Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (8): 1594-1605.doi: 10.3864/j.issn.0578-1752.2023.08.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing

XIAO Tao1,3(), LI Hui1(), LUO Wei1, YE Tao1, YU Huan1, CHEN YouBo1, SHI YuShi1, ZHAO DePeng1, WU Yun2   

  1. 1 Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education/ Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction/College of Animal Science, Guizhou University, Guiyang 550025
    2 College of Biology and Agriculture Technology, Zunyi Normal University, Zunyi 563006, Guizhou
    3 Anshun City Animal Husbandary Technology Extension Station, Anshun 561000, Guizhou
  • Received:2021-12-13 Accepted:2022-11-16 Online:2023-04-16 Published:2023-04-23

Abstract:

【Background】Green shell eggs are loved by consumers, and the green color of eggshell is an important reference index affecting the pricing and sales of green shell eggs in the market. The formation of green shell eggs is regulated by multiple genes, and the color of green shell varies. However, the molecular mechanism of green shell eggs is still unclear. In this study, transcriptomic sequencing was conducted on the eggshell gland tissue of Chishui black bone chicken, and the candidate genes and key signal pathways that regulated the depth and depth of eggshell color of green shell eggs were excavated, so as to explore the heritability of eggshell color, and to develop the seed selection and breeding of green shell eggs and improve economic benefits. 【Objective】The aim of this study was to investigate the genetic basis of Chishui black bone chicken and to identify and then screen them by SLCO1B3 genotyping, in order to provide new insights through molecular markers in the breeding planning of green-shelled hens, and to help control and improve the homogeneity of eggshell quality of Chishui black bone chicken in the later selection strategy. 【Method】A pure 280-day-old Chishui black bone chicken was used as the research object. Three hens were slaughtered to produce light green eggs (QL) and dark green eggs (SL), and the eggshell glands were collected and analyzed by RNA-SEQ technology. Selected differentially expressed genes (DEGs) closely related to eggshell color, and analyzed for GO and KEGG enrichment. Qrt-pcr was used to detect the transcriptional level changes of six candidate genes related to eggshell color to verify the reliability of transcriptomic data. 【Result】A total of 93 DEGs were screened in SL group and QL group, among which 59 genes were up-regulated and 34 genes were down-regulated in SL group. DEGs was annotated to GO database for comparison, and sodium ion transport, negative ion binding, and sarcoplasmic reticulum were mainly enriched significantly. KEGG analysis showed that aldosterone regulated sodium reabsorption, enriched mineral absorption, linoleic acid metabolism and other signal pathways. The results of QRT-PCR showed that the expression trend of these genes was consistent with the transcriptome sequencing results. 【Conclusion】By functional analysis, TF gene, SCNN1 gene, CYP450 gene, SLC gene and FAM gene, as well as the sodium reabsorption signaling pathway regulated by aldosterone, might be involved in eggshell pigment synthesis, transport and deposition. These genes and signal pathways might be candidate genes and key signal pathways affecting the different shades of green in eggshell of Chishui black bone chicken.

Key words: transcriptome sequencing, Chishui black bone chicken, green egg, eggshell color, qRT-PCR

Fig. 1

SLCO1B3 parting figure"

Table 1

Specific primers of differentially expressed genes for qRT-PCR"

基因
Gene
引物序列
Primer sequence (5'-3')
产物大小
Amplicon length (bp)
退火温度
The annealing temperature (℃)
SLC34A2 F: TCGGTCCGTTCACTCTGTTG
R: GCCACGTTGCCTTTGTGATT
164 60.0
SLC20A1 F: CAGAAAGGCGTCAAATGGTC
R: CACGGTGCAGGCGTAGAA
180 54.0
CYP27A1 F: AGGACTTTCGTCTGGCTCT
R: CTCCGCATCGGGTATTT
185 58.6
TF F: AGATGCCATTAGCTTGGAC
R: GGTTGTGGAGCCTTCAGTA
109 60.0
FAM136A F: GCACGCTTCACTGCTCTGACA
R: ACCCGTCCCGCATCCTCTT
153 57.0
SLC6A9 F: CGTACCTCTGCTACCGCAAT
R: CACGCGTCATGGACACAAAG
261 60.0
β-actin F: CAGCAAGCAGGAGTACGATG
R: ATAAAGCCATGCCAATCTCG
145 60.0

Table 2

Statistical analysis table of eggshell color"

样本 Sample △L* △a*
SL-1 56.48±0.52 -6.01±0.36B
SL-2 57.28±1.71 -6.40±0.88B
SL-3 55.45±2.32 -7.01±0.84B
QL-1 59.85±1.19 -3.93±0.29A
QL-2 59.18±2.85 -4.27±0.17A
QL-3 60.61±0.61 -4.16±0.07A

Table 3

Quality test information of eggshell gland RNA samples"

样本
Sample
浓度
Concentration(ng·μL-1)
体积
Volume(μL)
总量
Total amount(μg)
RIN
RIN
OD260/280
OD260/280
OD260/230
OD260/230
等级
Level
SL-1 651.5 20 13.0 9.5 1.99 1.93 A
SL-2 1729.2 20 34.6 9.5 2.02 1.63 A
SL-3 487.0 20 9.70 9.4 2.00 1.83 A
QL-1 993.2 20 19.9 8.9 2.01 1.87 A
QL-2 850.8 20 17.0 8.5 2.02 1.67 A
QL-3 1002.0 20 20.0 9.0 1.98 1.72 A

Table 4

Statistical analysis for sequence quality of RNA-seq libraries"

样品
Sample
原始读数
Raw reads
质控后序列
Clean reads
质控后序列量
Clean bases (G)
Q20
(%)
Q30
(%)
GC
(%)
QL-1 57502212 56416296 7.75 97.26 92.45 47.99
QL-2 48412576 47722420 6.58 97.21 92.39 47.50
QL-3 42574086 42043646 5.79 97.41 92.83 47.56
SL-1 52836592 51864304 7.14 97.26 92.52 47.83
SL-2 57938312 57099094 7.87 97.23 92.39 47.07
SL-3 58071340 56266562 7.75 97.20 92.37 47.45

Table 5

Alignment information of RNA-seq libraries"

样品
Sample
质控序列条数
Total reads
比对率
Total mapped
(%)
多比对率
Multiple mapped (%)
单一比对率
Unique mapped (%)
正链比对率
Reads map
to '+' (%)
负链比对率
Reads map
to '-' (%)
基因组全比对率
Non-splice
reads (%)
外显子单比对率
Splice reads
(%)
QL-1 56416296 91.54 2.29 89.25 44.59 44.66 60.74 28.51
QL-2 47722420 92.65 1.84 90.81 45.37 45.44 60.99 29.82
QL-3 42043646 92.13 2.91 89.22 44.57 44.64 60.29 28.93
SL-1 51864304 91.82 2.35 89.47 44.68 44.79 61.17 28.30
SL-2 57099094 92.45 2.39 90.06 44.99 45.07 61.28 28.78
SL-3 56266562 91.72 2.05 89.68 44.81 44.87 61.88 27.80

Fig. 2

Volcanic map of SL VS QL expressed genes The abscissa represents the change of gene expression multiple in different experimental groups, and the ordinate represents the statistical significance of the change of gene expression level. The blue on the left represents significantly down-regulated genes, the red on the right represents significantly up-regulated genes, and the gray represents genes with no significant difference"

Fig. 3

Comparison of candidate differentially expressed genes The abscissa represents the gene name, and the ordinate represents the gene expression multiple"

Fig. 4

Histogram of the top 30 GO enrichment of SL vs. QL differentially expressed genes The abscissa is the Pvalue after processing -log10, and the items are arranged in ascending order according to the P value. BP represents biological process, MF represents molecular function, CC represents cell component, and ordinate represents enrichment function description"

Fig. 5

Bubble map of KEGG enrichment pathway of Slvs. QL differentially expressed gene The abscissa represents the enrichment factor corresponding to the pathway. The ordinate represents the pathway name, the P value calculated by the logarithmic function is represented by the color of the point, the smaller the point, the closer to red, and the number of differential genes contained in the pathway is represented by the scatter size"

Table 6

Correlation analysis table between candidate DEGs and eggshell color"

TF CYP27A1 CYP3A5 SLC6A9 SLC34A2 SLC20A1 FAM136A SCNN1A SCNN1G ESC(△a*)
TF 1
CYP27A1 0.599 1
CYP3A5 -0.219 -0.577 1
CLC6A9 0.099 0.738 0.557 1
SLC34A22 -0.511 -0.883* -0.44 -0.767 1
SLC20A1 -0.489 -0.904* -0.527 -0.776 0.665 1
FAM136A 0.277 0.899* 0.692 0.926** -0.907* -0.813* 1
SCNN1A -0.618 -0.921** -0.550 -0.609 0.655 0.943** -0.756 1
SCNN1G -0.370 -0.937** -0.610 -0.893* 0.913* 0.857* -0.964** 0.773 1
ESC (△a*) 0.561 0.953** 0.465 0.830* -0.820* -0.965** 0.882* -0.898* -0.938** 1

Table 7

SLCO1B3 expression"

基因名称Gene_id SL_readcount QL_readcount
SLCO1B3 6061.83 4436.93
[1]
蒙国华. 鸭绿壳蛋表型与候选基因族及主选SLCO2B1基因关联功效研究[D]. 杨凌: 西北农林科技大学, 2017.
MENG G H. Exploring potential relationship underlying blue-green eggshell color of duck eggs associated with candidate genes and major SLCO2B1 gene[D]. Yangling: Northwest A & F University, 2017. (in Chinese)
[2]
周玉. 卢氏绿壳蛋鸡蛋壳颜色变浅机制及调控技术研究[D]. 郑州: 河南农业大学, 2017.
ZHOU Y. Mechanism and regulation technology for the color change of Lushi chicken green shell eggs[D]. Zhengzhou: Henan Agricultural University, 2017. (in Chinese)
[3]
GOGER H, DEMIRTAS S E, YURTOGULLARI S. A selection study for improving eggshell colour in two parent lines of laying hens and their hybrids. Italian Journal of Animal Science, 2016, 15(3): 390-395.

doi: 10.1080/1828051X.2016.1215232
[4]
ZHAO R, XU G Y, LIU Z Z, LI J Y, YANG N. A study on eggshell pigmentation: biliverdin in blue-shelled chickens. Poultry Science, 2006, 85(3): 546-549.

pmid: 16553287
[5]
王哲鹏, 王晓通, 白激荣, 李俊英, 邓雪梅, 吴常信. 血红素加氧酶-1在绿壳蛋蛋壳色素形成中的作用[C]// 全国动物遗传育种学术讨论会, 2009: 476.
WANG Z P, WANG X T, BAI J R, LI J Y, DENG X M, WU C X. Effect of heme oxygenase-1 on eggshell pigment formation in green egg[C]// National Animal Genetics and Breeding Symposium. Shanxi, 2009: 476. (in Chinese)
[6]
王晓庆, 徐廷生, 雷雪芹, 高灵照, 肖赞奇. 鸡血红素加氧酶-1(HO-1)和胆绿素还原酶A(BLVRA)基因表达量对蛋壳颜色的影响. 中国农学通报, 2014, 30(35): 64-68.

doi: 10.11924/j.issn.1000-6850.2014-1309
WANG X Q, XU T S, LEI X Q, GAO L Z, XIAO Z Q. The effects of the expression levels of H0-1 and BLVRA on the color of egg shells. Chinese Agricultural Science Bulletin, 2014, 30(35): 64-68. (in Chinese)
[7]
WRAGG D, MWACHARO J M, ALCALDE J A, WANG C, HAN J L, GONGORA J, GOURICHON D, TIXIER-BOICHARD M, HANOTTE O. Endogenous retrovirus EAV-HP linked to blue egg phenotype in Mapuche fowl. PLoS ONE, 2013, 8(8): e71393.

doi: 10.1371/journal.pone.0071393
[8]
CHEN J F, DALIRSEFAT S B, HAN D P, DONG X G, HUA G Y, ZHENG X T, XIA T L, SHAO T Q, DENG X M, WU C X. An EAV-HP insertion in the 5ʹ flanking region of SLCO1B3 is associated with its tissue-expression profile in blue-eggshell Yimeng chickens (Gallus gallus). Poultry Science, 2020, 99(12): 6371-6377.

doi: 10.1016/j.psj.2020.09.002
[9]
祖盘玉. 赤水乌骨鸡MC1R、TYR、MITF基因多态性分析及其组织表达效应研究[D]. 贵阳: 贵州大学, 2019.
ZU P Y. Polymorphism analysis of MC1R, TYR and MITF genes and their tissue expression in Chishui black-bone chickens[D]. Guiyang: Guizhou University, 2019. (in Chinese)
[10]
LI G, SUN C, WU G, SHI F, LIU A, YANG N. iTRAQ-based quantitative proteomics identifies potential regulatory proteins involved in chicken eggshell brownness. PLoS One, 2016, 11(12): e0168750.

doi: 10.1371/journal.pone.0168750
[11]
陈林. 赤水乌骨鸡绿壳蛋性状相关基因的差异表达研究[D]. 贵阳: 贵州大学, 2019.
CHEN L. Differential expression of genes related to green-shell egg traits in Chishui silky fowl[D]. Guiyang: Guizhou University, 2019. (in Chinese)
[12]
吴艳, 张昊, 梁振华, 潘爱銮, 申杰, 蒲跃进, 黄涛, 皮劲松, 杜金平. circ-13267通过let-7-19/ERBB4通路调控蛋鸭卵泡颗粒细胞凋亡. 中国农业科学, 2022, 55(8): 1657-1666.

doi: 10.3864/j.issn.0578-1752.2022.08.015
WU Y, ZHANG H, LIANG Z H, PAN A L, SHEN J, PU Y J, HUANG T, PI J S, DU J P. Circ-13267 regulates egg duck granulosa cells apoptosis through let-7-19/ERBB4 pathway. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666. (in Chinese)
[13]
FU Y Q. Application of Rna-Seq technology in gene expression measurement. MEDS Clinical Medicine, 2021, 2(1): 33-36.
[14]
BAINES D. Kinases as targets for ENaC regulation. Current Molecular Pharmacology, 2013, 6(1): 50-64.

doi: 10.2174/18744672112059990028 pmid: 23547935
[15]
JACQUILLET G, CHICHGER H, UNWIN R J, SHIRLEY D G. Protease stimulation of renal sodium reabsorption in vivo by activation of the collecting duct epithelial sodium channel (ENaC). Nephrology Dialysis Transplantation, 2012, 28(4): 839-845.

doi: 10.1093/ndt/gfs486
[16]
李光奇. 转录组与蛋白质组联合分析影响鸡蛋蛋壳褐色的遗传因素[D]. 北京: 中国农业大学, 2015.
LI G Q. Integrated analysis of transcriptome and proteome to explore the genetic factors influencing chicken eggshell brownness[D]. Beijing: China Agricultural University, 2015. (in Chinese)
[17]
JONCHÈRE V, RÉHAULT-GODBERT S, HENNEQUET-ANTIER C, CABAU C, SIBUT V, COGBURN L A, NYS Y, GAUTRON J. Gene expression profiling to identify eggshell proteins involved in physical defense of the chicken egg. BMC Genomics, 2010, 11: 57.
[18]
FAN Y F, HOU Z C, YI G Q, XU G Y, YANG N. The sodium channel gene family is specifically expressed in hen uterus and associated with eggshell quality traits. BMC Genetics, 2013, 14: 90.

doi: 10.1186/1471-2156-14-90
[19]
AISEN P, LISTOWSKY I. Iron transport and storage proteins. The EMBO Journal, 1980, 49: 357-393.
[20]
WILLIAMS J. A comparison of glycopeptides from the ovotransferrin and serum transferrin of the hen. Biochem J, 1968, 108(1): 57-67.
[21]
SCHAEFFER E, LUCERO M A, JELTSCH J M, PY M C, LEVIN M J, CHAMBON P, COHEN G N, ZAKIN M M. Complete structure of the human transferrin gene. Comparison with analogous chicken gene and human pseudogene. Gene, 1987, 56(1): 109-116.

pmid: 3678832
[22]
COLL J, INGRAM V M. Identification of ovotransferrin as a heme-, colony- and burst-stimulating factor in chick erythroid cell cultures. Circulation Research, 1981, 131(1): 173-184.
[23]
RYTER S W, ALAM J, CHOI A M. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiological Reviews, 2006, 86(2): 583-650.

doi: 10.1152/physrev.00011.2005 pmid: 16601269
[24]
FORSTER I C, HERNANDO N, BIBER J, MURER H. Phosphate transporters of the SLC20 and SLC34 families. Molecular Aspects of Medicine, 2013, 34(2/3): 386-395.
[25]
FREDRIKSSON R, NORDSTRÖM K J V, STEPHANSSON O, HÄGGLUND M G A, SCHIÖTH H B. The solute carrier (SLC) complement of the human genome: Phylogenetic classification reveals four major families. FEBS Letters, 2008, 582(27): 3811-3816.

doi: 10.1016/j.febslet.2008.10.016 pmid: 18948099
[26]
KONNO Y, MOORE R, KAMIYA N, NEGISHI M. Nuclear xenobiotic receptor PXR-null mouse exhibits hypophosphatemia and represses the Na/Pi-cotransporter SLC34A2. Pharmacogenetics and Genomics, 2010, 20(1): 9-17.

doi: 10.1097/FPC.0b013e328333bb28 pmid: 19898264
[27]
陈家奎. slc20a1b调控斑马鱼造血干祖细胞的功能研究及机制初探[D]. 广州: 南方医科大学, 2021.
CHEN J K. The function and preliminary mechanism of slc20a1b in regulating the hematopoietic stem/progenitor cells of zebrafish[D]. Guangzhou: Southern Medical University, 2021. (in Chinese)
[28]
XU F Q, LI A, LAN J J, WANG Y M, YAN M J, LIAN S Y, WU X. Study of formation of green eggshell color in ducks through global gene expression. PLoS ONE, 2018, 13(1): e0191564.

doi: 10.1371/journal.pone.0191564
[29]
KUBOTA A, KIM E Y, IWATA H. Alkoxyresorufin (methoxy-, ethoxy-, pentoxy- and benzyloxyresorufin) O-dealkylase activities by in vitro-expressed cytochrome P450 1A4 and 1A5 from common cormorant (Phalacrocorax carbo). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2009, 149(4): 544-551.

doi: 10.1016/j.cbpc.2008.12.004
[30]
EDWARDS M J, RICHARDSON D J, PAQUETE C M, CLARKE T A. Role of multiheme cytochromes involved in extracellular anaerobic respiration in bacteria. Protein Science, 2020, 29(4): 830-842.

doi: 10.1002/pro.3787 pmid: 31721352
[31]
BRIGNAC-HUBER L M, PARK J W, REED J R, BACKES W L. Cytochrome P 450 organization and function are modulated by endoplasmic Reticulum phospholipid heterogeneity. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 2016, 44(12): 1859-1866.

doi: 10.1124/dmd.115.068981
[32]
MIHALJEVIĆ Z, MATIĆ A, STUPIN A, FRKANEC R, TAVČAR B, KELAVA V, TARTARO BUJAK I, KOLOBARIĆ N, KIBEL A, DRENJANČEVIĆ I. Arachidonic acid metabolites of CYP450 enzymes and HIF-1α modulate endothelium-dependent vasorelaxation in sprague-dawley rats under acute and intermittent hyperbaric oxygenation. International Journal of Molecular Sciences, 2020, 21(17): E6353.
[33]
张金铭. α-亚麻酸和花生四烯酸对HepG2细胞CYP7A1表达的影响及Nrf2的调控[D]. 哈尔滨: 东北农业大学, 2016.
ZHANG J M. Effects of α-linolenic acid and arachidonic acid on CYP7A1 expression through Nrf2 in HepG2[D]. Harbin:Northeast Agricultural University, 2016. (in Chinese)
[34]
HESHAM YOUSSEF AWAD DARWISH. 东乡绿壳蛋鸡蛋壳绿色程度相关基因的鉴定[D]. 北京: 中国农业大学, 2019.
HESHAM YOUSSEF AWAD DARWISH. Identification of genes related to eggshell green degree in Dongxiang Green shell laying hens[D]. Beijing: China Agricultural University, 2019. (in Chinese)
[35]
FURUYAMA K, KANEKO K, VARGAS P D. Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. The Tohoku Journal of Experimental Medicine, 2007, 213(1): 1-16.

doi: 10.1620/tjem.213.1
[36]
MUHSAIN S N F, LANG M A, ABU-BAKAR A. Mitochondrial targeting of bilirubin regulatory enzymes: an adaptive response to oxidative stress. Toxicology and Applied Pharmacology, 2015, 282(1): 77-89.

doi: 10.1016/j.taap.2014.11.010 pmid: 25478736
[1] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[2] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[3] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[4] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
[5] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[6] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[7] LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019.
[8] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[9] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[10] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
[11] WAN DongLi,HOU XiangYang,DING Yong,REN WeiBo,WANG Kai,LI XiLiang,WAN YongQing. Response and the Expression of Pi-Responsive Genes in Leymus chinensis Under Inorganic Phosphate Treatment [J]. Scientia Agricultura Sinica, 2019, 52(23): 4215-4227.
[12] YUAN JunHu,DING YiJuan,YANG WenJing,YAN BaoQin,CHAI YaRu,MEI JiaQin,QIAN Wei. Identification of Genes Encoding Secretory Proteins Related to the Pathogenicity of Sclerotinia sclerotiorum Using TRV-HIGS [J]. Scientia Agricultura Sinica, 2019, 52(23): 4274-4284.
[13] LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356.
[14] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
[15] LIU XiaoChen, WU ShengYong, LEI ZhongRen, WANG HaiHong. Growth Kinetics and Virulence of Two Beauveria bassiana Strains in Frankliniella occidentalis Under Different Temperatures [J]. Scientia Agricultura Sinica, 2018, 51(8): 1484-1492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!