinica, 2023, 56(9): 1658-1669.
[3] XING YuTong, TENG YongKang, WU TianFan, LIU YuanYuan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Mepiquat Chloride Increases the Cry1Ac Protein Content Through Regulating Carbon and Amino Acid Metabolism of Bt Cotton Under High Temperature and Drought Stress [J]. Scientia Agricultura Sinica, 2023, 56(8): 1471-1483.
[4] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[5] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[6] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[7] DANG YuanYue, MA JianJiang, YANG ShuXian, SONG JiKun, JIA Bing, FENG Pan, CHEN QuanJia, YU JiWen. Genome-Wide Identification and Expression Analysis of β-tubulin Family in Cotton Fiber Development [J]. Scientia Agricultura Sinica, 2023, 56(23): 4585-4601.
[8] TANG LiYuan, CAI Xiao, WANG HaiTao, LI XingHe, ZHANG SuJun, LIU CunJing, ZHANG JianHong. Genome-Wide Identification of Cotton FLA Gene Family and Functional Analysis of GhFLA05 in Cotton Fiber Development [J]. Scientia Agricultura Sinica, 2023, 56(23): 4602-4620.
[9] ZANG XinShan, WANG KangWen, ZHANG XianLiang, WANG XuePing, WANG Jun, LIANG Yu, PEI XiaoYu, REN Xiang, LÜ YuLong, GAO Yu, WANG XingXing, PENG YunLing, MA XiongFeng. Research Advances of Map-Based Cloning Genes in Cotton [J]. Scientia Agricultura Sinica, 2023, 56(23): 4635-4647.
[10] ZHANG YaLin, JIANG Yan, ZHAO LiHong, FENG ZiLi, FENG HongJie, WEI Feng, ZHOU JingLong, ZHU HeQin, MA ZhiYing. Effect of Temperature on the Occurrence of Cotton Verticillium Wilt and Host Defense Response [J]. Scientia Agricultura Sinica, 2023, 56(23): 4671-4683.
[11] LIU Fang, XU MengBei, WANG QiaoLing, MENG Qian, LI GuiMing, ZHANG HongJu, TIAN HuiDan, XU Fan, LUO Ming. Cloning and Functional Characterization of the Promoter of GhSLD1 Gene That Predominantly Expressed in Cotton Fiber [J]. Scientia Agricultura Sinica, 2023, 56(19): 3712-3722.
[12] DING GuoHua, XIAO GuangHui, ZHU LiPing. Genome-Wide Identification and Expression Analysis of NLP (NIN- Like Protein) Transcription Factor Gene Family in Cotton [J]. Scientia Agricultura Sinica, 2023, 56(19): 3723-3746.
[13] XU FuChun, ZHAO JingRuo, ZHANG ZhenNan, HU GaiYuan, LONG Lu. Cloning and Functional Characterization of GhCPR5 in Disease Resistance of Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2023, 56(19): 3747-3758.
[14] LI MianYan, WANG LiXian, ZHAO FuPing. Research Progress on Machine Learning for Genomic Selection in Animals [J]. Scientia Agricultura Sinica, 2023, 56(18): 3682-3692.
[15] LIANG ChengZhen, ZANG YouYi, MENG ZhiGang, WANG Yuan, MUBASHIR Abbas, HE HaiYan, ZHOU Qi, WEI YunXiao, ZHANG Rui, GUO SanDui. Identification of Target Traits and Genetic Stability of Transgenic Cotton GGK2 [J]. Scientia Agricultura Sinica, 2023, 56(17): 3251-3260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!