Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (18): 3626-3641.doi: 10.3864/j.issn.0578-1752.2024.18.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Rotation Tillage Mode Improves Wheat Root and Yield in Fluvo- Aquic Soil in Norther Henan Province

LI LianYi(), WANG ShiJi, JIANG GuiYing(), LI Yang, YANG Jin, ZHU XuanLin, ZHU ChangWei, WANG RenZhuo, LIU Fang, JIE XiaoLei, LIU ShiLiang()   

  1. Key Laboratory of Arable Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs/Collage of Resources and Environment, Henan Agricultural University, Zhengzhou 450046
  • Received:2023-11-11 Accepted:2023-12-19 Online:2024-09-16 Published:2024-09-29
  • Contact: JIANG GuiYing, LIU ShiLiang

Abstract:

【Objective】 This study aimed to explore the optimum tillage mode in northern Henan province based on the long-term experiment. 【Method】 This study was based on the long-term tillage experiment started from 2016, which included different combination of three tillage practices, rotary tillage, shallow rotary tillage, and deep tillage before winter wheat sowed. The different combinations were 3-year cycle. Five typical treatments were selected: (1) continuous rotary tillage (RT-RT-RT); (2) Deep tillage-rotary tillage-rotary tillage (DT-RT-RT); (3) Deep tillage-rotary tillage-shallow rotary tillage (DT-RT-SRT); (4) Deep tillage- shallow rotary tillage- shallow rotary tillage (DT-SRT-SRT); (5) Deep tillage- shallow rotary tillage-rotary tillage (DT-SRT-RT). During the wheat season in 2021, root growth indexes, wheat photosynthetic characteristics, total nutrients of all organs at maturity, soil porosity, soil bulk density, aggregate distribution and wheat yield were measured and analyzed. 【Result】 Compared with RT-RT-RT, the wheat root indexes were improved under the treatments with rotation tillage, therein, DT-SRT-RT displayed the outstanding one. The highest increment of root indexes was at jointing stage. The total root length (RL), surface area (SA), volume (RV), and diameter (RD) were increased by 80.8%, 54.1%, 51.5%, and 21.9%, respectively. The increment was decreased with wheat growth, with the relevant value as 39.0%-28.8% (RL), 21.7%-10.8% (SA), 12.4%-17.8% (RV), and 17.5%-24.5% (RD), respectively. Rotational tillage treatments promoted the wheat photosynthetic characteristics, similar as root indexes, while DT-SRT-RT was demonstrated the better effect among all the treatments. Compared with RT-RT-RT, under DT-SRT-RT, the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) was increased by 25.7%, 41.5%, and 20.5% respectively, at the jointing stage, which was increased by 55.4%, 21.7%, and 17.4%, respectively, at the flowering stage. At the filling stage, the Pn and Gs were increased by 9.7% and 13.6%, respectively, while the Tr was decreased by 6.7%. The nutrient in wheat organ was promoted under the treatments with rotation tillage compared to RT-RT-RT. Therein, under DT-SRT-RT, the TN in leaves, stems, and roots was increased by 66.2%, 80.1% and 61.1%, respectively; the TP in leaves and stems increased by 31.2% and 38.4%; the TK in roots was increased by 50.0%. Compared with RT-RT-RT, the soil porosity was improved in the 20-30 cm soil layer with the increment of 27.1%. The treatments with rotation tillage decreased the soil bulk density in the 0-30 cm soil layer. Meanwhile, the aggregate size with >0.25 mm was increased under the treatments with rotation tillage, especially, it was significant increases under DT-SRT-SRT in the 0-20 cm soil layer. However, the silt and clay proportion were decreased under the treatments with rotation tillage. Additionally, the root-shoot (R/S) ratio, numbers of ears, grain number per spike, 1000-grain weight and yield under the treatments with rotation tillage were higher than those under RT-RT-RT. The R/S ratio increased by 55.6%, numbers of ears increased by 45.3%, and yield increased by 20.7% under DT-SRT-RT. The correlation analysis showed that the yield positively correlated with root length and Stomatal conductance and net photosynthetic rate. 【Conclusion】 In conclusion, the rotation tillage mode improved the soil porosity and root architecture, raised the photosynthetic rate, enriched the TN, TP, and TK in wheat organs, and increased wheat yield. Therein, the DT-SRT-RT demonstrated the better effect.

Key words: wheat, rotation tillage, root, photosynthetic characteristics, yield, fluvo-aquic soil

Table 1

Soil tillage modes before sowing winter wheat during the years of 2019-2021"

耕作方式 Tillage mode 2019 2020 2021
RT-RT-RT 旋耕 Rotary tillage 旋耕Rotary tillage 旋耕Rotary tillage
DT-RT-RT 深耕 Deep tillage 旋耕Rotary tillage 旋耕Rotary tillage
DT-RT-SRT 深耕Deep tillage 旋耕Rotary tillage 浅旋耕Shallow rotary tillage
DT-SRT-SRT 深耕Deep tillage 浅旋耕 Shallow rotary tillage 浅旋耕Shallow rotary tillage
DT-SRT-RT 深耕Deep tillage 浅旋耕Shallow rotary tillage 旋耕Rotary tillage

Table 2

Wheat yield and yield components"

年份
Year
处理
Treatment
穗数
Spike number (×105·hm-2)
穗粒数
Kernels per spike
千粒重
Thousand kernel weight (g)
产量
Yield (kg·hm-2)
2021 RT-RT-RT 46.05±1.10b 39.59±4.54c 48.38±0.45a 5870±105d
DT-RT-RT 44.43±0.52b 36.03±3.27c 48.70±0.45a 6270±228c
DT-RT-SRT 54.20±1.21a 38.40±4.55c 47.43±1.26a 6047±353c
DT-SRT-SRT 43.74±1.35b 56.90±5.27a 46.25±0.78a 6833±90b
DT-SRT-RT 51.50±1.53a 48.10±8.50b 47.16±1.38a 6974±525a
2022 RT-RT-RT 55.25±5.23d 32.45±0.07a 46.91±0.64a 7037±141d
DT-RT-RT 69.11±4.72c 32.40±1.41b 45.94±0.97a 7920±297b
DT-RT-SRT 75.00±1.37b 35.50±0.57a 46.20±1.04a 7760±240c
DT-SRT-SRT 76.25±2.69b 35.37±0.81a 46.46±0.66a 8025±659c
DT-SRT-RT 80.25±1.84a 36.30±0.95a 46.20±1.35a 8630±284a

Fig. 1

Root indexes of wheat under different treatments during growth stage"

Table 3

The characteristics of wheat root and shoot at maturity under different treatments"

处理 Treatment 地下部干重 Root weight (g/plant) 地上部干物质重 Shoot weight (g/plant) 根/冠 Root/Shoot
RT-RT-RT 29.33±0.58d 312±3d 0.09±0.01c
DT-RT-RT 41.26±0.68b 379±18a 0.11±0.02b
DT-RT-SRT 32.87±1.01c 321±3c 0.10±0.04b
DT-SRT-SRT 40.80±0.21b 359±15b 0.11±0.06b
DT-SRT-RT 51.32±1.01a 372±5a 0.14±0.03a

Fig. 2

Photosynthetic characteristics of flat leaves at different wheat growth stages"

Fig. 3

Nitrogen (A), phosphorus (B) and potassium (C) content in different parts of wheat at mature stage"

Fig. 4

The porosity and bulk density of different soil layers under different treatments"

Fig. 5

Soil aggregate proportion in different soil layers under different treatments"

Fig. 6

Correlation of root characteristics, yield, soil bulk density and porosity at different wheat growth stages"

Fig. 7

Correlation between photosynthetic characteristics and yield at different growth stages"

[1]
ERENSTEIN O, POOLE N, DONOVAN J. Role of staple cereals in human nutrition: separating the wheat from the chaff in the infodemics age. Trends in Food Science & Technology, 2022, 119: 508-513.
[2]
郭海宇. 植物根系图像的特征分析方法研究与实现[D]. 成都: 电子科技大学, 2013.
GUO H Y. Research and implementation of characteristic analysis method using plant root images[D]. Chengdu: University of Electronic Science and Technology of China, 2013. (in Chinese)
[3]
CHEN X X, DING Q S, BŁASZKIEWICZ Z, SUN J A, SUN Q, HE R Y, LI Y N. Phenotyping for the dynamics of field wheat root system architecture. Scientific Reports, 2017, 7: 37649.

doi: 10.1038/srep37649 pmid: 28079107
[4]
秦红灵, 高旺盛, 马月存, 马丽, 尹春梅. 两年免耕后深松对土壤水分的影响. 中国农业科学, 2008, 41(1): 78-85. doi: 10.3864/j.issn.0578-1752.2008.01.010.
QIN H L, GAO W S, MA Y C, MA L, YIN C M. Effects of subsoiling on soil moisture under No-tillage 2 years later. Scientia Agricultura Sinica, 2008, 41(1): 78-85. doi: 10.3864/j.issn.0578-1752.2008.01.010. (in Chinese)
[5]
王群, 李潮海, 李全忠, 薛帅. 紧实胁迫对不同类型土壤玉米根系时空分布及活力的影响. 中国农业科学, 2011, 44(10): 2039-2050. doi: 10.3864/j.issn.0578-1752.2011.10.009.
WANG Q, LI C H, LI Q Z, XUE S. Effect of soil compaction on spatio-temporal distribution and activities in maize under different soil types. Scientia Agricultura Sinica, 2011, 44(10): 2039-2050. doi: 10.3864/j.issn.0578-1752.2011.10.009. (in Chinese)
[6]
聂良鹏, 郭利伟, 牛海燕, 魏杰, 李增嘉, 宁堂原. 轮耕对小麦-玉米两熟农田耕层构造及作物产量与品质的影响. 作物学报, 2015, 41(3): 468-478.
NIE L P, GUO L W, NIU H Y, WEI J, LI Z J, NING T Y. Effects of rotational tillage on tilth soil structure and crop yield and quality in maize-wheat cropping system. Acta Agronomica Sinica, 2015, 41(3): 468-478. (in Chinese)
[7]
杨佳宇, 谷思玉, 李宇航, 何婉莹, 汤玉, 翟成, 都琳. 深翻-旋耕轮耕与有机肥配施对黑土农田土壤物理性质的影响. 土壤通报, 2021, 52(6): 1290-1298.
YANG J Y, GU S Y, LI Y H, HE W Y, TANG Y, ZHAI C, DU L. Effects of deep ploughing-rotary tillage combined with organic fertilizer on black soil physical properties. Chinese Journal of Soil Science, 2021, 52(6): 1290-1298. (in Chinese)
[8]
蒋向, 贺德先, 任洪志, 刘清瑞, 胡敏. 轮耕对麦田土壤容重和小麦根系发育的影响. 麦类作物学报, 2012, 32(4): 711-715.
JIANG X, HE D X, REN H Z, LIU Q R, HU M. Effects of different patterns of rotational tillage on soil bulk density in wheat field and wheat root development. Journal of Triticeae Crops, 2012, 32(4): 711-715. (in Chinese)
[9]
于淑婷. 轮耕模式和秸秆还田对冬小麦—夏玉米一年两熟制农田土壤长期改良效应研究[D]. 郑州: 河南农业大学, 2017.
YU S T. Long-term improvement effects of rotational tillage and straw returning on soil in the winter wheatsummer maize double cropping area[D]. Zhengzhou: Henan Agricultural University, 2017. (in Chinese)
[10]
孙敏, 高志强, 赵维峰, 任爱霞, 邓妍, 苗果园. 休闲期深松配施氮肥对旱地土壤水分及小麦籽粒蛋白质积累的影响. 作物学报, 2014, 40(7): 1286-1295.
SUN M, GAO Z Q, ZHAO W F, REN A X, DENG Y, MIAO G Y. Effect of subsoiling in fallow period and nitrogen application on soil moisture and grain protein accumulation in dryland wheat. Acta Agronomica Sinica, 2014, 40(7): 1286-1295. (in Chinese)
[11]
王维, 韩清芳, 吕丽霞, 侯贤清, 张鹏, 贾志宽, 丁瑞霞, 聂俊峰. 不同耕作模式对旱地小麦旗叶光合特性及产量的影响. 干旱地区农业研究, 2013, 31(1): 20-26.
WANG W, HAN Q F, L X, HOU X Q, ZHANG P, JIA Z K, DING R X, NIE J F. Effects of different tillage patterns on photosynthetic characteristics and yield of dryland wheat. Agricultural Research in the Arid Areas, 2013, 31(1): 20-26. (in Chinese)
[12]
关小康, 王静丽, 刘影, 杨明达, 王和洲, 王怀苹, 王同朝. 轮耕秸秆还田促进冬小麦干物质积累提高水氮利用效率. 水土保持学报, 2018, 32(3): 280-288.
GUAN X K, WANG J L, LIU Y, YANG M D, WANG H Z, WANG H P, WANG T C. Rotational tillage with straw returning increased dry matter accumulation and utilization efficiency of water and nitrogen in winter wheat. Journal of Soil and Water Conservation, 2018, 32(3): 280-288. (in Chinese)
[13]
邵云, 王敬婼, 冯荣成, 张紧紧, 崔景明, 王温澎, 李昊烊. 耕作方式和有机物料还田对小麦叶片光合特性及产量的影响. 江苏农业科学, 2018, 46(11): 69-73.
SHAO Y, WANG J R, FEN R C, ZHANG J J, CHIUI J M, WANG W P, LI H Y. Impacts of tillage method and organic manures returning to field on leaf photosynthetic characteristics and grain yield of wheat. Jiangsu Agricultural Sciences, 2018, 46(11): 69-73. (in Chinese)
[14]
沈晓琳, 王丽丽, 汪洋, 王明亮, 杨殿林, 赵建宁, 李刚, 轩清霞, 王亮. 保护性耕作对土壤团聚体、微生物及线虫群落的影响研究进展. 农业资源与环境学报, 2020, 37(3): 361-370.
SHEN X L, WANG L L, WANG Y, WANG M L, YANG D L, ZHAO J N, LI G, XUAN Q X, WANG L. Progress on the effects of conservation tillage on soil aggregates, microbes, and nematode communities. Journal of Agricultural Resources and Environment, 2020, 37(3): 361-370. (in Chinese)
[15]
贺建华, 王平, 陈娟, 王国宇. 不同轮耕方式对旱作区土壤容重、水分及春玉米产量的影响. 土壤通报, 2018, 49(2): 415-422.
HE J H, WANG P, CHEN J, WANG G Y. Effects of different rotational tillage patterns on bulk density and moisture of soil and yield of spring maize (Zea mays L.) in arid areas. Chinese Journal of Soil Science, 2018, 49(2): 415-422. (in Chinese)
[16]
袁亮. 不同轮耕模式对豫东地区小麦—花生轮作田土壤质量、团聚体组成及稳定性的影响. 江苏农业科学, 2023, 51(15): 245-252.
YUAN L. Effects of different rotation tillage patterns on soil quality, aggregate composition and stability in wheat-peanut rotation field of eastern Henan Prince. Jiangsu Agricultural Sciences, 2023, 51(15): 245-252. (in Chinese)
[17]
HE J, LI H W, WANG X Y, MCHUGH A D, LI W Y, GAO H W, KUHN N J. The adoption of annual subsoiling as conservation tillage in dryland maize and wheat cultivation in Northern China. Soil and Tillage Research, 2007, 94(2): 493-502.
[18]
孔凡磊, 陈阜, 张海林, 黄光辉. 轮耕对土壤物理性状和冬小麦产量的影响. 农业工程学报, 2010, 26(8): 150-155.
KONG F L, CHEN F, ZHANG H L, HUANG G H. Effects of rotational tillage on soil physical properties and winter wheat yield. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8): 150-155. (in Chinese)
[19]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[20]
王法宏, 任德昌, 王旭清, 曹宏鑫, 余松烈, 于振文. 施肥对小麦根系活性、延缓旗叶衰老及产量的效应. 麦类作物学报, 2001, 21(3): 51-54.
WANG F H, REN D C, WANG X Q, CAO H X, YU S L, YU Z W. Effect of applying fertilizer on root activity, delaying the senescence of the flag leaf and yield in winter wheat. Acta Tritical Crops, 2001, 21(3): 51-54. (in Chinese)
[21]
杨林丰, 钟南. 根系生长与土壤物理性状之间的关系. 农机化研究, 2007, 29(8): 22-24, 34.
YANG L F, ZHONG N. The relationship between root system growth and soil physical property. Journal of Agricultural Mechanization Research, 2007, 29(8): 22-24, 34. (in Chinese)
[22]
王新兵, 侯海鹏, 周宝元, 孙雪芳, 马玮, 赵明. 条带深松对不同密度玉米群体根系空间分布的调节效应. 作物学报, 2014, 40(12): 2136-2148.

doi: 10.3724/SP.J.1006.2014.02136
WANG X B, HOU H P, ZHOU B Y, SUN X F, MA W, ZHAO M. Effect of strip subsoiling on population root spatial distribution of maize under different planting densities. Acta Agronomica Sinica, 2014, 40(12): 2136-2148. (in Chinese)
[23]
MU X Y, ZHAO Y L, LIU K, JI B Y, GUO H B, XUE Z W, LI C H. Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat-maize cropping system on the North China Plain. European Journal of Agronomy, 2016, 78: 32-43.
[24]
DHALIWAL J, KAHLON M S, KUKAL S S. Deep tillage and irrigation impacts on crop performance of direct seeded rice-wheat cropping system in north-west India. Paddy and Water Environment, 2021, 19(1): 113-126.
[25]
侯贤清, 贾志宽, 韩清芳, 孙红霞, 王维, 聂俊峰, 杨宝平. 不同轮耕模式对旱地土壤结构及入渗蓄水特性的影响. 农业工程学报, 2012, 28(5): 85-94.
HOU X Q, JIA Z K, HAN Q F, SUN H X, WANG W, NIE J F, YANG B P. Effects of different rotational tillage patterns on soil structure, infiltration and water storage characteristics in dryland. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 85-94. (in Chinese)
[26]
盛阳阳, 高齐, 罗军, 张永虎, 张永平. 不同生根剂对谷子根系生长、光合特性和产量的影响. 内蒙古农业大学学报(自然科学版), 2023, 44(3): 1-6.
SHENG Y Y, GAO Q, LUO J, ZHANG Y H, ZHANG Y P. Effects of different rooting agents on root growth, photosynthetic characteristics, and yield of foxtail millet. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2023, 44(3): 1-6. (in Chinese)
[27]
牛润芝, 朱长伟, 姜桂英, 杨锦, 罗澜, 申凤敏, 刘芳, 刘世亮. 豫北潮土区轮耕模式对小麦光合特性、产量及土壤养分的影响. 华北农学报, 2022, 37(4): 182-189.

doi: 10.7668/hbnxb.20193066
NIU R Z, ZHU C W, JIANG G Y, YANG J, LUO L, SHEN F M, LIU F, LIU S L. Effects of rotation tillage pattern on wheat photosynthetic characteristics, yield, and soil nutrients in fluvo-aquic soil in North Henan. Acta Agriculturae Boreali-Sinica, 2022, 37(4): 182-189. (in Chinese)
[28]
黄明, 吴金芝, 李友军, 姚宇卿, 张灿军, 蔡典雄, 金轲. 不同耕作方式对旱作区冬小麦生产和产量的影响. 农业工程学报, 2009, 25(1): 50-54.
HUANG M, WU J Z, LI Y J, YAO Y Q, ZHANG C J, CAI D X, JIN K. Effects of different tillage managements on production and yield of winter wheat in dryland. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(1): 50-54. (in Chinese)
[29]
赵竹, 乔玉强, 杜世州, 李玮, 陈欢, 曹承富. 不同土壤耕作方式对小麦旗叶光合特性干物质积累及品质的影响. 中国农学通报, 2018, 34(30): 7-11.

doi: 10.11924/j.issn.1000-6850.casb17070081
ZHAO Z, QIAO Y Q, DU S Z, LI W, CHEN H, CAO C F. Tillage methods: effects on photosynthetic characteristics, dry matter accumulation and quality of wheat. Chinese Agricultural Science Bulletin, 2018, 34(30): 7-11. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb17070081
[30]
陈根云, 陈娟, 许大全. 关于净光合速率和胞间CO2浓度关系的思考. 植物生理学通讯, 2010, 46(1): 64-66.
CHEN G Y, CHEN J, XU D Q. Thinking about the relationship between net photosynthetic rate and intercellular CO2 concentration. Plant Physiology Communications, 2010, 46(1): 64-66. (in Chinese)
[31]
卢叶娟. 鸡粪和化肥配施对土壤全量养分释放的影响分析. 乡村科技, 2016(36): 80-82.
LU Y J. Effect of chicken manure combined with chemical fertilizer on total nutrient release in soil. Xiang Cun Ke Ji, 2016(36): 80-82. (in Chinese)
[32]
李月芬, 杨有德, 赵兰坡. 不同装土量对玉米根系中全量养分含量及吸收量的影响. 吉林农业大学学报, 2008, (3): 306-309+315.
LI Y F, YANG Y D, ZHAO L P. Effects of different amount of soil loading on total nutrient content and uptake in maize roots. Journal of Jilin Agricultural University, 2008, (3): 306-309+315.
[33]
宋晓, 黄晨晨, 黄绍敏, 张珂珂, 岳克, 张水清, 郭斗斗, 张玉亭. 不同耕作和有机培肥措施对土壤理化性质及小麦产量的影响. 作物杂志, 2020(3): 102-108.
SONG X, HUANG C C, HUANG S M, ZHANG K K, YUE K, ZHANG S Q, GUO D D, ZHANG Y T. Effects of tillage and organic fertilization modes on soil physical and chemical properties and wheat yield. Crops, 2020(3): 102-108. (in Chinese)
[34]
崔文芳, 于晓芳, 王志刚, 高聚林, 张石, 胡树平, 许鹏, 雷娟玮. 秸秆还田与耕作方式对内蒙古平原灌区玉米田土壤质量的影响. 江苏农业科学, 2023, 51(2): 217-224.
CUI W F, YU X F, WANG Z G, GAO J L, ZHANG S, HU S P, XU P, LEI J W. Effects of straw returning and tillage methods on soil quality of maize field in Inner Mongolia Plain irrigated area. Jiangsu Agricultural Sciences, 2023, 51(2): 217-224. (in Chinese)
[35]
郭书亚, 尚赏, 张艳, 汤其宁, 卢广远. 不同轮耕方式与生物炭用量对潮土区玉米产量及土壤理化性质的影响. 山西农业科学, 2023, 51(3): 271-277.
GUO S Y, SHANG S, ZHANG Y, TANG Q N, LU G Y. Effects of different rotation tillage practices and biochar dosage on maize yield and soil physical and chemical properties in fluvo-aquic soil. Journal of Shanxi Agricultural Sciences, 2023, 51(3): 271-277. (in Chinese)
[36]
周泉, 王龙昌, 邢毅, 马淑敏, 张小短, 陈娇, 石超. 秸秆覆盖条件下紫云英间作油菜的土壤团聚体及有机碳特征. 应用生态学报, 2019, 30(4): 1235-1242.

doi: 10.13287/j.1001-9332.201904.006
ZHOU Q, WANG L C, XING Y, MA S M, ZHANG X D, CHEN J, SHI C. Effects of Chinese milk vetch intercropped with rape under straw mulching on soil aggregate and organic carbon character. Chinese Journal of Applied Ecology, 2019, 30(4): 1235-1242. (in Chinese)
[37]
胡钧铭, 陈胜男, 韦翔华, 夏旭, 韦本辉. 耕作对健康耕层结构的影响及发展趋势. 农业资源与环境学报, 2018, 35(2): 95-103.
HU J M, CHEN S N, WEI X H, XIA X, WEI B H. Effects of tillage model on healthy plough layer structure and its development trends. Journal of Agricultural Resources and Environment, 2018, 35(2): 95-103. (in Chinese)
[38]
刘哲, 曹石榴, 王娜, 王欢元, 孙增慧, 罗玉虎, 卢楠, 李燕. 不同耕作实践对新增耕地土壤结构及养分含量的影响. 西南农业学报, 2023, 36(1): 39-46.
LIU Z, CAO S L, WANG N, WANG H Y, SUN Z H, LUO Y H, LU N, LI Y. Effect of different tillage practices on soil structure and nutrient content in newly reclaimed cultivated land. Southwest China Journal of Agricultural Sciences, 2023, 36(1): 39-46. (in Chinese)
[39]
张鹏, 贾志宽, 王维, 路文涛, 高飞, 聂俊峰. 秸秆还田对宁南半干旱地区土壤团聚体特征的影响. 中国农业科学, 2012, 45(8): 1513-1520. doi: 10.3864/j.issn.0578-1752.2012.08.007.
ZHANG P, JIA Z K, WANG W, LU W T, GAO F, NIE J F. Effects of straw returning on characteristics of soil aggregates in semi- arid areas in southern Ningxia of China. Scientia Agricultura Sinica, 2012, 45(8): 1513-1520. doi: 10.3864/j.issn.0578-1752.2012.08.007. (in Chinese)
[40]
CHEN J, PANG D W, JIN M, LUO Y L, LI H Y, LI Y, WANG Z L. Improved soil characteristics in the deeper plough layer can increase grain yield of winter wheat. Journal of Integrative Agriculture, 2020, 19(5): 1215-1226.

doi: 10.1016/S2095-3119(19)62679-1
[41]
王云奇, 陶洪斌, 赵鑫, 鲁来清, 任伟, 周楠, 王璞. 非灌溉条件下播前深松对冬小麦水分利用和产量的影响. 麦类作物学报, 2014, 34(1): 64-70.
WANG Y Q, TAO H B, ZHAO X, LU L Q, REN W, ZHOU N, WANG P. Effects of subsoiling before sowing on water utilization and dry matter production of winter wheat without irrigation. Journal of Triticeae Crops, 2014, 34(1): 64-70. (in Chinese)
[42]
高培芳, 金永贵, 孙敏, 梁艳妃. 休闲期深松及播期对旱地小麦干物质累积特性与产量的影响. 华北农学报, 2018, 33(4): 160-166.

doi: 10.7668/hbnxb.2018.04.023
GAO P F, JIN Y G, SUN M, LIANG Y F. Effects of subsoiling during fallow period and sowing date on dry matter accumulation and yield of wheat in dryland. Acta Agriculturae Boreali-Sinica, 2018, 33(4): 160-166. (in Chinese)

doi: 10.7668/hbnxb.2018.04.023
[43]
鲁悦, 鲍雪莲, 霍海南, 杨雅丽, 赵月, 解宏图, 梁超, 何红波. 免耕条件下不同量秸秆覆盖还田提高东北黑土区玉米光合性能和产量的效应. 植物营养与肥料学报, 2023, 29(5): 840-847.
LU Y, BAO X L, HUO H N, YANG Y L, ZHAO Y, XIE H T, LIANG C, HE H B. Effects of different amounts of stover mulching on improving photosynthetic characteristics and yield of maize in Mollisol of Northeast China under long-term no-tillage. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 840-847. (in Chinese)
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[3] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[4] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[5] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[6] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[7] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[8] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[9] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[10] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[11] DONG HuiXue, CHEN Qian, GUO XiaoJiang, WANG JiRui. Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1237-1254.
[12] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[13] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[14] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[15] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!