Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (19): 3848-3869.doi: 10.3864/j.issn.0578-1752.2024.19.011

• HORTICULTURE • Previous Articles     Next Articles

Identification of Ginger (Zingiber officinale Roscoe) NHX Gene Family Members and Characterization of Their Expression Patterns in Silicon Alleviating Salt Stress

YIN JunLiang1,2(), LI JingYi1, HAN Shuo1, YANG PeiHua2, MA JiaWei2, LIU YiQing2, HU HaiJun2, ZHU YongXing1,2()   

  1. 1 College of Agriculture, Yangtze University, Jingzhou 434025, Hubei
    2 College of Horticulture and Gardening, Yangtze University/ Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization/Engineering Research Center of Wetland Ecology and Agricultural Use, Ministry of Education, Jingzhou 434025, Hubei
  • Received:2024-06-09 Accepted:2024-07-22 Online:2024-10-01 Published:2024-10-09
  • Contact: ZHU YongXing

Abstract:

【Objective】 Systematic analysis of the basic features of the ZoNHX family members in ginger and exploration of their expression patterns in different tissues and treatments of ginger can provide a theoretical foundation for further research on the function of ZoNHXs. 【Method】The Arabidopsis thaliana NHX protein sequences were used as reference sequences to compare with the ginger genome to obtain the ginger ZoNHXs. The phylogenetic tree containing Arabidopsis and ginger NHX family members were constructed based on the neighbor-joining method by MEGA 7.0. Physicochemical properties, gene structure, conserved motifs, secondary structure and tertiary structure of ZoNHXs were analyzed by using ExPASy ProtParam software, GSDS, MEME online website, PHYRE 2 and SOPMA, while chromosomal localization, intragenomic covariance and expression patterns of ZoNHXs were analyzed by using TBtools software. The gene expression levels of ZoNHXs in different treatments including CK, NaCl, and NaCl+SiNP100, and different ginger tissues were analyzed using RT-qPCR. The Na+ and K+ contents of ginger tissues was determined. 【Result】A total of 15 NHX gene family members were identified from the ginger genome, and were named as ZoNHX1-ZoNHX15 based on their chromosomal locations. The ZoNHXs were classified into three subgroups according to phylogenetic relationship and subcellular localization, including vesicular membranes (Vac, vacuole), endosomal membranes in the nucleus (Endo, endosome) and plasma membranes (PM, plasma). Protein characterization analysis showed that the relative molecular weights of ZoNHXs ranged from 26.01 kDa to 163.59 kDa, and the protein lengths ranged from 231 to 1 459 aa. The results of subcellular localization prediction showed that 11 ZoNHXs were distributed on the vacuole, ZoNHX14 were distributed both on the cell membrane and nucleus, ZoNHX1, ZoNHX7 and ZoNHX9 were respectively distributed on cytoplasm, cell membrane, and chloroplast. Signal peptide prediction showed that only ZoNHX1 contained a signal peptide and was a secreted protein, while other ZoNHX family members were non-secretory proteins. Cis-acting element analysis showed that the promoter regions of the ZoNHXs contain growth and development response elements, hormone response elements, and stress response elements. Transcriptome analysis showed that all ZoNHXs were detected to be expressed in ginger leaf and root, among which, ZoNHX12 was highly expressed in all tissues of ginger and under different abiotic stresses, and ZoNHX14 was significantly up-regulated in all growth periods of ginger and at low temperatures. RT-qPCR results showed that, compared with the CK, all genes were significantly up-regulated in roots and leaves after salt stress except for ZoNHX8 and ZoNHX11. Compared with the NaCl treatment alone, NaCl+SiNP100 decreased the expression levels of all genes except for ZoNHX8 and ZoNHX11, the expression levels of which were significantly up-regulated. These indicated that ZoNHXs were involved in the response process of ginger to salt stress and the expression of ZoNHXs were also regulated by exogenous SiNP100. The results of Na+, K+ ion content, K+/Na+ ratio and transport selection coefficient SK+/Na+ showed that the Na+ content in ginger rhizomes, stems, and leaves under salt treatment was increased compared with CK, and the K+/Na+ ratio and transport selection coefficient were decreased. NaCl+SiNP100 treatment significantly decreased Na+ content in roots, rhizomes, stems and leaves, whereases increased K+/Na+ ratio and transport selection coefficient. 【Conclusion】 The ginger genome contains 15 ZoNHXs and divides into three subgroups. RT-qPCR results showed that the expression of ZoNHX1-ZoNHX15 were all induced by salt stress. SiNP100 pretreatment could alleviate plant salt stress through reducing the Na+ content and increase the K+/Na+ ratio and K+ and Na+ content of the ginger roots, rhizomes, stems, and leaves by regulating the expression of ZoNHXs.

Key words: ginger, NHX gene family, salt stress, expression analysis, transcriptome

Table 1

RT-qPCR primers for expression analysis of ginger ZoNHXs"

基因ID
Gene ID
名称
Name
引物序列Primer sequence (5′-3′) 长度
Length (bp)
正向Forword 反向Reverse
Maker00056825 ZoNHX1 AATGCCTGGTTTGCTTCCTC GCTTGTTGGGCTTGCTGTG 99
Maker00009627 ZoNHX2 AGATGGGAGGGTTCACGAG GACAATGTACCCCCGATCC 116
Maker00078687 ZoNHX3 CAAACCCTTCCGCTTCTCC GACGACGAGGCTCCGACTA 133
Maker00077763 ZoNHX4 TGCCCTGGCATTTAGTCAG AGGTCGTCCGACTTCCATC 166
Maker00035912 ZoNHX5 GACAAGAGGTTACAGAGGGATATG CACCGAAAGTGTAGAAGGAAAG 151
Maker00016804 ZoNHX6 TTGACTCGTCGGCTTTGATC CTGACCCATGACTATTTGGTAGAA 131
Maker00016508 ZoNHX7 CGATGGTGGTTCACAGAGG ACCGACGCTGAGCTACCTT 155
Maker00016634 ZoNHX8 ATCCTGTTGCTGTCGTTGC ATTGCAGTCCCATCGTTCA 143
Maker00016696 ZoNHX9 AGCATGTCGGTTTGCTCAG TTCTGCAATGGCTTCTTGG 162
Maker00029358 ZoNHX10 TTGTGCATCCCCACTGTTT AATAGGGGGCAGCAAGAAC 177
Maker00028403 ZoNHX11 CTGGTCGCATGTTGGATTC TGAAGGGCAAGTGCAAAAG 134
Maker00058140 ZoNHX12 GCTGGGGATCTCTCAGCTC CAGGTGGCCAATAACGATG 154
Maker00022420 ZoNHX13 TGGAATGGATGCATTGGAC CAAGCCATGTCCATTTTCG 119
Maker00061543 ZoNHX14 TTTCTCCCGACCATTCTCC GACGTCGTCAACACCAACC 170
Maker00007292 ZoNHX15 GCTGCGTCTTCCACTCAAC CCCTCCCCGAAGACAATAC 149
MTCONS_00009943 RBP CCTATGAAGCGTAGAAACACAAG GGAAGGACAACATCCCAAATC 123

Fig. 1

Phylogenic analysis of NHX family members from ginger and Arabidopsis"

Table 2

Information and physicochemical properties of ginger ZoNHX family members"

基因名称
Gene name
基因ID
Gene ID
蛋白长度
Protein length (aa)
分子量
Molecular weight (kDa)
等电点
pI
亲水指数
Gravy
不稳定系数
Instability index
亚细胞预测
Predicted location
信号肽
Signal
ZoNHX1 Maker00056825 231 26.01 5.96 0.238 39.92 细胞质 Cytoplasm 有 Yes
ZoNHX2 Maker00009627 1459 163.59 8.88 -0.036 42.16 液泡 Vacuole 无 No
ZoNHX3 Maker00078687 315 34.76 7.08 0.388 46.86 液泡 Vacuole 无 No
ZoNHX4 Maker00077763 425 47.62 8.96 0.394 44.93 液泡 Vacuole 无 No
ZoNHX5 Maker00035912 539 58.62 5.43 0.306 44.86 液泡 Vacuole 无 No
ZoNHX6 Maker00016804 543 60.23 8.99 -0.049 43.39 液泡 Vacuole 无 No
ZoNHX7 Maker00016508 990 111.68 9.08 -0.055 47.28 细胞膜 Cell membrane 无 No
ZoNHX8 Maker00016634 318 34.14 5.42 0.745 33.06 液泡 Vacuole 无 No
ZoNHX9 Maker00016696 833 93.58 6.13 -0.137 41.12 叶绿体 Chloroplast 无 无
No
ZoNHX10 Maker00029358 257 28.72 5.27 0.854 46.73 液泡 Vacuole 无 No
ZoNHX11 Maker00028403 292 32.51 6.66 0.273 42.53 液泡 Vacuole 无 No
ZoNHX12 Maker00058140 617 68.4 6.64 0.521 36.21 液泡 Vacuole 无 No
ZoNHX13 Maker00022420 324 36.19 9.24 -0.008 53.85 细胞膜、细胞核
Cell membrane, Nucleus
无 No
ZoNHX14 Maker00061543 683 75.61 9.47 0.443 44.91 液泡 Vacuole 无 No
ZoNHX15 Maker00007292 450 49.88 8.48 0.420 34.1 液泡 Vacuole 无 No

Fig. 2

Chromosome locations of ZoNHXs"

Fig. 3

Gene structures of ZoNHXs"

Fig. 4

Conserved motifs of ZoNHXs"

Fig. 5

Motif sequences of ZoNHX family members"

Fig. 6

Structure domains of ginger ZoNHX family members across the membrane"

Fig. 7

Tertiary structure of ginger ZoNHX proteins"

Table 3

Comparative analysis of secondary structure of ZoNHXs"

蛋白Protein α-螺旋 Alpha helix (%) 延伸链 Extended strand (%) β-转角 Beta turn (%) 不规则卷曲 Random coil (%)
ZoNHX3 39.05 21.59 10.48 28.89
ZoNHX1 44.16 19.91 6.93 29.00
ZoNHX9 45.74 12.48 5.28 36.49
ZoNHX7 45.96 16.77 9.70 27.58
ZoNHX6 41.25 18.23 9.02 31.49
ZoNHX8 54.09 19.81 6.29 19.81
ZoNHX10 42.80 20.23 3.50 33.46
ZoNHX11 48.63 11.30 4.45 35.62
ZoNHX5 44.34 16.88 3.15 35.62
ZoNHX13 40.12 19.75 9.26 30.86
ZoNHX15 41.56 18.67 4.22 35.56
ZoNHX4 46.12 19.29 3.53 31.06
ZoNHX14 40.56 18.74 4.69 36.02
ZoNHX12 41.98 22.37 5.53 30.31
ZoNHX2 34.82 23.92 11.38 29.88

Fig. 8

Cis-acting elements of ginger ZoNHX family members Red indicates an increase in the number of cis-acting elements, and a numerical value indicates the number of cis-acting elements"

Fig. 9

Intraspecific and interspecific collinear analysis of NHXs A: Collinear analysis of ginger ZoNHXs; B: Analysis of NHX gene covariance between ginger and plantain. The red lines are the gene pairs copied in large fragments, and the gray lines are all the collinear blocks in the ginger genome"

Fig. 10

Expression patterns of ginger ZoNHXs in different tissues and under various treatments A: Expression of ZoNHXs in different growth stages, root and stem of ginger. R1-R5: 5 growth periods of ginger; G: root; S: stem. B: Expression of ZoNHXs in Root (R), Stem (S), Leaf (L) and rhizome (Rh-90) of 90 d ginger. C: Expression of ZoNHXs in ginger tuber at 25 ℃, 4 ℃ and 12 ℃. D: Expression of ZoNHXs in ginger seedlings inoculated with Ralstonia solanacearum in different soil pore water content. HI: 40% porosity inoculated with Penicillium; HUN: 40% porosity inoculated with sterile water; LI: 10% porosity inoculated with Penicillium; LUN: 10% porosity inoculated with sterile water. E: Expression of ZoNHXs in ginger treated with 26 ℃ (CK), cold (LT), melatonin (CK-MT) and melatonin-cold (LT-MT). F: Expression of ZoNHXs in ginger rhizomes 0, 1, and 2 d after CTS treatment (CK0, CK1, and CK2) and in ginger rhizomes inoculated with Fusarium roqueforti + chitosan 0, 1, and 2 d (CS0, CS1, and CS2). G. Expression of ZoNHXs in roots (R), stems (S), leaves (L), and rhizomes (Rh) of ginger under different abiotic stresses. NaCl, PEG, WL, and WL+Si: salt stress, drought stress, flooding stress, and flooding+Nano-Si. Different colors in the legend represent different Log2(FPKM+1) values, red represents the largest log2(FPKM+1) value, and blue represents the smallest value"

Fig. 11

Expression patterns of ginger ZoNHXs in response to salt stress Different lowercase letters indicate the significant different between treatments at P<0.05 level. The same as below"

Fig. 12

K+ and Na+ content in four parts of ginger under salt stress (15 d)"

Table 4

Effects of exogenous SiNP100 on K+/Na+ in root, tuber, stem and leaf of ginger under salt stress"

处理 Treatment 根Root 根茎Tuber 茎Stem 叶Leaf
CK 278.93±27.39a 64.59±2.77a 2779.50±17.65a 4040.83±1206.794a
NaCl 7.00±0.67b 4.87±0.21c 17.65±1.25b 16.84±3.20b
SiNP100+NaCl 14.10±0.43b 12.18±1.35b 46.74±4.75b 105.96±7.55b

Table 5

Effects of exogenous SiNP100 on transport selectivity coefficient of K+ and Na+ between different parts of ginger under salt stress"

处理 Treatment 根→根茎(SK+/Na+) Root→Tuber 根茎→茎(SK+/Na+) Tuber→Stem 茎→叶(SK+/Na+) Stem→Leaf
CK 0.23±0.02c 43.16±7.10a 1.44±0.33b
NaCl 0.70±0.06b 3.63±0.37b 0.97±0.24b
SiNP100+NaCl 0.86±0.08a 3.87±0.60b 2.28±0.19a
[1]
ISAYENKOV S V, DABRAVOLSKI S A, PAN T, SHABALA S. Phylogenetic diversity and physiological roles of plant monovalent cation/H+ antiporters. Frontiers in Plant Science, 2020, 11: 573564.
[2]
罗达, 吴正保, 史彦江, 宋锋惠. 盐胁迫对3种平欧杂种榛幼苗叶片解剖结构及离子吸收、运输与分配的影响. 生态学报, 2022, 42(5): 1876-1888.
LUO D, WU Z B, SHI Y J, SONG F H. Effects of salt stress on leaf anatomical structure and ion absorption, transportation and distribution of three Ping’ou hybrid hazelnut seedlings. Acta Ecologica Sinica, 2022, 42(5): 1876-1888. (in Chinese)
[3]
CHEN Z H, POTTOSIN I I, CUIN T A, FUGLSANG A T, TESTER M, JHA D, ZEPEDA-JAZO I, ZHOU M X, PALMGREN M G, NEWMAN I A, SHABALA S. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiology, 2007, 145(4): 1714-1725.
[4]
康红霞, 伍国强, 魏明, 李善家. Na+/H+逆向转运蛋白在植物应答非生物逆境胁迫中的作用. 植物生理学报, 2022, 58(3): 511-523.
KANG H X, WU G Q, WEI M, LI S J. The role of Na+/H+ antiporter in response of plant to abiotic stress. Plant Physiology Journal, 2022, 58(3): 511-523. (in Chinese)
[5]
BASSIL E, BLUMWALD E. The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. Current Opinion in Plant Biology, 2014, 22: 1-6.
[6]
CAO B N, XIA Z Q, LIU C Y, FAN W, ZHANG S, LIU Q, XIANG Z H, ZHAO A C. New insights into the structure-function relationship of the endosomal-type Na+, K+/H+ antiporter NHX6 from mulberry (Morus notabilis). International Journal of Molecular Sciences, 2020, 21(2): 428.
[7]
BASSIL E, COKU A, BLUMWALD E. Cellular ion homeostasis: Emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. Journal of Experimental Botany, 2012, 63(16): 5727-5740.
[8]
PARDO J M, CUBERO B, LEIDI E O, QUINTERO F J. Alkali cation exchangers: Roles in cellular homeostasis and stress tolerance. Journal of Experimental Botany, 2006, 57(5): 1181-1199.

doi: 10.1093/jxb/erj114 pmid: 16513813
[9]
WANG L G, FENG X Y, ZHAO H, WANG L D, AN L Z, QIU Q S. Functional analysis of the Na+, K+/H+ antiporter PeNHX3 from the tree halophyte Populus euphratica in yeast by model-guided mutagenesis. PLoS ONE, 2014, 9(8): e104147.
[10]
WANG L G, WU X X, LIU Y F, QIU Q S. AtNHX5 and AtNHX6 control cellular K+ and pH homeostasis in Arabidopsis: Three conserved acidic residues are essential for K+ transport. PLoS ONE, 2015, 10(12): e0144716.
[11]
吴金平, 周洁, 符家平, 肖颖, 郭凤领. 来凤生姜栽培现状及优势品种推荐. 长江蔬菜, 2020(23): 8-10.
WU J P, ZHOU J, FU J P, XIAO Y, GUO F L. Production status and recommended cultivars of Zingiber officinaie roscoe in Laifeng County of Hubei. Journal of Changjiang Vegetables, 2020(23): 8-10. (in Chinese)
[12]
唐宁, 吕健飞, 谢奇玕, 胡静, 高娜, 黄晓磊, 陈德, 叶雪珠. 不同种植年限生姜土壤质量变化规律. 浙江农业科学, 2023, 64(10): 2413-2417.

doi: 10.16178/j.issn.0528-9017.20221090
TANG N, J F, XIE Q X, HU J, GAO N, HUANG X L, CHEN D, YE X Z. Changes of soil quality of ginger with different planting years. Journal of Zhejiang Agricultural Sciences, 2023, 64(10): 2413-2417. (in Chinese)
[13]
高伟, 席克勇, 尹军良, 刘奕清, 朱永兴, 贾切. 外源SiNPs对盐胁迫下生姜幼苗生长和生理特性的影响. 西北农林科技大学学报(自然科学版), 2023, 51(9): 109-118.
GAO W, XI K Y, YIN J L, LIU Y Q, ZHU Y X, JIA Q. Effects of exogenous SiNPs on growth and physiological characteristics of ginger seedlings under salt stress. Journal of Northwest A & F University (Natural Science Edition), 2023, 51(9): 109-118. (in Chinese)
[14]
徐悦, 曹逼力, 陈子敬, 徐坤. 盐碱交互胁迫对生姜产量和品质的影响及其数学模型的建立. 中国蔬菜, 2019(12): 41-45.
XU Y, CAO B L, CHEN Z J, XU K. Effect of salt-alkali interaction stress on yield and quality of ginger and establishment of its mathematical model. China Vegetables, 2019(12): 41-45. (in Chinese)
[15]
RATNER A, JACOBY B. Effect of K+, its counter anion, and pH on sodium efflux from barley root tips. Journal of Experimental Botany, 1976, 27(5): 843-852.
[16]
周梦岩, 王涛涛, 陈冉红, 金松松, 李明, 马留银. 互花米草NHX2基因的克隆与功能鉴定. 西北植物学报, 2019, 39(12): 2093-2099.
ZHOU M Y, WANG T T, CHEN R H, JIN S S, LI M, MA L Y. Cloning and function identification of NHX2 gene from Spartina alterniflora. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(12): 2093-2099. (in Chinese)
[17]
WANG G, YANG D, WANG W T, PENG D L, JI J, JIN C, GUAN C F. Regulation effects of Na+/H+ Antiporter (NHX1) on Nicotiana tabacum stressed with metals of different valences. Journal of Plant Growth Regulation, 2023, 42(3): 1846-1864.
[18]
JIN T, AN J, XU H D, CHEN J, PAN L, ZHAO R R, WANG N, GAI J Y, LI Y. A soybean sodium/hydrogen exchanger GmNHX6 confers plant alkaline salt tolerance by regulating Na+/K+ homeostasis. Frontiers in Plant Science, 2022, 13: 938635.
[19]
缑天韵, 苏艳, 陈馨航, 朱永兴, 宫海军. 硅促进盐胁迫下黄瓜NHX1基因表达及Na+在液泡中的区隔化效应. 植物营养与肥料学报, 2020, 26(11): 1923-1934.
GOU T Y, SU Y, CHEN X H, ZHU Y X, GONG H J. Silicon upregulates NHX1 expression to enhance Na+ partitioning into vacuoles in leaf mesophyll cells of cucumber under salt stress. Journal of Plant Nutrition and Fertilizers, 2020, 26(11): 1923-1934. (in Chinese)
[20]
GHORBANI A, PISHKAR L, SARAVI K V, CHEN M X. Melatonin-mediated endogenous nitric oxide coordinately boosts stability through proline and nitrogen metabolism, antioxidant capacity, and Na+/K+ transporters in tomato under NaCl stress. Frontiers in Plant Science, 2023, 14: 1135943.
[21]
马红萍. 超表达霸王ZxNHX1和拟南芥AtNHX1转基因紫花苜蓿耐盐性和抗旱性的比较研究[D]. 兰州: 兰州大学, 2020.
MA H P. Comparative study on salt and drought resistance between transgenic alfalfa lines overexpressing ZxNHX1 from Zygophyllum xanthoxylum and AtNHXl from Arabidopsis[D]. Lanzhou: Lanzhou University, 2020. (in Chinese)
[22]
罗建, 许春苗, 张国斌, 郁继华. 辣椒NHX基因家族的鉴定和表达分析. 华北农学报, 2021, 36(3): 15-24.

doi: 10.7668/hbnxb.20191999
LUO J, XU C M, ZHANG G B, YU J H. Bioinformation analysis and expression analysis of NHX genes family in pepper. Acta Agriculturae Boreali-Sinica, 2021, 36(3): 15-24. (in Chinese)

doi: 10.7668/hbnxb.20191999
[23]
许海霞. 小麦Na+/H+逆转蛋白的功能分析[D]. 郑州: 河南农业大学, 2009.
XU H X. Functional characterization of Na+/H+antiporter in wheat (Triticum aestivum)[D]. Zhengzhou: Henan Agricultural University, 2009. (in Chinese)
[24]
杨杰, 陈蓉, 胡文娟, 吴巧玲, 佟晓楠, 李兴涛, 陈健美. 甜橙NHX基因家族的鉴定及功能分析. 江苏农业科学, 2022, 50(7): 35-42.
YANG J, CHEN R, HU W J, WU Q L, TONG X L, LI X T, CHEN J M. Identification and functional analysis of the NHX gene family in Citrus sinensis. Jiangsu Agricultural Sciences, 2022, 50(7): 35-42. (in Chinese)
[25]
徐亚, 滕梦鑫, 何岳东, 乔飞, 李新国. 香蕉NHX基因家族的鉴定及表达分析. 植物生理学报, 2021, 57(3): 681-691.
XU Y, TENG M X, HE Y D, QIAO F, LI X G. Identification and expression analysis of NHX genes family in banana. Plant Physiology Journal, 2021, 57(3): 681-691. (in Chinese)
[26]
王影, 李慧, 蔺经, 杨青松, 张绍铃, 常有宏. 杜梨NHX基因家族的鉴定及其在非生物胁迫下的表达分析. 果树学报, 2019, 36(7): 825-836.
WANG Y, LI H, LIN J, YANG Q S, ZHANG S L, CHANG Y H. Identification of NHX gene family in Pyrus betulaefolia and its expression under abiotic stress. Journal of Fruit Science, 2019, 36(7): 825-836. (in Chinese)
[27]
张业猛, 朱丽丽, 陈志国. 藜麦NHX基因家族鉴定及盐胁迫下表达分析. 生物技术通报, 2022, 38(12): 184-193.

doi: 10.13560/j.cnki.biotech.bull.1985.2022-0404
ZHANG Y M, ZHU L L, CHEN Z G. Identification and expression analysis of NHX gene family in quinoa under salt stress. Biotechnology Bulletin, 2022, 38(12): 184-193. (in Chinese)
[28]
SAHOO D P, KUMAR S, MISHRA S, KOBAYASHI Y, PANDA S K, SAHOO L. Enhanced salinity tolerance in transgenic mungbean overexpressing Arabidopsis antiporter (NHX1) gene. Molecular Breeding, 2016, 36(10): 144.
[29]
LI H L, WU L, DONG Z M, JIANG Y S, JIANG S J, XING H T, LI Q, LIU G C, TIAN S M, WU Z Y, WU B, LI Z X, ZHAO P, ZHANG Y, TANG J M, XU J B, HUANG K, LIU X, ZHANG W L, LIAO Q H, REN Y, HUANG X Z, LI Q Z, LI C Y, WANG Y, XAVIER-RAVI B, LI H H, LIU Y, WAN T, LIU Q H, ZOU Y, JIAN J B, XIA Q Y, LIU Y Q. Haplotype-resolved genome of diploid ginger (Zingiber officinale) and its unique gingerol biosynthetic pathway. Horticulture Research, 2021, 8(1): 189.
[30]
王荣花, 王树彬, 刘栓桃, 张志刚, 李巧云, 王立华, 赵智中. 大白菜LACS家族基因鉴定与表达分析. 山东农业科学, 2022, 54(6): 1-9.
WANG R H, WANG S B, LIU S T, ZHANG Z G, LI Q Y, WANG L H, ZHAO Z Z. Identification and expression analysis of LACS family genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Shandong Agricultural Sciences, 2022, 54(6): 1-9. (in Chinese)
[31]
姜南, 石杨, 赵志慧, 李斌, 赵熠辉, 杨俊彪, 闫家铭, 靳雨瑶, 陈稷, 黄进. 镉胁迫下水稻OsPT1的表达及功能分析. 生物技术通报, 2023, 39(1): 166-174.

doi: 10.13560/j.cnki.biotech.bull.1985.2022-0489
JIANG N, SHI Y, ZHAO Z H, LI B, ZHAO Y H, YANG J B, YAN J M, JIN Y F, CHEN J, HUANG J. Expression and functional analysis of OsPT1 gene in rice under cadmium stress. Biotechnology Bulletin, 2023, 39(1): 166-174. (in Chinese)

doi: 10.13560/j.cnki.biotech.bull.1985.2022-0489
[32]
马建荣, 余永红, 宋卉, 刘戈飞, 沈晓萌. 水稻白叶枯病菌FabG同源蛋白生物信息学分析. 西南农业学报, 2022, 35(5): 1117-1127.
MA J R, YU Y H, SONG H, LIU G F, SHEN X M. Bioinformatics analysis of FabG homologous proteins of Xanthomonas oryzea pv. Oryzea. Southwest China Journal of Agricultural Sciences, 2022, 35(5): 1117-1127. (in Chinese)
[33]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.
[34]
孟元发. 外源硅对苜蓿盐胁迫的缓解效应及调控机理[D]. 呼和浩特: 内蒙古大学, 2020.
MENG Y F. Alleviation effects and mechanisms of exogenous silicon on salt stress-induced damage in alfalfa[D]. Huhhot: Inner Mongolia University, 2020. (in Chinese)
[35]
徐威, 袁庆华, 王瑜, 景艳霞. 盐胁迫下白三叶幼苗离子分布规律的初步研究. 中国草地学报, 2011, 33(5): 33-39.
XU W, YUAN Q H, WANG Y, JING Y X. Studies on ion distribution in white clover seedling under salt stress. Chinese Journal of Grassland, 2011, 33(5): 33-39. (in Chinese)
[36]
LI G, MA J W, YIN J L, GUO F L, XI K Y, YANG P H, CAI X D, JIA Q, LI L, LIU Y Q, ZHU Y X. Identification of reference genes for reverse transcription-quantitative PCR analysis of ginger under abiotic stress and for postharvest biology studies. Frontiers in Plant Science, 2022, 13: 893495.
[37]
JIANG Y S, HUANG M J, ZHANG M X, LAN J B, WANG W X, TAO X, LIU Y Q. Transcriptome analysis provides novel insights into high-soil-moisture-elevated susceptibility to Ralstonia solanacearum infection in ginger (Zingiber officinale Roscoe cv. Southwest). Plant Physiology and Biochemistry, 2018, 132: 547-556.
[38]
HUANG M J, XING H T, LI Z X, LI H L, WU L, JIANG Y S. Identification and expression profile of the soil moisture and Ralstonia solanacearum response CYPome in ginger (Zingiber officinale). PeerJ, 2021, 9: e11755.
[39]
徐悦. pH与盐胁迫对生姜产量品质及相关生理代谢的影响[D]. 泰安: 山东农业大学, 2020.
XU Y. Effects of pH and salt stress on yield, quality and related physiological metabolism of ginger[D]. Taian: Shandong Agricultural University, 2020. (in Chinese)
[40]
周喆, 张彩霞, 张利义, 王强, 李武兴, 田义, 丛佩华. 苹果LysM基因家族的生物信息学及表达分析. 中国农业科学, 2014, 47(13): 2602-2612. doi: 10.3864/j.issn.0578-1752.2014.13.012.
ZHOU Z, ZHANG C X, ZHANG L Y, WANG Q, LI W X, TIAN Y, CONG P H. Bioinformatics and expression analysis of the LysM gene family in apple. Scientia Agricultura Sinica, 2014, 47(13): 2602-2612. doi: 10.3864/j.issn.0578-1752.2014.13.012. (in Chinese)
[41]
LIU H, WANG Q Q, YU M M, ZHANG Y Y, WU Y B, ZHANG H X. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Plant, Cell & Environment, 2008, 31(9): 1325-1334.
[42]
张梦茹. 桑树Na+/H+逆向转运蛋白基因的表达特征及Mul-NHX5基因的耐盐功能研究[D]. 泰安: 山东农业大学, 2022.
ZHANG M R. Study on expression characteristics of Na+/H+ antiporter gene in mulberry (Morus multicaulis) and the salt-tolerance function of Mul-NHX5 gene[D]. Taian: Shandong Agricultural University, 2022. (in Chinese)
[43]
李茹霞, 顾寅钰, 李萌, 陈传杰, 梁晓艳, 李俊林, 邢延富, 张海洋, 付娆. 菠菜NHX家族基因鉴定及其响应盐胁迫的表达分析. 山东农业科学, 2021, 53(9): 1-7.
LI R X, GU Y Y, LI M, CHEN C J, LIANG X Y, LI J L, XING Y F, ZHANG H Y, FU R. Identification of NHX family genes and its expression analysis of response to salt stress in spinach (Spinacia oleracea L.). Shandong Agricultural Sciences, 2021, 53(9): 1-7. (in Chinese)
[44]
卢世雄, 许春苗, 何红红, 梁国平, 王萍, 陈佰鸿, 毛娟. 葡萄NHX基因家族的鉴定和表达分析. 果树学报, 2019, 36(3): 266-276.
LU S X, XU C M, HE H H, LIANG G P, WANG P, CHEN B H, MAO J. Identification and expression analysis of NHX genes family in grape. Journal of Fruit Science, 2019, 36(3): 266-276. (in Chinese)
[45]
王立光. 拟南芥内膜Na+, K+/H+反向转运体研究进展. 生物工程学报, 2019, 35(8): 1424-1432.
WANG L G. Progress in endosomal Na+, K+/H+ antiporter in Arabidopsis thaliana. Chinese Journal of Biotechnology, 2019, 35(8): 1424-1432. (in Chinese)
[46]
李淼, 李桂祥, 刘伟, 高晓兰, 王孝友, 张安宁. 桃NHX基因家族的全基因组鉴定与表达分析. 山东农业科学, 2021, 53(12): 8-16.
LI M, LI G X, LIU W, GAO X L, WANG X Y, ZHANG A N. Genome-wide identification and expression analysis of NHX gene family in peach. Shandong Agricultural Sciences, 2021, 53(12): 8-16. (in Chinese)
[47]
郭力. 小鼠耳芥KEA和NHX基因家族的鉴定、进化和表达特征分析[D]. 石河子: 石河子大学, 2022.
GUO L. Identification, evolution and expression characteristics of KEA and NHX gene families in Arabidopsis pumila[D]. Shihezi: Shihezi University, 2022. (in Chinese)
[48]
王雪花, 韩佳, 马济中, 杨曦婷, 满华丽, 乔亚丽, 高雪琴, 胡琳莉. 大白菜NHX基因家族的鉴定与表达分析. 生物工程学报, 2023, 39(2): 552-565.
WANG X H, HAN J, MA J Z, YANG X T, MAN H L, QIAO Y L, GAO X Q, HU L L. Identification and expression analysis of NHX gene family in Chinese cabbage. Chinese Journal of Biotechnology, 2023, 39(2): 552-565. (in Chinese)
[49]
DONG J M, LIU C Y, WANG Y Y, ZHAO Y J, GE D P, YUAN Z H. Genome-wide identification of the NHX gene family in Punica granatum L. and their expressional patterns under salt stress. Agronomy, 2021, 11(2): 264.
[50]
WU G Q, WANG J L, LI S J. Genome-wide identification of Na+/H+ antiporter (NHX) genes in sugar beet (Beta vulgaris L.) and their regulated expression under salt stress. Genes, 2019, 10(5): 401.
[51]
GASTEIGER E, HOOGLAND C, GATTIKER A, DUVAUD S, WILKINS M R, APPEL R D, BAIROCH A. Protein Identification and Analysis Tools on the ExPASy Server. Totowa, NJ: Humana Press, 2005: 571-607.
[52]
朱志刚, 胡洪涛, 石丽桥, 曹春霞, 姚经武, 黄大野, 龙同, 邱正明, 陈伟, 杨自文. 生姜青枯病防治药剂室内筛选及评价. 植物保护, 2017, 43(6): 202-206, 212.
ZHU Z G, HU H T, SHI L Q, CAO C X, YAO J W, HUANG D Y, LONG T, QIU Z M, CHEN W, YANG Z W. Indoors screening and evaluation of bactericides controlling ginger bacterial wilt. Plant Protection, 2017, 43(6): 202-206, 212. (in Chinese)
[53]
李嘉文, 麻冬梅, 苏立娜, 张玲, 侯汶君, 杭嘉慧. 外源褪黑素对盐胁迫下燕麦幼苗生长及抗氧化系统的影响. 草地学报, 2023, 31(2): 396-403.

doi: 10.11733/j.issn.1007-0435.2023.02.011
LI J W, MA D M, SU L N, ZHANG L, HOU W J, HANG J H. Effects of exogenous melatonin on oat seedling growth and antioxidant system under salt stress. Acta Agrestia Sinica, 2023, 31(2): 396-403. (in Chinese)
[54]
秦曼丽, 朱永兴, 刘续立, 刘燃, 李姗蓉, 张中华, 袁继荣, 刘奕清. 外源壳聚糖对干旱胁迫下生姜幼苗光合特性及水分代谢的影响. 中国瓜菜, 2022, 35(9): 48-56.
QIN M L, ZHU Y X, LIU X L, LIU R, LI S R, ZHANG Z H, YUAN J R, LIU Y Q. Exogenous chitosan affects photosynthetic characteristics and water metabolism of ginger seedling under drought stress. China Cucurbits and Vegetables, 2022, 35(9): 48-56. (in Chinese)
[55]
PADAN E, VENTURI M, GERCHMAN Y, DOVER N. Na+/H+ antiporters. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2001, 1505(1): 144-157.
[56]
齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展. 分子植物育种, 2020, 18(8): 2741-2746.
QI Q, MA S R, XU W D. Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance. Molecular Plant Breeding, 2020, 18(8): 2741-2746. (in Chinese)
[57]
谢颖悦, 王琦, 王春平, 周冰玉, 周宇, 刘芬, 孙翔宇. 植物响应盐胁迫的机制研究进展. 激光生物学报, 2022, 31(5): 398-403.
XIE Y Y, WANG Q, WANG C P, ZHOU B Y, ZHOU Y, LIU F, SUN X Y. Progress of studies on the mechanism of plant response to salt stress. Acta Laser Biology Sinica, 2022, 31(5): 398-403. (in Chinese)
[58]
曹岩坡, 代鹏, 戴素英, 贺超兴. 丛枝菌根真菌(AMF)对盐胁迫下芦笋幼苗生长及体内Na+、K+、Ca2+、Mg2+含量和分布的影响. 生态学杂志, 2015, 34(6):1699-1704.
CAO Y P, DAI P, DAI S Y, HE C X. Effects of arbuscular mycorrhizal fungi (AMF) on seedling growth and Na+, K+, Ca2+, Mg2+ contents and distribution in asparagus under salt stress. Chinese Journal of Ecology, 2015, 34(6):1699-1704. (in Chinese)
[59]
张远兰, 胡鑫, 郁万文, 国靖, 蔡金峰, 曹福亮, 汪贵斌. Na2SO4和Na2CO3胁迫对苦楝幼苗渗透调节特性和离子分配的影响. 中南林业科技大学学报, 2021, 41(4): 76-85.
ZHANG Y L, HU X, YU W W, GUO J, CAI J F, CAO F L, WANG G B. Effects of Na2SO4 or Na2CO3 on osmotic regulation characteristics and ion distribution in Melia azedarach seedlings. Journal of Central South University of Forestry & Technology, 2021, 41(4): 76-85. (in Chinese)
[60]
梁育勤. 盐胁迫对肯氏南洋杉幼苗生长及离子分布的影响. 厦门大学学报(自然科学版), 2023, 62(1): 144-150.
LIANG Y Q. Effects of salt stress on growth and ion distribution of Araucaria cunninghamii seedlings. Journal of Xiamen University (Natural Science), 2023, 62(1): 144-150. (in Chinese)
[61]
闫国超, 樊小平, 谭礼, 尹昌, 梁永超. 盐胁迫下添加外源硅提高水稻抗氧化酶活性与钠钾平衡相关基因表达. 植物营养与肥料学报, 2020, 26(11): 1935-1943.
YAN G C, FAN X P, TAN L, YIN C, LIANG Y C. Exogenous silicon effectively enhances salt stress resistance of rice by upregulating antioxidant enzymes activities and expression of genes related to Na/K homeostasis. Journal of Plant Nutrition and Fertilizers, 2020, 26(11): 1935-1943. (in Chinese)
[62]
BOSNIC P, BOSNIC D, JASNIC J, NIKOLIC M. Silicon mediates sodium transport and partitioning in maize under moderate salt stress. Environmental and Experimental Botany, 2018, 155: 681-687.
[63]
张茂明, 丁俊杰, 刘凯, 杨晓贺, 姚亮亮, 高雪冬, 邱磊, 来永才. 盐碱胁迫下外源硅对水稻绥粳306离子平衡调节的复式研究. 黑龙江农业科学, 2022(11): 22-26.
ZHANG M M, DING J J, LIU K, YANG X H, YAO L L, GAO X D, QIU L, LAI Y C. Compound study on ion balance regulation of exogenous silicon on rice Suigeng 306 under salt alkali stress. Heilongjiang Agricultural Sciences, 2022(11): 22-26. (in Chinese)
[64]
刘雪华, 宋琎楠, 张玉喜, 侯丽霞, 于延冲, 赵方贵, 刘春英, 董春海, 杨洪兵. 苦荞麦FtNHX1基因的克隆及表达分析. 华北农学报, 2017, 32(4): 49-54.

doi: 10.7668/hbnxb.2017.04.008
LIU X H, SONG J N, ZHANG Y X, HOU L X, YU Y C, ZHAO F G, LIU C Y, DONG C H, YANG H B. Cloning and expression analysis of FtNHX1 in Tartary Buckwheat. Acta Agriculturae Boreali-Sinica, 2017, 32(4): 49-54. (in Chinese)
[65]
于学宁. 刺槐Na+/H+逆向转运蛋白基因克隆与序列分析及刺槐再生体系建立[D]. 泰安: 山东农业大学, 2008.
DING X N. Cloning, sequence analysis of the Na+/H+ antipoter gene and establishment of regeneration system of black locust[D]. Taian: Shandong Agricultural University, 2008. (in Chinese)
[66]
陈瑶, 凌宇, 龙江宇, 范吉标. 外源柠檬酸缓解高羊茅盐胁迫的机制. 草业科学, 2023, 40(2): 511-520.
CHEN Y, LING Y, LONG J Y, FAN J B. Mechanism of exogenous citric acid alleviating salt stress in Festuca arundinacea. Pratacultural Science, 2023, 40(2): 511-520. (in Chinese)
[67]
梁娟红, 李巧丽, 赖晶, 张小花, 张腾国. 外源ATP对盐胁迫下油菜种子萌发及幼苗生长的影响. 干旱地区农业研究, 2020, 38(3): 89-96.
LIANG J H, LI Q L, LAI J, ZHANG X H, ZHANG T G. Effects of exogenous ATP on seed germination and seedling growth of Brassica campestris under salt stress. Agricultural Research in the Arid Areas, 2020, 38(3): 89-96. (in Chinese)
[1] QI RenJie, NING Yu, LIU Jing, LIU ZhiYang, XU Hai, LUO ZhiDan, CHEN LongZheng. Identification and Analysis of Genes Related to Bitter Gourd Saponin Synthesis Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2024, 57(9): 1779-1793.
[2] LIN Wei, WU ShuiJin, LI YueSen. Transcriptome and Proteome Association Analysis to Revealthe Molecular Mechanism of Baxi Banana Seedlings in Response to Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(8): 1575-1591.
[3] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[4] HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao. QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4175-4191.
[5] SHAO JiaZhu, LÜ Wen, LIAO XinLin, YUAN XinYu, SONG Zhen, JIANG DongHua. Isolation and Identification of Soybean Rhizosphere Growth-Promoting Bacteria and Their Salt Tolerance and Growth-Promoting Effects [J]. Scientia Agricultura Sinica, 2024, 57(21): 4248-4263.
[6] TAN FangDai, HE YingXia, LIU JiaYue, LI AiHua, TAO YongSheng. Multidimensional Characterization of Astringency Quality in Dry Red Wine and Its Effects [J]. Scientia Agricultura Sinica, 2024, 57(21): 4342-4355.
[7] MA JingE, XIONG XinWei, ZHOU Min, WU SiQi, HAN Tian, RAO YouSheng, WANG ZhangFeng, XU JiGuo. Full-Length Transcriptomic Analysis of Chicken Pituitary Reveals Candidate Genes for Testicular Trait [J]. Scientia Agricultura Sinica, 2024, 57(20): 4130-4144.
[8] DAI YingZi, GUO HongYang, YANG ZhiFeng, WANG XianPu, XU LiLi. Identification of Salt Resistance Functional of Grape Transcription Factor VvERF2 [J]. Scientia Agricultura Sinica, 2024, 57(2): 336-348.
[9] CHEN FeiEr, ZHANG ZhiPeng, JIANG QingXue, MA Lin, WANG XueMin. Cloning and Biological Function Verification of Alfalfa MsSPL17 [J]. Scientia Agricultura Sinica, 2024, 57(17): 3335-3349.
[10] LIU Tong, WANG ZhiRong, LI Wei, LIU Yang, WANG XiangRu, LAI DiLi, HE YuQi, ZHANG KaiXuan, ZHAO ZhenJun, ZHOU MeiLiang. Function Analysis of bHLH93 Transcription Factor in Tartary Buckwheat in Response to Aluminum Stress [J]. Scientia Agricultura Sinica, 2024, 57(16): 3127-3141.
[11] CHEN WenJie, CHEN Yuan, WEI QingYuan, TANG FuYue, GUO XiaoHong, CHEN ShuFang, QIN XiaYan, WEI RongChang, LIANG Jiang. Identification of Candidate Genes Controlling SSCLD by Utilizing High-Generation Segregating Populations RNA-seq [J]. Scientia Agricultura Sinica, 2024, 57(15): 2914-2930.
[12] XU MingRui, WANG XiaoJuan, YANG YaLi, MA YueFei, LIU WanMao, SUN Ying. Transcriptomics-Based Analysis of Pepper Responses to Phosphorus Nutritional Stress [J]. Scientia Agricultura Sinica, 2024, 57(14): 2827-2846.
[13] XU MengYu, WANG JiaYang, WANG JiangBo, TANG Wen, CHEN YiHeng, SHANGGUAN LingFei, FANG JingGui, LU SuWen. Differential Analysis of Aroma Substance Content and Gene Expression in the Berry Skins of Different Grape Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(13): 2635-2650.
[14] ZHANG HaiQing, ZHANG HengTao, GAO QiMing, YAO JiaLong, WANG YaRong, LIU ZhenZhen, MENG XiangPeng, ZHOU Zhe, YAN ZhenLi. Transcriptome Analysis for Screening Key Genes Related to Regulating Branching Ability in Apple [J]. Scientia Agricultura Sinica, 2024, 57(10): 1995-2009.
[15] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!