Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (3): 529-548.doi: 10.3864/j.issn.0578-1752.2023.03.011

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Research Progress on the Application of Non-Saccharomyces During Wine Fermentation

WANG ChunXiao1(), YU JunZhu1, ZHOU WenYa1, XU YinHu2   

  1. 1School of Liquor and Food Engineering, Guizhou University/Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang 550025
    2National Center for Yeast Technology Research and Promotion, Yichang 443003, Hubei
  • Received:2022-04-30 Accepted:2022-07-22 Online:2023-02-01 Published:2023-02-14
  • Contact: WANG ChunXiao E-mail:cxwang@gzu.edu.cn

Abstract:

Non-Saccharomyces yeast are naturally present on grape skin, which mainly play their roles in the maceration and initial stage of fermentation during winemaking process. More and more concerns have been recently focused on the application of non-Saccharomyces yeast in wine fermentation. Non-Saccharomyces yeast often have weaker fermentation ability than Saccharomyces cerevisiae and can convert the reducing sugar into ethanol and other fermentation by-products. Therefore, non-Saccharomyces are the potential excellent yeast for producing wine with complex flavor traits and lower ethanol degree. Different non-Saccharomyces yeast species have different metabolic characteristics in wine fermentation applications. The selection of non-Saccharomyces yeasts with certain characteristics for application in fermentation can improve the specialized quality of wine. This review was based on the initial summary on the species, winemaking traits, and application ways of commercial non-Saccharomyces yeast, and emphasized on the positive role of non-Saccharomyces in wine color, aroma, taste, safety and health, their metabolic mechanisms and corresponding research hotspot. The positive role of non-Saccharomyces in wine color included the promotion of high acid production, high polysaccharide production, high extracellular pyruvate production and low sorption properties. Different non-Saccharomyces yeast could promote the fruity aroma enhancement in wine by low production of ethanol, acetaldehyde, and volatile phenols, and high production of ethyl acetate, acetic acid ester, ethyl ester, higher alcohols, and enzymes related with the release of terpene and mercaptan, and therefore improve the aroma complexity of wine. Non-Saccharomyces yeast could regulate wine mouthfeel traits by high production of glycerol, polysaccharide, and lactic acid, and degradation of malic acid. In addition, non-Saccharomyces yeast could improve the safety quality of wine by decreasing the SO2 dosage as biological control agent, and reducing the content of toxic compounds through metabolic degradation during alcoholic fermentation. This review further analyzed the current research status on genome and microsatellite loci analysis. The main inoculation strategies were discussed on application of non-Saccharomyces yeast during wine fermentation, and six aspects were posed for further research concern. This review provided theoretical references for the research on application of the non-Saccharomyces yeasts in wine alcoholic fermentation.

Key words: mixed fermentation, color stability, aroma complexity, genotype, commercialization

Table 1

The list of commercial non-Saccharomyces yeast in wine industry"

菌种名称
Species
葡萄酒酿造应用特点
Winemaking application characteristics
产品名称a
Product
生产商
Producer
菌剂加工类型
Yeast processing type
威克克鲁维酵母
Kluyveromyces wickerhamii
产真菌毒素抑制败坏菌生长
Production of a mycotoxin inhibiting the growth of spoilage microorganisms
ENARTIS FERM BRETT OUT K[13] 意大利Enartis
Italy Enartis
活性干酵母
Active dry yeast
耐热克鲁维酵母
Lachancea thermotolerans
产乳酸[14-15]
Production of lactic acid
CVE-7 中国安琪Angel
China Angel
活性干酵母
Active dry yeast
产乳酸增加酸度,低产乙醇
Production of lactic acid to increase acidity and low production of ethanol
LEVULIA Alcomeno 意大利AEB
Italy AEB
活性干酵母
Active dry yeast
高产乳酸增酸
High production of lactic acid to increase acidity
LAKTIA 葡萄牙Proenol
Portugal Proenol
活性干酵母
Active dry yeast
增加酸度
Increase acidity
Concerto[16] 丹麦CHR Hansen
Denmark CHR Hansen
活性干酵母
Active dry yeast
增加酸度和清新感
Increase acidity and freshness
LEVEL2 LAKTIA 加拿大Lallemand
Canada Lallemand
活性干酵母
Active dry yeast
核果梅奇酵母
Metschnikowia fructicola
葡萄采收期或冷浸渍期间抑制有害微生物生长
Inhibit the growth of harmful microorganisms during grape harvest or cold maceration
GAÏA 加拿大Lallemand
Canada Lallemand
活性干酵母
Active dry yeast
美极梅奇酵母
Metschnikowia pulcherrima
增加品种香气,与酿酒酵母顺序接种使用
Increase the aroma of grapevarieties and inoculate with Saccharomyces cerevisiae in sequence
LEVULIA PULCHERRIMA 意大利AEB
Italy AEB
活性干酵母
Active dry yeast
葡萄采摘后立即使用,用于生物防治
Use immediately after grape picking for biocontrol purposes
PRIMAFLORA VB BIO 意大利AEB
Italy AEB
活性干酵母
Active dry yeast
控制葡萄表面的野生菌,减少二氧化硫使用
Control wild bacteria on the surface of grapes and reduce the use of sulfur dioxide
OenofermMProtect 德国Erbslöeh
Germany Erbslöeh
活性干酵母
Active dry yeast
生物防治,减少二氧化硫使用
Biological control and reduction of sulfur dioxide use
LEVEL2 GUARDIA 葡萄牙Proenol
Portugal Proenol
活性干酵母
Active dry yeast
增加品种香气
Increase the aroma of grape varieties
FLAVIA 葡萄牙Proenol
Portugal Proenol
活性干酵母
Active dry yeast
高消耗溶解氧防止氧化,二氧化硫替代品
High consumption of dissolved oxygen to prevent oxidation, sulfur dioxide substitute
LEVEL2 INITIA 葡萄牙Proenol
Portugal Proenol
活性干酵母
Active dry yeast
低温浸渍阶段生物防治
Biocontrol at low temperature maceration stages
ZYMAFLORE KHIOMP 法国Laffort
France Laffort
活性干酵母
Active dry yeast
增加品种特性
Increase grape variety characteristics
LEVEL2 FLAVIA 加拿大Lallemand
Canada Lallemand
活性干酵母
Active dry yeast
美极梅奇酵母+戴尔有孢圆酵母
Metschnikowia pulcherrima + Torulaspora delbrueckii
生物防治,减少二氧化硫使用
Biological control and reduction of sulfur dioxide use
ZYMAFLORE ÉGIDETDMP 法国Laffort
France Laffort
活性干酵母
Active dry yeast
克鲁维毕赤酵母
Pichia kluyveri
增加果味
Increase fruitiness
Footzen[16] 丹麦CHR Hansen
Denmark CHR Hansen
活性干酵母
Active dry yeast
克鲁维毕赤酵母+瑟氏哈萨克
斯坦酵母
P. kluyveri+Kazachstania servazzii
产生大量香气,生物防治用作二氧化硫替代品
Production of high aroma, and biocontrol is used as a sulphur dioxide substitute
Thrillyeast 意大利BioEnologia
Italy BioEnologia
黏稠奶油状的液体酵母
Thick and creamy liquid yeast
酵母属+美极梅齐酵母
Saccharomyces + Metschnikowia pulcherrima
葡萄采摘后立即使用,用于生物防治
Used immediately after grape picking for biocontrol purposes
PRIMAFLORA VR BIO 意大利AEB
Italy AEB
活性干酵母
Active dry yeast
酵母属+戴尔有孢圆酵母
Saccharomyces + Torulaspora delbrueckii
增加香气复杂性
Increase aroma complexity
Oenoferm wild & pure F3 德国Erbslöeh
Germany Erbslöeh
活性干酵母
Active dry yeast
酿酒酵母+戴尔有孢圆酵母+耐热克鲁维酵母
S. cerevisiae+T. delbrueckii +
L. thermotolerans
增加果香
Increase fruity aroma
Melody[16] 丹麦CHR Hansen
Denmark CHR Hansen
活性干酵母
Active dry yeast
粟酒裂殖酵母
Schizosaccharomyces pombe
降解苹果酸、葡萄糖酸和赭曲霉毒素,高产甘油、多糖和乙醇,低产乙酸,不产组胺,提升颜色
Degradation of malic acid, gluconic acid and ochratoxin, high production of glycerol, polysaccharides and ethanol, low production of acetic acid, no histamine, color enhancement
Atecrem 12H 意大利BioEnologia
Italy BioEnologia
黏稠奶油状的液体酵母
Thick and creamy liquid yeast
降低苹果酸
Lower malic acid
PROMALIC 葡萄牙Proenol
Portugal Proenol
胶囊封装酵母
Capsule encapsulated yeast
星形假丝酵母
Starmerella bacillaris
高产甘油,低产乙醇,需无二氧化硫酿造
High production of glycerine, low production of ethanol, no sulphur dioxide required for brewing
Atecrem 11H 意大利BioEnologia
Italy BioEnologia
黏稠奶油状的液体酵母
Thick and creamy liquid yeast
戴尔有孢圆酵母
Torulaspora delbrueckii
增加香气复杂性,释放多糖增加口感圆润度
Increases aromatic complexity and releases polysaccharides to increase roundness on the palate
NSD 中国安琪Angel
China Angel
活性干酵母
Active dry yeast
增加果香和花香,低产挥发酸,增加复杂性
Increase fruit and floral aromas, low yield of volatile acids, increases complexity
EnartisFerm Q Tau 意大利Enartis
Italy Enartis
活性干酵母
Active dry yeast
增加香气复杂性
Increase aroma complexity
BIODIVA 葡萄牙Proenol
Portugal Proenol
活性干酵母
Active dry yeast
增加花香和品种香气,释放大量甘露糖蛋白增加口感圆润度
Increase floral and varietal aromas and release a large amount of mannose protein to increase roundness on the palate
VINIFERM NSTD 西班牙Agrovin
Spain Agrovin
活性干酵母
Active dry yeast
与酿酒酵母结合使用,增加口感长度和香气强度,低产挥发酸
Combination with Saccharomyces cerevisiae for increasing length and aroma intensity, and low volatile acid production
ZYMAFLORE ALPHA 法国Laffort
France Laffort
活性干酵母
Active dry yeast
增加品种特性和发酵酯类特性
Increase in grape variety characteristics and fermentation ester characteristics
LEVEL2 BIODIVA 加拿大Lallemand
Canada Lallemand
活性干酵母
Active dry yeast
增加香气
Increase aroma
Prelude[16] 丹麦CHR Hansen
Denmark CHR Hansen
活性干酵母
Active dry yeast
异常威克汉姆酵母
Wickerhamomyces anomalus
产真菌毒素抑制败坏菌生长
Production of a mycotoxin inhibiting the growth of spoilage microorganisms
ENARTIS FERM BRETT OUT W[13] 意大利Enartis
Italy Enartis
活性干酵母
Active dry yeast

Fig. 1

The application traits of non-Saccharomyces yeast during wine fermentation 1Some strains could tolerate alcohol at around 10% vol; 2Candida stellata was reclassified as Candida zemplinina[1] in 2011, and in 2012 C. zemplinina was renamed as Starmerella bacillaris[21]; 3Some strains had a high alcohol production capacity of 11%-13% vol; 4An asexual type of Metschnikowia pulcherrima; 5Same as Williopsis saturnus"

Fig. 2

The anthocyanin reaction mechanism related to yeast fermentation pathways Take scabiolide as an example to show the structural formulas of anthocyanins and pyran-type anthocyanins. ①Release of extracellular pyruvic acid to form vitisin A type: S. japonicus, S. pombe; ②High lactic acid production, lowering the pH of the wine and improving color intensity and stability: L. thermotolerans; ③Release of extracellular acetaldehyde to form vitisin B type: S. cerevisiae, etc.; ④Low adsorption of anthocyanins by the cell wall: L. thermotolerans; Promotion of oligomer formation from anthocyanins and flavanols: M. pulcherrima, S. bacillaris, T. delbrueckii; ⑤The vitisin A type further forms a portisin type with vinylflavan-3-ol/hydroxycinnamic acid/vinyl phenol: S. japonicus, S. pombe"

Fig. 3

The formation mechanism of aroma substances related with yeast fermentation pathways ①High production of acetaldehyde: S. japonicus, S. pombe, S. bacillaris; Low production of acetaldehyde, acetic acid or 3-hydroxybutan-2-one: L. thermotolerans, L. fermentati, M. pulcherrima, P. terricola, P. kudriavzevii, S. bacillaris, T. delbrueckii; ②Reduce ethanol: L. thermotolerans, M. pulcherrima, S. bacillaris, T. delbrueckii; ③High production of higher alcohol compounds (Ehrlichpathway, Sugar metabolism synthetic pathway): H. vineae, M. guilliermondii, M. pulcherrima, P. fermentans, R. mucilaginosa, S. japonicus; Low production of higher alcohol compounds: Hanseniaspora, S. bacillaris, S. pombe, Zygosaccharomyces; ④High production of acetate compounds: C. californica, C. saturnus, H. guilliermondii, H. osmophila, H. uvarum, Hanseniaspora, K. aerobia, K. servazzii, M. pulcherrima, P. kluyveri, P. terricola, P. kudriavzevii; High production of acetate compounds by H. vineae through themycolic acid-prephenic acidpathway; ⑤High production ofethyl acetate: H. guilliermondii, H. vineae, H. uvarum, P. terricola, P. kudriavzevii, P. kluyveri, S. japonicus, Z. bailii; ⑥High production of ethyl compounds: Hanseniaspora, H. uvarum, P. kluyveri, P. kudriavzevii, P. terricola, S. crataegensis, S. bacillaris, T. delbrueckii, Z. bailii; ⑦High production of enzymes, and release of terpenes or thiols, etc: C. californica, C. pulcherrima, Hanseniaspora, H. uvarum, L. thermotolerans, M. pulcherrima, P. Kluyveri, P. kudriavzevii, R. mucilaginosa, S. bacillaris, S. crataegensis, T. delbrueckii"

Fig. 4

The formation mechanism of aroma substances related with yeast fermentation pathways ①High production of glycerol: L. thermotolerans, M. pulcherrima, P. kluyveri, P. kudriavzevii, S. bacillaris, S. japonicus, T. Delbrueckii; ②Production of lactic acid: L. thermotolerans; ③Reduce malic acid (Malo-alcoholic fermentation): M. pulcherrima, P. kudriavzevii, S. japonicus, S. pombe, T. delbrueckii; ④Production of polysaccharides such as mannoproteins, etc: L. thermotolerans, S. pombe, S. japonicus, T. delbrueckii, Z. bailii"

Table 2

The information related with genome of non-Saccharomyces yeast"

菌种名称1)
Species
基因组大小2)
Genome size
基因组序列(个)2)
Genome
sequence
倍性与孢子形成3)
Ploidy and sporulation
微卫星位点分析
Microsatellite locus analysis
加利福尼亚假丝酵母
C. californica
细胞核:12.32 Mb
Nucleus: 12.32 Mb
2 未知
Unknown

None
光滑假丝酵母
C. glabrata
细胞核:12.14—14.56 Mb,13条染色体;线粒体:20 kb
Nucleus: 12.14-14.56 Mb, 13 Chromosomes; Mitochondria: 20 kb
36 未知
Unknown

None
铁杉假丝酵母
C. railenensis

None

None
未知
Unknown

None
土星形塞伯林德纳氏酵母
C. saturnus
细胞核:13.43 Mb
Nucleus: 13.43 Mb
1 未知
Unknown

None
汉氏德巴利氏酵母
D. hansenii
细胞核:11.46—18.56 Mb,7条染色体;线粒体:30 kb
Nucleus: 11.46-18.56 Mb, 7 Chromosomes; Mitochondria: 30 kb
12
单倍体,1个子囊1个孢子,偶尔2个
Haploid, 1 ascus 1 spore, occasionally 2

None
季也蒙有孢汉逊酵母
H. guilliermondii
细胞核:9.04—9.14 Mb,8—9条染色体
Nucleus: 9.04-9.14 Mb, 8-9 Chromosomes
2 倍性未知,1个子囊4个孢子
Ploidy unknown, 1 ascus 4 spores

None
耐渗透压有孢汉逊酵母
H. osmophila
细胞核:11.46—12.16 Mb
Nucleus: 11.46-12.16 Mb
2 倍性未知,1个子囊1—2个孢子
Ploidy unknown, 1 ascus 1-2 spores

None
葡萄汁有孢汉逊酵母
H. uvarum
细胞核:8.1—9.5 Mb,8—9条染色体;线粒体:11 kb
Nucleus: 8.1-9.5 Mb, 8-9 Chromosomes; Mitochondria: 11 kb
10 倍性未知可能是二倍体,1个子囊1个
孢子,罕见2个孢子
Unknown ploidy is likely diploid, 1 ascus 1 spore, rare 2 spores
10个微卫星位点[83]
Ten microsatellite loci[83]
葡萄酒有孢汉逊酵母
H. vineae
细胞核:11.1—11.37 Mb,5条染色体;线粒体:28—45 kb
Nucleus: 11.1-11.37 Mb, 5 Chromosomes; Mitochondria: 28-45 kb
3 倍性未知,1个子囊1个孢子,罕见2
个孢子
Ploidy unknown, 1 ascus 1 spore, rare 2 spores

None
好氧哈萨克斯坦酵母
K. aerobia
细胞核:12.09 Mb
Nucleus: 12.09 Mb
1 倍性未知,1个子囊1个孢子
Ploidy unknown, 1 ascus 1 spore

None
瑟氏哈萨克斯坦酵母
K. servazzii
细胞核:11.77—12.84 Mb
Nucleus: 11.77-12.84 Mb
4 倍性未知,1个子囊1个孢子,偶尔
2—4个孢子
Ploidy unknown, 1 ascus 1 spore, occasionally 2-4 spores

None
L. fermentati 细胞核:10.26 Mb,8条染色体
Nucleus: 10.26 Mb, 8 Chromosomes
2 倍性未知,1个子囊1—4个孢子
Ploidy unknown, 1 ascus 1-4 spores

None
耐热克鲁维酵母
L. thermotolerans
细胞核:10.24—10.39 Mb,8条染色体;线粒体:21.9—25.1 kb
Nucleus: 10.24-10.39 Mb, 8 Chromosomes; Mitochondria: 21.9-25.1 kb
3 倍性有争议,单倍体或二倍体,1个
子囊1—4个孢子
Ploidy is controversial, haploid or diploid, 1 ascus 1-4 spores
14个微卫星位点[84]
Fourteen microsatellite loci [84]
核果梅奇酵母
M. fructicola
细胞核:26.13—26.18 Mb
Nucleus: 26.13-26.18 Mb
2 倍性未知,1个子囊2个孢子
Ploidy unknown, 1 ascus 2 spores

None
美极梅齐酵母
M. pulcherrima
细胞核:21.77 Mb
Nucleus: 21.77 Mb
1 二倍体,1个子囊1—2个孢子
Diploid, 1 ascus 1-2 spores

None
季也蒙毕赤酵母
M. guilliermondii
细胞核:10.59—10.71 Mb;线粒体:31 kb
Nucleus: 10.59-10.71 Mb; Mitochondria: 31 kb
10 倍性未知,1个子囊1—4个孢子
Ploidy unknown, 1 ascus 1-4 spores
3个微卫星位点[85]
Three microsatellite loci[85]
发酵毕赤酵母
P. fermentans
细胞核:10.57 Mb,可能2条染色体
Nucleus: 10.57 Mb, possibly 2 chromosomes
1 倍性未知,1个子囊2—4个孢子
Ploidy unknown, 1 ascus 2-4 spores

None
克鲁维毕赤酵母
P. kluyveri
细胞核:10.96—12.40 Mb;线粒体:43.1 kb
Nucleus: 10.96-12.40 Mb; Mitochondria: 43.1 kb
3 二倍体,1个子囊4个孢子
Diploid, 1 ascus 4 spores

None
库德毕赤酵母
P. kudriavzevii
细胞核:7.25—12.94 Mb,5条染色体;线粒体:50 kb
Nucleus: 7.25-12.94 Mb, 5 Chromosomes; Mitochondria: 50 kb
33 二倍体,1个子囊1—2个孢子
Diploid, 1 ascus 1-2 spores

None
特立科拉毕赤酵母
P. terricola
细胞核:11.01—14.04 Mb
Nucleus: 11.01-14.04 Mb
6 倍性未知,1个子囊1—4个孢子
Ploidy unknown, 1 ascus 1-4 spores

None
胶红酵母
R. mucilaginosa
细胞核:19.04—20.22 Mb;线粒体:47 kb
Nucleus: 19.04-20.22 Mb; Mitochondria: 47 kb
102 未知
Unknown

None
星形假丝酵母
S. bacillaris
细胞核:7.27—9.36 Mb,3条染色体;线粒体:23 kb
Nucleus: 7.27-9.36 Mb, 3 Chromosomes; Mitochondria: 23 kb
5 倍性未知可能是单倍体,无证据表明
具备形成孢子的能力
Ploidy unknown probably haploid, no evidence of ability to form spores
十个微卫星位点[86]
Ten microsatellite loci[86]
克拉通覆膜孢酵母
S. crataegensis
细胞核:15.37 Mb
Nucleus: 15.37 Mb
1 倍性未知可能是单倍体,偶尔形成子囊,
1个子囊2个孢子
Ploidy unknown probably haploid, occasionally forming ascus, 1 ascus 2 spores

None
日本裂殖酵母
S. japonicus
细胞核:11.54—11.73 Mb;线粒体:80 kb
Nucleus: 11.54-11.73 Mb; Mitochondria: 80 kb
2 倍性未知,1个子囊6—8个孢子
Ploidy unknown, 1 ascus 6-8 spores

None
粟酒裂殖酵母
S. pombe
细胞核:12.59—13.15 Mb,3条染色体;线粒体:20 kb
Nucleus: 12.59-13.15 Mb, 3 Chromosomes; Mitochondria: 20 kb
20 倍性未知,1个子囊2—4个孢子
Ploidy unknown, 1 ascus 2-4 spores

None
戴尔有孢圆酵母
T. delbrueckii
细胞核:9.00—11.53 Mb,8条染色体;线粒体:28—45 kb
Nucleus: 9.00-11.53 Mb, 8 Chromosomes; Mitochondria: 28-45 kb
77 倍性未知可能是二倍体,1个子囊1个
孢子,偶尔2—3个孢子
Ploidy unknown probably diploid, 1 ascus 1 spore, occasionally 2-3 spores
8个微卫星位点[87]
Eight microsatellite loci[87]
异常威克汉姆酵母
W.anomalus
细胞核:12.72—26.55 Mb
Nucleus: 12.72-26.55 Mb
10 单倍体和二倍体,1个子囊1-4个孢子
Haploid and diploid, 1 ascus 1-4 spores

None
拜耳接合酵母
Z. bailii
细胞核:10.27—21.14 Mb,5—13条染色体;线粒体:29.5 kb
Nucleus: 10.27-21.14 Mb, 5-13 Chromosomes; Mitochondria: 29.5 kb
3 单倍体和二倍体,1个子囊1—4个孢子
Haploid and diploid, 1 ascus 1-4 spores

None
[1] JOLLY N P, VARELA C, PRETORIUS I S. Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Research, 2014, 14(2): 215-237. doi: 10.1111/1567-1364.12111.
doi: 10.1111/1567-1364.12111
[2] KURTZMAN C P, FELL J W, BOEKHOUT T. The Yeasts:A Taxonomic Study. 5th ed. Amsterdam: Elsevier, 2011.
[3] DRUMONDE-NEVES J, FERNANDES T, LIMA T, PAIS C, FRANCO-DUARTE R. Learning from 80 years of studies: A comprehensive catalogue of non-Saccharomyces yeasts associated with viticulture and winemaking. FEMS Yeast Research, 2021, 21(3): foab017. doi: 10.1093/femsyr/foab017.
doi: 10.1093/femsyr/foab017
[4] PADILLA B, GIL J V, MANZANARES P. Past and future of non- Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Frontiers in Microbiology, 2016, 7: 411.
[5] MAS A, PADILLA B, ESTEVE-ZARZOSO B, BELTRAN G, REGUANT C, BORDONS A. Taking advantage of natural biodiversity for wine making: The wildwine project. Agriculture and Agricultural Science Procedia, 2016, 8: 4-9.
doi: 10.1016/j.aaspro.2016.02.002
[6] BERBEGAL C, FRAGASSO M, RUSSO P, BIMBO F, GRIECO F, SPANO G, CAPOZZI V. Climate changes and food quality: The potential of microbial activities as mitigating strategies in the wine sector. Fermentation, 2019, 5: 85.
doi: 10.3390/fermentation5040085
[7] LAIRÓN-PERIS M, PÉREZ-TRAVÉS L, MUÑIZ-CALVO S, GUILLAMÓN J M, HERAS J M, BARRIO E, QUEROL A. Differential contribution of the parental genomes to a S. cerevisiae × S. uvarum hybrid, inferred by phenomic, genomic, and transcriptomic analyses, at different industrial stress conditions. Frontiers Media, 2020, 8: 129.
[8] ALBERTIN W, ZIMMER A, MIOT-SERTIER C, BERNARD M, COULON J, MOINE V, COLONNA-CECCALDI B, BELY M, MARULLO P, MASNEUF-POMAREDE I. Combined effect of the Saccharomyces cerevisiae lag phase and the non-Saccharomyces consortium to enhance wine fruitiness and complexity. Applied Microbiology and Biotechnology, 2017, 101(20): 7603-7620.
doi: 10.1007/s00253-017-8492-1
[9] BENITO S, CALDERÓN F. The influence of non-Saccharomyces species on wine fermentation quality parameters. Fermentation, 2019, 5: 54.
doi: 10.3390/fermentation5030054
[10] BORREN E, TIAN B. The important contribution of non- Saccharomyces yeasts to the aroma complexity of wine: A review. Foods, 2020, 10: 13.
doi: 10.3390/foods10010013
[11] TAILLANDIER P, LAI Q P, JULIEN-ORTIZ A, BRANDAM C. Interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in wine fermentation: Influence of inoculation and nitrogen content. World Journal of Microbiology and Biotechnology, 2014, 30(7): 1959-1967.
doi: 10.1007/s11274-014-1618-z
[12] PRIOR K J, BAUER F F, DIVOL B. The utilisation of nitrogenous compounds by commercial non-Saccharomyces yeasts associated with wine. Food Microbiology, 2019, 79: 75-84.
doi: 10.1016/j.fm.2018.12.002
[13] ROUDIL L, RUSSO P, BERBEGAL C, ALBERTIN W, SPANO G, CAPOZZI V. Non-Saccharomyces commercial starter cultures: scientific trends, recent patents and innovation in the wine sector. Recent Patents on Food, Nutrition & Agriculture, 2020, 11(1): 27-39.
[14] 唐冲, 成池芳, 许引虎, 段长青, 燕国梁. 耐热克鲁维酵母在葡萄酒发酵中的研究进展. (2022-04-15)[2022-06-25]. 食品科学:1-12. DOI:10.7506/spkx1002-6630-20211223-266.
doi: 10.7506/spkx1002-6630-20211223-266
TANG C, CHENG C F, XU Y H, DUAN C Q, YAN G L. Research progresses of Lachanceathermotolerans in wine fermentation. (2022-04-15)[2022-06-25]. Food Science:1-12. doi:10.7506/spkx1002-6630-20211223-266. (in Chinese)
doi: 10.7506/spkx1002-6630-20211223-266
[15] 董琦楠, 李莹, 叶冬青, 刘延琳. 耐热克鲁维酵母在葡萄酒酿造中的研究进展. 微生物学通报, 2022, 49(5): 1941-1954. doi: 10.13344/j.microbiol.china.210653.
doi: 10.13344/j.microbiol.china.210653
DONG Q N, LI Y, YE D Q, LIU Y L. Research progress of Lachancea thermotolerans in winemaking. Microbiology China, 2022, 49(5): 1941-1954. doi: 10.13344/j.microbiol.china.210653. (in Chinese)
doi: 10.13344/j.microbiol.china.210653
[16] VEJARANO R, GIL-CALDERÓN A. Commercially available non- Saccharomyces yeasts for winemaking: Current market, advantages over Saccharomyces, biocompatibility, and safety. Fermentation, 2021, 7(3): 171.
doi: 10.3390/fermentation7030171
[17] LIN M M-H, BOSS P K, WALKER M E, SUMBY K M, JIRANEK V. Influence of Kazachstania spp. on the chemical and sensory profile of red wines. International Journal of Food Microbiology, 2022, 362: 109496.
doi: 10.1016/j.ijfoodmicro.2021.109496
[18] GIANVITO P D, ENGLEZOS V, RANTSIOU K, COCOLIN L. Bioprotection strategies in winemaking. International Journal of Food Microbiology, 2022, 364: 109532.
doi: 10.1016/j.ijfoodmicro.2022.109532
[19] TUFARIELLO M, FRAGASSO M, PICO CARBAJO J, PANIGHEL A, CASTELLARIN S D, FLAMINI R, GRIECO F. Influence of non-Saccharomyces on wine chemistry: A focus on aroma-related compounds. Molecules, 2021, 26: 644.
doi: 10.3390/molecules26030644
[20] CLEMENTE-JIMENEZ J M, MINGORANCE-CAZORLA L, MARTÍNEZ-RODRÍGUEZ S, HERAS-VÁZQUEZ F J L, RODRÍGUEZ- VICO F. Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiology, 2004, 21(2): 149-155.
doi: 10.1016/S0740-0020(03)00063-7
[21] WANG C X, ESTEVE-ZARZOSO B, MAS A. Monitoring of Saccharomyces cerevisiae, Hanseniaspora uvarum, and Starmerella bacillaris (synonym Candida zemplinina) populations during alcoholic fermentation by fluorescence in situ hybridization. International Journal of Food Microbiology, 2014, 191: 1-9.
doi: 10.1016/j.ijfoodmicro.2014.08.014
[22] 李华, 王华, 袁春龙. 葡萄酒工艺学. 北京: 科学出版社, 2007: 24-27.
LI H, WANG H, YUAN C L. Wine Technology. Beijing: Science Press, 2007: 24-27. (in Chinese)
[23] 王二雷, 刘彦君, 刘静波. 吡喃型花青素类化合物的研究进展. 食品工业科技, 2018, 39(12): 325-333. doi: 10.13386/j.issn1002-0306.2018.12.059.
doi: 10.13386/j.issn1002-0306.2018.12.059
WANG E L, LIU Y J, LIU J B. Research advances in pyranoanthocyanin compounds. Science and Technology of Food Industry, 2018, 39(12): 325-333. doi: 10.13386/j.issn1002-0306.2018.12.059. (in Chinese)
doi: 10.13386/j.issn1002-0306.2018.12.059
[24] LI X S, TENG Z J, LUO Z Y, YUAN Y B, ZENG Y Y, HU J, SUN J X, BAI W B. Pyruvic acid stress caused color attenuation by interfering with anthocyanins metabolism during alcoholic fermentation. Food Chemistry, 2022, 372:131251.
doi: 10.1016/j.foodchem.2021.131251
[25] 张宁, 赵旭, 兰义宾, 石英, 段长青, 吴广枫. 中国东亚种红葡萄酒的颜色特征及酚类组成研究. 中国酿造, 2022, 41(5): 34-41. doi: 10.11882/j.issn.0254-5071.2022.05.007.
doi: 10.11882/j.issn.0254-5071.2022.05.007
ZHANG N, ZHAO X, LAN Y B, SHI Y, DUAN C Q, WU G F. Color features and phenolic composition of red wines made from East Asian Vitis species native to China. China Brewing, 2022, 41(5): 34-41. doi: 10.11882/j.issn.0254-5071.2022.05.007. (in Chinese)
doi: 10.11882/j.issn.0254-5071.2022.05.007
[26] BENITO S, PALOMERO F, MORATA A, CALDERÓN F, PALMERO D, SUÁREZ-LEPE J A. Physiological features of Schizosaccharomyces pombe of interest in making of white wines. European Food Research and Technology, 2013, 236(1): 29-36.
doi: 10.1007/s00217-012-1836-2
[27] BENITO Á, CALDERÓN F, BENITO S. The combined use of Schizosaccharomyces pombe and Lachancea thermotolerans- Effect on the anthocyanin wine composition. Molecules, 2017, 22(5): 739.
doi: 10.3390/molecules22050739
[28] MORATA A, ESCOTT C, BAÑUELOS M A, LOIRA I, DEL FRESNO J M, GONZÁLEZ C, SUÁREZ-LEPE J A. Contribution of non-Saccharomyces yeasts to wine freshness. A review. Biomolecules, 2020, 10(1): 34.
doi: 10.3390/biom10010034
[29] 赵美, 田秀, 李敏, 高娉娉, 梁丽红, 韩舜愈, 王婧. 粟酒裂殖酵母与酿酒酵母共同接种发酵对‘黑比诺’干红葡萄酒品质的影响. 食品科学, 2021, 42(24): 108-116. doi: 10.7506/spkx1002-6630-20201012-100.
doi: 10.7506/spkx1002-6630-20201012-100
ZHAO M, TIAN X, LI M, GAO P P, LIANG L H, HAN S Y, WANG J. Effect of mixed culture fermentation with Schizosaccharomyces pombe and Saccharomyces cerevisiae on the quality of ‘Pinot Noir’ dry red wine. Food Science, 2021, 42(24): 108-116. doi: 10.7506/spkx1002-6630-20201012-100. (in Chinese)
doi: 10.7506/spkx1002-6630-20201012-100
[30] PORTARO L, MAIOLI F, CANUTI V, PICCHI M, LENCIONI L, MANNAZZU I, DOMIZIO P. Schizosaccharomyces japonicus/ Saccharomyces cerevisiae mixed starter cultures: New perspectives for the improvement of Sangiovese aroma, taste, and color stability. LWT, 2022, 156: 113009.
doi: 10.1016/j.lwt.2021.113009
[31] VELENOSI M, CRUPI P, PERNIOLA R, MARSICO A D, SALERNO A, ALEXANDRE H, ARCHIDIACONO N, VENTURA M, CARDONE M F. Color stabilization of Apulian red wines through the sequential inoculation of Starmerella bacillaris and Saccharomyces cerevisiae. Molecules, 2021, 26(4): 907.
doi: 10.3390/molecules26040907
[32] 胡苑. 干红葡萄酒陈酿衍生色素颜色稳定性的研究[D]. 烟台: 烟台大学, 2021.
HU Y. Study on the color stability of red wine derived pigments during aging[D]. Yantai: Yantai University, 2021. (in Chinese)
[33] HRANILOVIC A, GAMBETTA J M, SCHMIDTKE L, BOSS P K, GRBIN P R, MASNEUF-POMAREDE I, BELY M, ALBERTIN W, JIRANEK V. Oenological traits of Lachancea thermotolerans show signs of domestication and allopatric differentiation. Scientific Reports, 2018, 8(1): 14812.
doi: 10.1038/s41598-018-33105-7
[34] MORATA A, ESCOTT C, LOIRA I, DEL FRESNO J M, GONZÁLEZ C, SUÁREZ-LEPE J A. Influence of Saccharomyces and non- Saccharomyces yeasts in the formation of pyranoanthocyanins and polymeric pigments during red wine making. Molecules, 2019, 24(24): 4490.
doi: 10.3390/molecules24244490
[35] WINDHOLTZ S, REDON P, LACAMPAGNE S, FARRIS L, LYTRA G, CAMELEYRE M, BARBE J-C, COULON J, THIBON C, MASNEUF-POMARÈDE I. Non-Saccharomyces yeasts as bioprotection in the composition of red wine and in the reduction of sulfur dioxide. LWT, 2021, 149: 111781.
doi: 10.1016/j.lwt.2021.111781
[36] 李婧. 冰葡萄酒发酵过程中酵母菌群落演潜规律及优良菌株的筛选[D]. 大连: 大连理工大学, 2020.
LI J. The dynamic changes of yeast populations during icewine fermentation and screening of the yeast strains[D]. Dalian: Dalian University of Technology, 2020. (in Chinese)
[37] HAN X Y, QING X, YANG S Y, LI R L, ZHAN J C, YOU Y L, HUANG W D. Study on the diversity of non-Saccharomyces yeasts in Chinese wine regions and their potential in improving wine aroma by β-glucosidase activity analyses. Food Chemistry, 2021, 360: 129886.
doi: 10.1016/j.foodchem.2021.129886
[38] GE Q, GUO C F, YAN Y, SUN X Y, MA T T, ZHANG J, LI C H, GOU C L, YUE T L, YUAN Y H. Contribution of non- Saccharomyces yeasts to aroma-active compound production, phenolic composition and sensory profile in Chinese Vidal icewine. Food Bioscience, 2021, 46: 101152.
doi: 10.1016/j.fbio.2021.101152
[39] BINATI R L, LEMOS JUNIOR W J F, LUZZINI G, SLAGHENAUFI D, UGLIANO M, TORRIANI S. Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: A study on Lachancea thermotolerans, Metschnikowia spp. and Starmerella bacillaris strains isolated in Italy. International Journal of Food Microbiology, 2020, 318: 108470.
doi: 10.1016/j.ijfoodmicro.2019.108470
[40] SCANSANI S, VAN W N, NADER K B, BEISERT B, BREZINA S, FRITSCH S, SEMMLER H, PASCH L, PRETORIUS I S, VON WALLBRUNN C, SCHNELL S, RAUHUT D. The film-forming Pichia spp. in a winemaker’s toolbox: A simple isolation procedure and their performance in a mixed-culture fermentation of Vitis vinifera L. cv. Gewürztraminer must. International Journal of Food Microbiology, 2022, 365: 109549.
doi: 10.1016/j.ijfoodmicro.2022.109549
[41] YAN G L, ZHANG B Q, JOSEPH L, WATERHOUSE A L. Effects of initial oxygenation on chemical and aromatic composition of wine in mixed starters of Hanseniaspora vineae and Saccharomyces cerevisiae. Food Microbiology, 2020, 90:103460.
doi: 10.1016/j.fm.2020.103460
[42] HONG M N, LI J, CHEN Y W, QI B Y, HUANG Y P, WU J, YUE H B, TONG Z Q, LIU Y N, WANG F. Impact of mixed non-Saccharomyces yeast during fermentation on volatile aroma compounds of Vidal blanc icewine. LWT, 2021, 145: 111342.
doi: 10.1016/j.lwt.2021.111342
[43] 孙玉霞, 赵新节. 美极梅奇酵母的代谢特性及其在葡萄酒生产中的应用前景. 食品与发酵工业, 2021, 47(4): 305-311. doi: 10.13995/j.cnki.11-1802/ts.025251.
doi: 10.13995/j.cnki.11-1802/ts.025251
SUN Y X, ZHAO X J. Metabolic characteristics of Metschnikowia pulcherrima and its application in wine production. Food and Fermentation Industries, 2021, 47(4): 305-311. doi: 10.13995/j.cnki.11-1802/ts.025251. (in Chinese)
doi: 10.13995/j.cnki.11-1802/ts.025251
[44] LAI Y T, HSIEH C W, LO Y C, LIOU B K, LIN H W, HOU C Y, CHENG K C. Isolation and identification of aroma-producing non-Saccharomyces yeast strains and the enological characteristic comparison in wine making. LWT, 2022, 154: 112653.
doi: 10.1016/j.lwt.2021.112653
[45] BELDA I, RUIZ J, BEISERT B, NAVASCUÉS E, MARQUINA D, CALDERÓN F, RAUHUT D, BENITO S, SANTOS A. Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release in wine sequential fermentations. International Journal of FoodMicrobiology, 2017, 257: 183-191.
[46] SEGUINOT P, BLOEM A, BRIAL P, MEUDEC E, ORTIZ-JULIEN A, CAMARASA C. Analysing the impact of the nature of the nitrogen source on the formation of volatile compounds to unravel the aroma metabolism of two non-Saccharomyces strains. International Journal of Food Microbiology, 2020, 316: 108441.
doi: 10.1016/j.ijfoodmicro.2019.108441
[47] SHI W K, WANG J, CHEN F S, ZHANG X Y. Effect of Issatchenkia terricola and Pichia kudriavzevii on wine flavor and quality through simultaneous and sequential co-fermentation with Saccharomyces cerevisiae. LWT, 2019, 116: 108477.
doi: 10.1016/j.lwt.2019.108477
[48] 李爱华, 王星晨, 彭文婷, 李朔, 陶永胜. 胶红酵母与酿酒酵母混合酒精发酵中酵母生长与糖苷酶活动力学. 西北农业学报, 2018, 27(6): 896-903. doi: 10.7606/j.issn.1004-1389.2018.06.018.
doi: 10.7606/j.issn.1004-1389.2018.06.018
LI A H, WANG X C, PENG W T, LI S, TAO Y S. Kinetics of biomass and glycosidase activities during mixed alcoholic fermentation of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(6): 896-903. doi: 10.7606/j.issn.1004-1389.2018.06.018. (in Chinese)
doi: 10.7606/j.issn.1004-1389.2018.06.018
[49] WANG X C, LI A H, DIZY M, ULLAH N, SUN W X, TAO Y S. Evaluation of aroma enhancement for ‘Ecolly’ dry white wines by mixed inoculation of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae. Food Chemistry, 2017, 228: 550-559.
doi: 10.1016/j.foodchem.2017.01.113
[50] 马娜, 王星晨, 孔彩琳, 陶永胜. 胶红酵母与酿酒酵母共发酵对干红葡萄酒香气与色泽的影响. 食品科学, 2021, 42(2): 97-104. doi: 10.7506/spkx1002-6630-20191112-158.
doi: 10.7506/spkx1002-6630-20191112-158
MA N, WANG X C, KONG C L, TAO Y S. Effect of mixed culture fermentation with Rhodotorula mucilaginosa and Saccharomyces cerevisiae on the aroma and color of red wine. Food Science, 2021, 42(2): 97-104. doi: 10.7506/spkx1002-6630-20191112-158. (in Chinese)
doi: 10.7506/spkx1002-6630-20191112-158
[51] NISIOTOU A, SGOUROS G, MALLOUCHOS A, NISIOTIS C-S, MICHAELIDIS C, TASSOU C, BANILAS G. The use of indigenous Saccharomyces cerevisiae and Starmerella bacillaris strains as a tool to create chemical complexity in local wines. Food Research International, 2018, 111: 498-508.
doi: 10.1016/j.foodres.2018.05.035
[52] ENGLEZOS V, RANTSIOU K, CRAVERO F, TORCHIO F, POLLON M, FRACASSETTI D, ORTIZ-JULIEN A, GERBI V, ROLLE L, COCOLIN L. Volatile profile of white wines fermented with sequential inoculation of Starmerella bacillaris and Saccharomyces cerevisiae. Food Chemistry, 2018, 257: 350-360.
doi: 10.1016/j.foodchem.2018.03.018
[53] LEE P R, SAPUTRA A, YU B, CURRAN P, LIU S Q. Effects of pure and mixed-cultures of Saccharomyces cerevisiae and Williopsis saturnus on the volatile profiles of grape wine. Food Biotechnology, 2012, 26(4): 307-325. doi: 10.1080/08905436.2012.723606.
doi: 10.1080/08905436.2012.723606
[54] GARAVAGLIA J, SCHNEIDER R DE C DE S, CAMARGO MENDES S D, WELKE J E, ZINI C A, CARAMÃO E B, VALENTE P. Evaluation of Zygosaccharomyces bailii BCV 08 as a co-starter in wine fermentation for the improvement of ethyl esters production. Microbiological Research, 2015, 173: 59-65.
doi: 10.1016/j.micres.2015.02.002
[55] MARTÍNEZ-AVILA O, SÁNCHEZ A, FONT X, BARRENA R. Bioprocesses for 2-phenylethanol and 2-phenylethyl acetate production: current state and perspectives. Applied Microbiology and Biotechnology, 2018, 102(23): 9991-10004.
doi: 10.1007/s00253-018-9384-8
[56] ZHANG B Q, TANG C, YANG D Q, LIU H, XUE J, DUAN C Q, YAN G L. Effects of three indigenous non-Saccharomyces yeasts and their pairwise combinations in co-fermentation with Saccharomyces cerevisiae on volatile compounds of Petit Manseng wines. Food Chemistry, 2022, 368: 130807.
doi: 10.1016/j.foodchem.2021.130807
[57] 张清安, 陈博宇. 葡萄酒中与风味相关4类含硫化合物的研究进展. 中国农业科学, 2020, 53(5): 1029-1045. doi: 10.3864/j.issn.0578-1752.2020.05.014.
doi: 10.3864/j.issn.0578-1752.2020.05.014
ZHANG Q A, CHEN B Y. Research progress of four sulfur compounds related to red wine flavor. Scientia Agricultura Sinica, 2020, 53(5): 1029-1045. doi: 10.3864/j.issn.0578-1752.2020.05.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.05.014
[58] ZHANG P Z, ZHANG R G, SIRISENA S, GAN R Y, FANG Z X. Beta-glucosidase activity of wine yeasts and its impacts on wine volatiles and phenolics: A mini-review. Food Microbiology, 2021, 100: 103859.
doi: 10.1016/j.fm.2021.103859
[59] 任学梅, 姚红红, 严幻汝, 祝霞, 杨学山. 高产糖苷酶非酿酒酵母菌株筛选、鉴定及其发酵过程中酶活性变化. 食品科学, 2022, 43(20): 198-206.
REN X M, YAO H H, YAN H R, ZHU X, YANG X S. Screening and identification of non-Saccharomyces yeast strains with high glycosidase production and changes in enzyme activities during their fermentation. Food Science, 2022, 43(20): 198-206. (in Chinese)
[60] 马延琴, 徐晓裕, 李甜, 李春燕, 蒋霞, 王斌, 史学伟. 酿酒葡萄表皮产酶非酿酒酵母的筛选及其产酶特性研究. 中国酿造, 2021, 40(12): 149-154. doi: 10.11882/j.issn.0254-5071.2021.12.027.
doi: 10.11882/j.issn.0254-5071.2021.12.027
MA Y Q, XU X Y, LI T, LI C Y, JIANG X, WANG B, SHI X W. Screening of non-Saccharomyces cerevisiae from wine grape epidermis and its enzyme-producing ability. China Brewing, 2021, 40(12): 149-154. doi: 10.11882/j.issn.0254-5071.2021.12.027. (in Chinese)
doi: 10.11882/j.issn.0254-5071.2021.12.027
[61] ROMANO P, SUZZI G. Higher alcohol and acetoin production by Zygosaccharomyces wine yeasts. Journal of Applied Bacteriology, 1993, 75(6): 541-545.
doi: 10.1111/j.1365-2672.1993.tb01592.x
[62] PUERTAS B, JIMENEZ-HIERRO M J, CANTOS-VILLAR E, MARRUFO-CURTIDO A, CARBÚ M, CUEVAS F J, MORENO- ROJAS J M, GONZÁLEZ-RODRÍGUEZ V E, CANTORAL J M, RUIZ-MORENO M J. The influence of yeast on chemical composition and sensory properties of dry white wines. Food Chemistry, 2018, 253: 227-235.
doi: S0308-8146(18)30048-7 pmid: 29502826
[63] ZHU L X, WANG G, AIHAITI A. Combined indigenous yeast strains produced local wine from over ripen Cabernet Sauvignon grape in Xinjiang. World Journal of Microbiology and Biotechnology, 2020, 36(8): 122.
doi: 10.1007/s11274-020-02831-4
[64] DOMIZIO P, LIU Y, BISSON L F, BARILE D. Use of non- Saccharomyces wine yeasts as novel sources of mannoproteins in wine. Food Microbiology, 2014, 43: 5-15.
doi: 10.1016/j.fm.2014.04.005
[65] DOMIZIO P, LENCIONI L, CALAMAI L, PORTARO L, BISSON L F. Evaluation of the yeast Schizosaccharomyces japonicus for use in wine production. American Journal of Enology and Viticulture, 2018, 69(3): 266-277.
doi: 10.5344/ajev.2018.18004
[66] KIM D H, HONG Y A, PARK H D. Co-fermentation of grape must by Issatchenkiaorientalis and Saccharomyces cerevisiae reduces the malic acid content in wine. Biotechnology Letters, 2008, 30(9): 1633-1638.
doi: 10.1007/s10529-008-9726-1
[67] HONG S K, LEE H J, PARK H J, HONG Y A, RHEE I K, LEE W H, CHOI S W, LEE O S, PARK H D. Degradation of malic acid in wine by immobilized Issatchenkia orientalis cells with oriental oak charcoal and alginate. Letters in Applied Microbiology, 2010, 50(5): 522-529. doi: 10.1111/j.1472-765X.2010.02833.x.
doi: 10.1111/j.1472-765X.2010.02833.x
[68] BELDA I, NAVASCUÉS E, MARQUINA D, SANTOS A, CALDERON F, BENITO S. Dynamic analysis of physiological properties of Torulaspora delbrueckii in wine fermentations and its incidence on wine quality. Applied Microbiology and Biotechnology, 2015, 99(4): 1911-1922.
doi: 10.1007/s00253-014-6197-2
[69] 白玉峰, 张文霞, 田亚楠, 张秀艳. 宁夏贺兰山东麓降L-苹果酸葡萄酒酵母的筛选. 中国酿造, 2021, 40(1): 49-54. doi: 10.11882/j.issn.0254-5071.2021.01.010.
doi: 10.11882/j.issn.0254-5071.2021.01.010
BAI Y F, ZHANG W X, TIAN Y N, ZHANG X Y. Screening of yeast strains with L-malic acid degradation ability from Eastern Foothills of Helan in Ningxia. China Brewing, 2021, 40(1): 49-54. doi: 10.11882/j.issn.0254-5071.2021.01.010. (in Chinese)
doi: 10.11882/j.issn.0254-5071.2021.01.010
[70] MILHEIRO J, FILIPE-RIBEIRO L, VILELA A, COSME F, NUNES F M. 4-Ethylphenol, 4-ethylguaiacol and 4-ethylcatechol in red wines: Microbial formation, prevention, remediation and overview of analytical approaches. Critical Reviews in Food Science and Nutrition, 2019, 59(9): 1367-1391. doi: 10.1080/10408398.2017.1408563.
doi: 10.1080/10408398.2017.1408563 pmid: 29257912
[71] FLEET G H. Wine yeasts for the future. FEMS Yeast Research, 2008, 8(7): 979-995. doi: 10.1111/j.1567-1364.2008.00427.x.
doi: 10.1111/j.1567-1364.2008.00427.x pmid: 18793201
[72] KUCHEN B, MATURANO Y P, MESTRE M V, COMBINA M, TORO M E, VAZQUEZ F. Selection of native non-Saccharomyces yeasts with biocontrol activity against spoilage yeasts in order to produce healthy regional wines. Fermentation, 2019, 5: 60.
doi: 10.3390/fermentation5030060
[73] COMITINI F, AGARBATI A, CANONICO L, GALLI E, CIANI M. Purification and characterization of WA18, a new mycocin produced by Wickerhamomyces anomalus active in wine against Brettanomyces bruxellensis spoilage yeasts. Microorganisms, 2020, 9: 56.
doi: 10.3390/microorganisms9010056
[74] YAN W, GAO H, QIAN X J, JIANG Y J, ZHOU J, DONG W L, XIN F X, ZHANG W M, JIANG M. Biotechnological applications of the non-conventional yeast Meyerozyma guilliermondii. Biotechnology Advances, 2021, 46: 107674.
doi: 10.1016/j.biotechadv.2020.107674
[75] BENITO S. The impacts of Lachancea thermotolerans yeast strains on winemaking. Applied Microbiology and Biotechnology, 2018, 102(16): 6775-6790.
doi: 10.1007/s00253-018-9117-z
[76] BENITO S. The impacts of Schizosaccharomyces on winemaking. Applied Microbiology and Biotechnology, 2019, 103(11): 4291-4312.
doi: 10.1007/s00253-019-09827-7
[77] WANG B S, TAN F L, CHU R C, LI G Y, LI L B, YANG T Y, ZHANG M X. The effect of non-Saccharomyces yeasts on biogenic amines in wine. Trends in Food Science & Technology, 2021, 116: 1029-1040.
[78] GALLARDO-FERNÁNDEZ M, VALLS-FONAYET J, VALERO E, HORNEDO-ORTEGA R, RICHARD T, TRONCOSO A M, GARCIA-PARRILLA M C. Isotopic labelling-based analysis elucidates biosynthesis pathways in Saccharomyces cerevisiae for melatonin, serotonin and hydroxytyrosol formation. Food Chemistry, 2022, 374: 131742.
doi: 10.1016/j.foodchem.2021.131742
[79] MORCILLO-PARRA M Á, GONZÁLEZ B, BELTRAN G, MAS A, TORIJA M J. Melatonin and glycolytic protein interactions are related to yeast fermentative capacity. Food Microbiology, 2020, 87: 103398.
doi: 10.1016/j.fm.2019.103398
[80] WANG C X, WU C, QIU S Y. Yeast diversity investigation of Vitis davidii Föex during spontaneous fermentations using culture- dependent and high-throughput sequencing approaches. Food Research International, 2019, 126: 108582.
doi: 10.1016/j.foodres.2019.108582
[81] MASNEUF-POMAREDE I, BELY M, MARULLO P, ALBERTIN W. The genetics of non-conventional wine yeasts: Current knowledge and future challenges. Frontiers in Microbiology, 2016, 6: 1563.
[82] 梁树英, 王春晓. 基于倍性的葡萄酒相关酵母酿造特性研究进展. 食品与发酵科技, 2022, 58(1): 121-130. doi: 10.3969/j.issn.1674-506X.2022.01-017.
doi: 10.3969/j.issn.1674-506X.2022.01-017
LIANG S Y, WANG C X. Research progress in wine-making characteristic of wine-related yeast based on ploidy. Sichuan Food and Fermentation, 2022, 58(1): 121-130. doi: 10.3969/j.issn.1674-506X.2022.01-017. (in Chinese)
doi: 10.3969/j.issn.1674-506X.2022.01-017
[83] ALBERTIN W, SETATI M E, MIOT-SERTIER C, MOSTERT T T, COLONNA-CECCALDI B, COULON J, GIRARD P, MOINE V, PILLET M, SALIN F, BELY M, DIVOL B, MASNEUF- POMAREDE I. Hanseniaspora uvarum from winemaking environments show spatial and temporal genetic clustering. Frontiers in Microbiology, 2016, 6: 1569.
[84] HRANILOVIC A, BELY M, MASNEUF-POMAREDE I, JIRANEK V, ALBERTIN W, FAIRHEAD C. The evolution of Lachancea thermotoleransis driven by geographical determination, anthropisation and flux between different ecosystems. PLoS ONE, 2017, 12(9): e0184652.
doi: 10.1371/journal.pone.0184652
[85] WRENT P, RIVAS E M, PEINADO J M, DE SILÓNIZ M I. Development of an affordable typing method for Meyerozyma guilliermondii using microsatellite markers. International Journal of Food Microbiology, 2016, 217: 1-6.
doi: 10.1016/j.ijfoodmicro.2015.10.008
[86] MASNEUF-POMAREDE I, JUQUIN E, MIOT-SERTIER C, RENAULT P, LAIZET Y, SALIN F, ALEXANDRE H, CAPOZZI V, COCOLIN L, COLONNA-CECCALDI B, ENGLEZOS V, GIRARD P, GONZALEZ B, LUCAS P, MAS A, NISIOTOU A, SIPICZKI M, SPANO G, TASSOU C, BELY M, ALBERTIN W. The yeast Starmerella bacillaris (synonym Candida zemplinina) shows high genetic diversity in winemaking environments. FEMS Yeast Research, 2015, 15(5): fov045. doi: 10.1093/femsyr/fov045.
doi: 10.1093/femsyr/fov045
[87] ALBERTIN W, CHASSERIAUD L, COMTE G, PANFILI A, DELCAMP A, SALIN F, MARULLO P, BELY M, SCHACHERER J. Winemaking and bioprocesses strongly shaped the genetic diversity of the ubiquitous yeast Torulaspora delbrueckii. PLoS ONE, 2014, 9(4): e94246.
doi: 10.1371/journal.pone.0094246
[88] 田进, 吴成, 杨金仙, 王春晓. 葡萄酒有孢汉逊酵母属分子指纹图谱分析. 菌物学报, 2020, 39(4): 755-765. doi: 10.13346/j.mycosystema.190404.
doi: 10.13346/j.mycosystema.190404
TIAN J, WU C, YANG J X, WANG C X. The molecular fingerprinting analysis of Hanseniaspora in wine. Mycosystema, 2020, 39(4): 755-765. doi: 10.13346/j.mycosystema.190404. (in Chinese)
doi: 10.13346/j.mycosystema.190404
[89] MENCHER A, MORALES P, CURIEL J A, GONZALEZ R, TRONCHONI J. Metschnikowia pulcherrima represses aerobic respiration in Saccharomyces cerevisiae suggesting a direct response to co-cultivation. Food Microbiology, 2021, 94: 103670.
doi: 10.1016/j.fm.2020.103670
[90] LI Y Q, HU K, XU Y H, MEI W C, TAO Y S. Biomass suppression of Hanseniaspora uvarum by killer Saccharomyces cerevisiae highly increased fruity esters in mixed culture fermentation. LWT, 2020, 132: 109839.
doi: 10.1016/j.lwt.2020.109839
[91] ROLLERO S, BLOEM A, BRAND J, ORTIZ-JULIEN A, CAMARASA C, DIVOL B. Nitrogen metabolism in three non-conventional wine yeast species: A tool to modulate wine aroma profiles. Food Microbiology, 2021, 94: 103650.
doi: 10.1016/j.fm.2020.103650
[92] TANGULER H. Evaluation of Williopsissaturnus inoculum level on fermentation and flavor compounds of white wines made from emir (Vitis vinifera L.) grown in anatolia. Food Biotechnology, 2012, 26(4): 351-368.
doi: 10.1080/08905436.2012.724038
[93] ROULLIER-GALL C, BORDET F, DAVID V, SCHMITT-KOPPLIN P, ALEXANDRE H. Yeast interaction on Chardonnay wine composition: Impact of strain and inoculation time. Food Chemistry, 2022, 374: 131732.
doi: 10.1016/j.foodchem.2021.131732
[94] 战吉宬, 曹梦竹, 游义琳, 黄卫东. 非酿酒酵母在葡萄酒酿造中的应用. 中国农业科学, 2020, 53(19): 4057-4069. doi: 10.3864/j.issn.0578-1752.2020.19.018.
doi: 10.3864/j.issn.0578-1752.2020.19.018
ZHAN J C, CAO M Z, YOU Y L, HUANG W D. Research advance on the application of non-Saccharomyces in winemaking. Scientia Agricultura Sinica, 2020, 53(19): 4057-4069. doi: 10.3864/j.issn.0578-1752.2020.19.018. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.19.018
[95] LIU H, LI X, DENG J Z, DAI L Y, LIU W, PAN B L, WANG C T, ZHANG D J, LI Z J. Molecular mechanism of the response of Zygosaccharomyces rouxii to D-fructose stress by the glutathione metabolism pathway. FEMS Yeast Research, 2020, 20(5): foaa034. doi: 10.1093/femsyr/foaa034.
doi: 10.1093/femsyr/foaa034
[96] MBUYANE L L, BAUER F F, DIVOL B. The metabolism of lipids in yeasts and applications in oenology. Food Research International, 2021, 141: 110142.
doi: 10.1016/j.foodres.2021.110142
[1] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[2] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[3] ZHOU Jun,LIN Qing,SHAO BaoQuan,REN DuanYang,LI JiaQi,ZHANG Zhe,ZHANG Hao. Evaluating the Application Effect of Single-Step Genomic Selection in Pig Populations [J]. Scientia Agricultura Sinica, 2022, 55(15): 3042-3049.
[4] XinYuan MU,Xia ZHAO,LiMin GU,BaoYi JI,Yong DING,FengQi ZHANG,Jun ZHANG,JianShuang QI,ZhiYan MA,LaiKun XIA,BaoJun TANG. Effects of Straw Returning Amount on Grain Yield, Dry Matter Accumulation and Transfer in Summer Maize with Different Genotypes [J]. Scientia Agricultura Sinica, 2020, 53(1): 29-41.
[5] WANG QianQian, QIN Jie, MA DeCao, TAO YongSheng. Aroma Enhancement of Ecolly Dry White Wine by Co-inoculation of Selected Pichia fermentans and Saccharomyces cerevisiae [J]. Scientia Agricultura Sinica, 2018, 51(11): 2178-2192.
[6] JiangPeng SHI, ChunFen ZHANG, Shu DENG, LiYuan HOU, Rong XIAO, FuRong LI, YanHui DONG, YuanJun NIE, YiXue WANG, QiuFen CAO. Morphological Identification and Cultivation of New Germplasm of Apple Homozygous Genotypes [J]. Scientia Agricultura Sinica, 2018, 51(10): 1960-1971.
[7] WEN Xin, DENG Shu, ZHANG ChunFen, HOU LiYuan, SHI JiangPeng, NIE YuanJun, XIAO Rong, QIN YongJun, CAO QiuFen. Regeneration of New Germplasms Using Anther Culture of Apple Cultivar ‘Gala’ [J]. Scientia Agricultura Sinica, 2017, 50(14): 2793-2806.
[8] ZHANG Xu-fei, HOU Li-juan, QIU Heng-qing, HUANG Lu-sheng, GUO Yuan-mei. An Association Study of Positional and Functional Candidate Genes HMGA1, C6orf106 and ENSSSCG00000023160 with Leg Soundness in Pigs [J]. Scientia Agricultura Sinica, 2016, 49(20): 4030-4039.
[9] YANG Jin-zhong, LIANG Shu-min, LI Na-na, LIU Yong-hua, HAO Jian-ping. Functional Traits of Maize Stems as Supporting Organs and Their Plasticity [J]. Scientia Agricultura Sinica, 2016, 49(1): 69-79.
[10] HUANG Yi, LI Ting-xuan, ZHANG Xi-zhou, JI Lin, WU Yi-po. Characteristics of Nitrogen Transportation and Fractions in Different Organs of Barley Genotype with High Nitrogen Utilization Efficiency [J]. Scientia Agricultura Sinica, 2015, 48(6): 1151-1161.
[11] XU Yunbi. Envirotyping and Its Applications in Crop Science [J]. Scientia Agricultura Sinica, 2015, 48(17): 3354-3371.
[12] QU Zhi-na, LIU Hong-yu, WANG Juan, ZHAO Si-jun, LI Yu-qing, HUANG Xiu-mei, GAI Wen-yan, WANG Jun-wei. Antimicrobial Resistance Investigation and Dominant Genotype Analysis of ESBLs- Producing Escherichia coli Strains from Chicken in Qingdao [J]. Scientia Agricultura Sinica, 2015, 48(10): 2058-2066.
[13] DAI Hai-Fang, WU Hui, A Man-Gu-Li-?Mai-Mai-Ti-A-Li, WANG Li-Hong, MAI Mai-Ti-?A-Pi-Zi, ZHANG Ju-Song. Analysis of Salt-Tolerance and Determination of Salt-Tolerant Evaluation Indicators in Cotton Seedlings of Different Genotypes [J]. Scientia Agricultura Sinica, 2014, 47(7): 1290-1300.
[14] LIU Chuan-liang, TIAN Rui-ping, KONG De-pei, LI Feng-lian, SHANG Hai-hong, CHEN Xiu-jun. Establishment and Application of Efficient Transformation System for Cotton [J]. Scientia Agricultura Sinica, 2014, 47(21): 4183-4197.
[15] LIU Chun-Xiao-1, ZHAO Hai-Jun-1, DONG Shu-Ting-2, WANG Qing-Cheng-1, LI Zong-Xin-1, LIU Kai-Chang-1. Study on Characteristics of Nitrogen Metabolism in Diallel Cross Generation of Different Maize Genotypes After Silking [J]. Scientia Agricultura Sinica, 2014, 47(1): 33-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!