Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (2): 416-428.doi: 10.3864/j.issn.0578-1752.2024.02.015

• RESEARCH NOTES • Previous Articles    

Characteristics of Endophytic Microbial Community Structures in Stems Between Hylocereus undatus and H. polyrhizus

ZHOU XinYan1(), CHEN SiYu1, WEI YuFei1, ZHU Yu1, FENG JunQian1, DING DianCao1, LU GuiFeng2(), YANG ShangDong1()   

  1. 1 College of Agriculture, Guangxi University/Guangxi Key Laboratory of Agricultural Products Safety/National Experimental Teaching Demonstration Center of Plant Science, Nanning 530004
    2 Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007
  • Received:2023-05-05 Accepted:2023-06-09 Online:2024-01-16 Published:2024-01-19
  • Contact: LU GuiFeng, YANG ShangDong

Abstract:

【Objective】 The differences of the endophytic microbial community structures between Hylocereus undatus and H. polyrhizus were analyzed, so as so to explore the correlation between the pulp color of H. polyrhizus and the endophytic microbial community composition and their functional microorganisms. 【Method】 Based on high-throughput sequencing technology, the diversity and richness of endophytic microorganisms (bacteria and fungi) in stems between H. undatus and H. polyrhizus were analyzed. Meanwhile, based on LEfSe analysis, the differences of endophytic microorganisms in stems between H. undatus and H. polyrhizus were also investigated.【Result】 The significant differences of the endophytic microbial community structures were found in stems between H. undatus and H. polyrhizus. Meanwhile, the numbers of specific bacterial and fungal OTUs in stems of H. polyrhizus were all higher than those of H. undatus. At the phylum level, the relative abundance ratio of Ascomycota in stems of H. polyrhizus was 1.15 times higher than that of H. undatus. At the genus level, Streptomyces and Penicillium were the highest abundant dominant bacterial and fungal genera in stems of H. polyrhizus, which were 1.24 and 4.27 times higher than those of H. undatus, respectively. In addition, some bacterial genera, such as Lechevalieria, Glycomyces, unclassified_f__Enterobacteriaceae, Actinomadura, and some fungal gerera, such as Talaromyces, unclassified_f__Serendipitaceae, unclassified_c__GS13, unclassified_o__Atractiellales, unclassified_o__Auriculariales were enriched in stems of H. polyrhizus. LEfSe analysis also showed that Promicromonospora and Xylomyces were significant enriched in stems of H. polyrhizus. 【Conclusion】 All above results suggested that the formation of pigment was closely related to the compositions of endophytic microbial community in stems of H. polyrhizus. The bacterial genera, such as Streptomyces, unclassified_f__Enterobacteriaceae, Promicromonospora, and the fungal phylum and genera, such as Ascomycota, Penicillium, Talaromyces and Xylomyces, were all the potential microorganisms in relating to pigment synthesis and metabolic accumulation in stems of H. polyrhizus.

Key words: Pitaya (Hylocereus undulatus Britt), pulp color, endophytic microorganisms, high-throughput sequencing

Table 1

Sequencing types and primer sequences"

引物名称
Primer name
引物类型
Primer type
引物序列
Primer sequence (5′→3′)
测序平台
Sequencing platform
序列长度
Sequencing length (bp)
799F
1193R
内生细菌
Endophytic bacteria
AACMGGATTAGATACCCKG
ACGTCATCCCCACCTTCC
MiSeq 394
ITS1F 内生真菌
Endophytic fungi
CTTGGTCATTTAGAGGAAGTAA 242
ITS2R GCTGCGTTCTTCATCGATGC

Table 2

Numbers of endophytic microorganisms in stems between H. undatus and H. polyrhizus cultivars at different taxonomic levels"

处理
Treatment
OTU数量
Numbers of operational taxonomic units
不同分类类别数量 Numbers of different taxonomic categories

Phylum

Class

Order

Family

Genus

Species
内生细菌Endophytic bacteria 白肉RW 466 18 33 93 149 262 366
红肉RR 491 19 35 95 157 274 377
总计Total 555 21 40 106 174 303 424
内生真菌Endophytic fungi 白肉RW 268 6 20 44 88 125 160
红肉RR 340 7 24 58 103 153 203
总计Total 466 7 25 63 117 191 261

Table 3

Diversity indexes of endophytic microorganisms in stems between H. undatus and H. polyrhizus cultivars"

处理
Treatment
香农指数
Shannon index
辛普森指数
Simpson index
Ace指数
Ace index
Chao1指数
Chao1 index
覆盖范围
Coverage (%)
内生细菌
Endophytic bacteria
白肉RW 3.71±0.46a 0.07±0.032a 410.36±56.91a 403.63±63.72a 0.99
红肉RR 3.82±0.58a 0.06±0.032a 408.99±57.14a 404.74±63.53a 0.99
内生真菌
Endophytic fungi
白肉RW 1.84±0.93a 0.38±0.301a 154.52±49.35a 156.17±48.77a 0.99
红肉RR 2.65±0.14a 0.13±0.008a 171.38±40.97a 175.96±38.94a 0.99

Fig. 1

Relative abundance of dominant endophytic bacteria in stems between H. undatus (A) and H. polyrhizus (B) at phylum level"

Fig. 2

Relative abundance of dominant endophytic bacteria in stems between H. undatus (A) and H. polyrhizus (B) at genus level"

Fig. 3

Relative abundance of dominant endophytic fungi in stems between H. undatus (A) and H. polyrhizus (B) at phylum level"

Fig. 4

Relative abundance of dominant endophytic fungi in stems between H. undatus (A) and H. polyrhizus (B) at genus level"

Fig. 5

Multi-level species hierarchical tree diagram (A) and LDA discriminant histogram (B) for LEfSe analysis of endophytic bacteria in stems between H. undatus and H. polyrhizus cultivars"

Fig. 6

Multi-level species hierarchical tree diagram (A) and LDA discriminant histogram (B) for LEfSe analysis of endophytic fungi in stems between H. undatus and H. polyrhizus cultivars"

Fig. 7

Venn diagram of endophytic bacteria (A) and fungi (B) in stems between H. undatus and H. polyrhizus cultivars at OTU level"

[1]
王生有, 陈于陇, 徐玉娟, 吴继军, 肖更生, 傅曼琴. 火龙果采后生理和保鲜技术的研究进展. 食品工业科技, 2014, 35(13): 396-400.
WANG S Y, CHEN Y L, XU Y J, WU J J, XIAO G S, FU M Q. Progress in postharvest physiology and preservative technology of pitaya. Science and Technology of Food Industry, 2014, 35(13): 396-400. (in Chinese)
[2]
郭攀阳, 曾灿彬, 刘成立, 韦双双, 黄家权, 汤华. 红皮红肉和红皮白肉火龙果果肉呈色相关基因差异表达分析. 分子植物育种, 2021, 19(13): 4311-4326.
GUO P Y, ZENG C B, LIU C L, WEI S S, HUANG J Q, TANG H. Differential expression analysis of genes related to flesh color in Hylocereu polyrhizus and Hylocereus undatus. Molecular Plant Breeding, 2021, 19(13): 4311-4326. (in Chinese)
[3]
ARIVALAGAN M, KARUNAKARAN G, ROY T K, DINSHA M, SINDHU B C, SHILPASHREE V M, SATISHA G C, SHIVASHANKARA K S. Biochemical and nutritional characterization of dragon fruit (Hylocereus species). Food Chemistry, 2021, 353: 129426.

doi: 10.1016/j.foodchem.2021.129426
[4]
孙妍, 陈思宇, 肖健, 宋静静, 杨尚东. 不同果实形状番茄品种茎部内生细菌群落结构及代谢功能特征. 西南农业学报, 2021, 34(12): 2586-2595.
SUN Y, CHEN S Y, XIAO J, SONG J J, YANG S D. Characteristics of endophytic bacterial community structure and metabolic function in stems of tomato varieties with different fruit shapes. Southwest China Journal of Agricultural Sciences, 2021, 34(12): 2586-2595. (in Chinese)
[5]
SUN K, LU F, HUANG P W, TANG M J, XU F J, ZHANG W, ZHOU J Y, ZHAO P, JIA Y, DAI C C. Root endophyte differentially regulates plant response to NO3- and NH4+ nutrition by modulating N fluxes at the plant-fungal interface. Plant, Cell & Environment, 2022, 45(6): 1813-1828.
[6]
陈招荣, 刘新悦, 赵欣迪, 马洪峥, 梁红春. 植物内生菌群落组成及其功能研究进展. 生命科学, 2023, 35(2): 132-139.
CHEN Z R, LIU X Y, ZHAO X D, MA H Z, LIANG H C. Research progress on community composition and function of endophytes in plants. Chinese Bulletin of Life Sciences, 2023, 35(2): 132-139. (in Chinese)
[7]
何玲敏, 叶建仁. 植物内生细菌及其生防作用研究进展. 南京林业大学学报(自然科学版), 2014, 38(6): 153-159.
HE L M, YE J R. Endophytic bacteria: Research advances and biocontrol applications. Journal of Nanjing Forestry University (Natural Science Edition), 2014, 38(6): 153-159. (in Chinese)
[8]
COSTACURTA A, VANDERLEYDEN J. Synthesis of phytohormones by plant-associated bacteria. Critical Reviews in Microbiology, 1995, 21(1): 1-18.

pmid: 7576148
[9]
SHI T Q, PENG H, ZENG S Y, JI R Y, SHI K, HUANG H, JI X J. Microbial production of plant hormones: Opportunities and challenges. Bioengineered, 2017, 8(2): 124-128.

doi: 10.1080/21655979.2016.1212138
[10]
YADAV A N, KOUR D, KAUR T, DEVI R, YADAV A. Endophytic fungal communities and their biotechnological implications for agro-environmental sustainability. Folia Microbiologica, 2022, 67(2): 203-232.

doi: 10.1007/s12223-021-00939-0 pmid: 35122218
[11]
DOS SANTOS A Z, LOURENÇO M V. Optimization of jasmonates bioproduction. BMC Proceedings, 2014, 8(4): 1-2.
[12]
翁倩, 周宝利, 于洋, 付亚文. 外源ABA、BR和ETH对番茄果实番茄红素含量的影响. 沈阳农业大学学报, 2007, 38(6): 784-787.
WENG Q, ZHOU B L, YU Y, FU Y W. Effects of exogenous ABA, BR, ETH on changes of lycopene’s contents in fruit of tomato. Journal of Shenyang Agricultural University, 2007, 38(6): 784-787. (in Chinese)
[13]
MUHAMMAD N, LUO Z, YANG M, LIU Z G, LIU M J. The underlying molecular mechanisms of external factors influencing fruit coloration in fruit trees. Scientia Horticulturae, 2023, 309: 111615.

doi: 10.1016/j.scienta.2022.111615
[14]
ITO S, NOZOYE T, SASAKI E, IMAI M, SHIWA Y, SHIBATA- HATTA M, ISHIGE T, FUKUI K, ITO K, NAKANISHI H, NISHIZAWA N K, YAJIMA S, ASAMI T. Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis. PLoS ONE, 2015, 10(3): e0119724.

doi: 10.1371/journal.pone.0119724
[15]
LORETI E, POVERO G, NOVI G, SOLFANELLI C, ALPI A, PERATA P. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytologist, 2008, 179(4): 1004-1016.

doi: 10.1111/nph.2008.179.issue-4
[16]
ZHENG X L, LIU S C, CHENG C Z, GUO R F, CHEN Y K, XIE L Y, MAO Y Y, LIN Y L, ZHANG Z H, LAI Z X. Cloning and expression analysis of betalain biosynthesis genes in Amaranthus tricolor. Biotechnology Letters, 2016, 38(4): 723-729.

doi: 10.1007/s10529-015-2021-z
[17]
STOBART A K, KINSMAN L T. The hormonal control of betacyanin synthesis in Amaranthus caudatus. Phytochemistry, 1977, 16(8): 1139-1142.

doi: 10.1016/S0031-9422(00)94348-6
[18]
CAO S F, LIU T, JIANG Y M, HE S G, HARRISON D K, JOYCE D C. The effects of host defence elicitors on betacyanin accumulation in Amaranthus mangostanus seedlings. Food Chemistry, 2012, 134(4): 1715-1718.

doi: 10.1016/j.foodchem.2012.03.129
[19]
ZHU C H, JIN H, GUO Z F, LI G J, XIA K, XU Z G, NG D, GAN L J. Antagonistic effect of indole-3-acetic acid on kinetin-stimulated amaranthin accumulation in the cotyledons of Amaranthus mangostanusseedlings. The Journal of Horticultural Science and Biotechnology, 2016, 91(2): 196-202.

doi: 10.1080/14620316.2015.1133787
[20]
MUELLER L A, HINZ U, ZRŸD J P. Characterization of a tyrosinase from Amanita muscaria involved in betalain biosynthesis. Phytochemistry, 1996, 42(6): 1511-1515.

doi: 10.1016/0031-9422(96)00171-9
[21]
MATOBA Y, KUMAGAI T, YAMAMOTO A, YOSHITSU H, SUGIYAMA M. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. The Journal of Biological Chemistry, 2006, 281(13): 8981-8990.

doi: 10.1074/jbc.M509785200
[22]
SENDOVSKI M, KANTEEV M, BEN-YOSEF V S, ADIR N, FISHMAN A. First structures of an active bacterial tyrosinase reveal copper plasticity. Journal of Molecular Biology, 2011, 405(1): 227-237.

doi: 10.1016/j.jmb.2010.10.048 pmid: 21040728
[23]
ISMAYA W T, ROZEBOOM H J, WEIJN A, MES J J, FUSETTI F, WICHERS H J, DIJKSTRA B W. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry, 2011, 50(24): 5477-5486.

doi: 10.1021/bi200395t
[24]
NABI B G, MUKHTAR K, AHMED W, MANZOOR M F, ALI NAWAZ RANJHA M M, KIELISZEK M, BHAT Z F, AADIL R M. Natural pigments: Anthocyanins, carotenoids, chlorophylls, and betalains as colorants in food products. Food Bioscience, 2023, 52: 102403.

doi: 10.1016/j.fbio.2023.102403
[25]
WANG H L, LI Y, ZHANG K, MA Y Q, LI P. Feasibility and transcriptomic analysis of betalain production by biomembrane surface fermentation of Penicillium novae-zelandiae. AMB Express, 2018, 8(1): 1-10.

doi: 10.1186/s13568-017-0531-x
[26]
化青珠. 火龙果甜菜素生物合成关键基因的筛选与鉴定[D]. 广州: 华南农业大学, 2020.
HUA Q Z. Identification and functional analyses of key genes related to betalain biosynthesis in pitaya[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese)
[27]
陈思宇, 孙妍, 肖健, 赵天义, 杨尚东. 果实红色与黄色番茄品种植株茎部内生细菌群落结构及代谢功能特征. 微生物学报, 2022, 62(2): 602-616.
CHEN S Y, SUN Y, XIAO J, ZHAO T Y, YANG S D. Characteristics of endophytic bacterial community structure and metabolic function in stems of tomatoes between red and yellow varieties. Acta Microbiologica Sinica, 2022, 62(2): 602-616. (in Chinese)
[28]
肖健, 黄小丹, 杨尚东, 屈达才. 青枯病易感和钝感桑树品种根际土壤真菌群落结构比较. 广西植物, 2022, 42(12): 2099-2108.
XIAO J, HUANG X D, YANG S D, QU D C. Comparison of fungal community structures in rhizosphere soil between sensitive and insensitive mulberry varieties to bacterial wilt. Guihaia, 2022, 42(12): 2099-2108. (in Chinese)
[29]
任奎瑜, 赵久成, 郭霜, 王帅帅, 张传进, 庞师婵, 杨尚东. 红椎林中正红菇生境的土壤肥力及真菌多样性特征. 西南农业学报, 2020, 33(1): 109-116.
REN K Y, ZHAO J C, GUO S, WANG S S, ZHANG C J, PANG S C, YANG S D. Characteristics of soil biological properties and fungal diversity of Russula vinosa in Castanopsis hystrix forest. Southwest China Journal of Agricultural Sciences, 2020, 33(1): 109-116. (in Chinese)
[30]
赵国文, 贾瑞宗, 郭静远, 郭安平. 红心火龙果不同发育时期果肉呈色相关基因表达模式研究. 热带作物学报, 2021, 42(11): 3134-3145.
ZHAO G W, JIA R Z, GUO J Y, GUO A P. Expression patterns of flesh color related genes in red pitaya (Hylocereus costaricensis) at different developmental stages. Chinese Journal of Tropical Crops, 2021, 42(11): 3134-3145. (in Chinese)
[31]
ZOU H B, CHEN N N, SHI M X, XIAN M, SONG Y M, LIU J H. The metabolism and biotechnological application of betaine in microorganism. Applied Microbiology and Biotechnology, 2016, 100(9): 3865-3876.

doi: 10.1007/s00253-016-7462-3 pmid: 27005411
[32]
WANG C L, ZHAO S L, SHAO X X, PARK J B, JEONG S H, PARK H J, KWAK W J, WEI G Y, KIM S W. Challenges and tackles in metabolic engineering for microbial production of carotenoids. Microbial Cell Factories, 2019, 18(1): 55.

doi: 10.1186/s12934-019-1105-1 pmid: 30885243
[33]
KRAMAR A, ILIC-TOMIC T, PETKOVIC M, RADULOVIĆ N, KOSTIC M, JOCIC D, NIKODINOVIC-RUNIC J. Crude bacterial extracts of two new Streptomyces sp. isolates as bio-colorants for textile dyeing. World Journal of Microbiology and Biotechnology, 2014, 30(8): 2231-2240.

doi: 10.1007/s11274-014-1644-x
[34]
CHO M A, HAN S, LIM Y R, KIM V, KIM H, KIM D. Streptomyces Cytochrome P450 enzymes and their roles in the biosynthesis of macrolide therapeutic agents. Biomolecules & Therapeutics, 2019, 27(2): 127-133.
[35]
吴景玉. 火龙果甜菜素生物合成途径中关键酶基因克隆与初步功能分析[D]. 广州: 华南农业大学, 2017.
WU J Y. Cloning and functional analyses of four genes related to betalain biosynthesis in Hylocereus[D]. Guangzhou: South China Agricultural University, 2017. (in Chinese)
[36]
DE OLIVEIRA L A, SEGUNDO W O P F, DE SOUZA É S, PERES E G, KOOLEN H H F, DE SOUZA J V B. Ascomycota as a source of natural colorants. Brazilian Journal of Microbiology, 2022, 53(3): 1199-1220.

doi: 10.1007/s42770-022-00768-4 pmid: 35616785
[37]
MAPARI S A S, HANSEN M E, MEYER A S, THRANE U. Computerized screening for novel producers of Monascus-like food pigments in Penicillium species. Journal of Agricultural and Food Chemistry, 2008, 56(21): 9981-9989.

doi: 10.1021/jf801817q
[38]
MUSSAGY C U, WINTERBURN J, SANTOS-EBINUMA V C, PEREIRA J F B. Production and extraction of carotenoids produced by microorganisms. Applied Microbiology and Biotechnology, 2019, 103(3): 1095-1114.

doi: 10.1007/s00253-018-9557-5 pmid: 30560452
[39]
LAN D H, WU B. Chemistry and bioactivities of secondary metabolites from the genus Talaromyces. Chemistry & Biodiversity, 2020, 17(8): e2000229.
[40]
POORNIAMMAL R, PRABHU S, DUFOSSÉ L, KANNAN J. Safety evaluation of fungal pigments for food applications. Journal of Fungi, 2021, 7(9): 692.

doi: 10.3390/jof7090692
[41]
MERUVU H, DOS SANTOS J C. Colors of life: A review on fungal pigments. Critical Reviews in Biotechnology, 2021, 41(8): 1153-1177.

doi: 10.1080/07388551.2021.1901647
[42]
KANG S M, KHAN A L, HAMAYUN M, HUSSAIN J, JOO G J, YOU Y H, KIM J G, LEE I J. Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. Journal of Microbiology, 2012, 50(6): 902-909.

doi: 10.1007/s12275-012-2273-4
[43]
ALI B. Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatalysis and Agricultural Biotechnology, 2021, 31: 101884.

doi: 10.1016/j.bcab.2020.101884
[44]
KOU X H, YANG S, CHAI L P, WU C E, ZHOU J Q, LIU Y F, XUE Z H. Abscisic acid and fruit ripening: Multifaceted analysis of the effect of abscisic acid on fleshy fruit ripening. Scientia Horticulturae, 2021, 281: 109999.

doi: 10.1016/j.scienta.2021.109999
[1] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
[2] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[3] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[4] HUANG ZiYue,LIU WenJun,QIN RenLiu,PANG ShiChan,XIAO Jian,YANG ShangDong. Endophytic Bacterial Community Composition and PICRUSt Gene Functions in Different Pumpkin Varieties [J]. Scientia Agricultura Sinica, 2021, 54(18): 4018-4032.
[5] CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687.
[6] ZHAO YuanYuan,LI PengFei,XU QinZhi,AN QingMing,MENG JinZhu. Screening and Analysis of Follicular Development Related Genes in Goat [J]. Scientia Agricultura Sinica, 2020, 53(17): 3597-3605.
[7] LIU HaiYang, WANG Wei, ZHANG RenFu, RAXIDA ·ABDURAHMAN, YAO Ju. Fungal Community Structure of Cotton-Field Soil Under Different Incidences of Cotton Verticillium Wilt [J]. Scientia Agricultura Sinica, 2019, 52(3): 455-465.
[8] LI WenGuang,YANG XiaoXiao,HUANG ChunGuo,XUE NaiWen,XIA Qing,LIU XiaoLi,ZHANG XiaoQi,YANG Si,YANG ZhenPing,GAO ZhiQiang. Effects of Rapeseed Green Manure on Soil Fertility and Bacterial Community in Dryland Wheat Field [J]. Scientia Agricultura Sinica, 2019, 52(15): 2664-2677.
[9] DAI HongCui,ZHANG Hui,XUE YanFang,GAO YingBo,QIAN Xin,ZHAO HaiJun,CHENG Hao,LI ZongXin,LIU KaiChang. Response of Fungal Community and Function to Different Tillage and Straw Returning Methods [J]. Scientia Agricultura Sinica, 2019, 52(13): 2280-2294.
[10] HOU JianWei,XING CunFang,LU ZhiHong,CHEN Fen,YU Gao. Effects of the Different Crop Straw Biochars on Soil Bacterial Community of Yellow Soil in Guizhou [J]. Scientia Agricultura Sinica, 2018, 51(23): 4485-4495.
[11] YANG YaDong, WANG ZhiMin, ZENG ZhaoHai. Effects of Long-Term Different Fertilization and Irrigation Managements on Soil Bacterial Abundance, Diversity and Composition [J]. Scientia Agricultura Sinica, 2018, 51(2): 290-301.
[12] XIE HaiKun, JIAO Jian, FAN XiuCai, ZHANG Ying, JIANG JianFu, SUN HaiSheng, LIU ChongHuai. Assembling and Characteristic Analysis of the Complete Chloroplast Genome of Vitis vinifera cv. Cabernet Sauvignon from High-Throughput Sequencing Data [J]. Scientia Agricultura Sinica, 2017, 50(9): 1655-1665.
[13] GAO ShengChao, GUAN DaWei, MA MingChao, ZHANG Wei, LI Jun, SHEN DeLong. Effects of Fertilization on Bacterial Community Under the Condition of Continuous Soybean Monoculture in Black Soil in Northeast China [J]. Scientia Agricultura Sinica, 2017, 50(7): 1271-1281.
[14] HE Ping, LI LinGuang, WANG HaiBo, CHANG YuanSheng, LI HuiFeng. Effects of Shading Fruit with Opaque Paper Bag on Transcriptome in Peach [J]. Scientia Agricultura Sinica, 2017, 50(6): 1088-1097.
[15] DING Jian-li, JIANG Xin, GUAN Da-wei, MA Ming-chao, ZHAO Bai-suo, ZHOU Bao-ku, CAO Feng-ming, LI Li, LI Jun. Responses of Micropopulation in Black Soil of Northeast China to Long-Term Fertilization and Crops [J]. Scientia Agricultura Sinica, 2016, 49(22): 4408-4418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!