Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (7): 1295-1307.doi: 10.3864/j.issn.0578-1752.2024.07.007

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency

REN Qiang(), XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong(), CHAI Qiang   

  1. College of Agronnmy, Gansu Agricultural University/Gansu Provincial Key Laboratory of Arid Land Crop Science, Lanzhou 730070
  • Received:2023-12-29 Accepted:2024-01-30 Online:2024-04-01 Published:2024-04-09
  • Contact: HU FaLong

Abstract:

【Objective】Aiming at the problem of insufficient excavation of the potential of efficient water utilization of wheat-maize intercropping in the oasis irrigation area, which restricted the stable development of multi-maturing cultivation, this study was intended to provide the theoretical basis for the creation of a model of efficient water utilization of wheat-maize intercropping in the oasis irrigation area by investigating the effects of different nitrogen fertilizer postponing application on water consumption characteristics and water utilization of wheat-maize intercropping.【Method】The experiment was carried out in the oasis agricultural comprehensive experimental station of Gansu Agricultural University from 2020 to 2021. Three planting patterns of wheat-maize intercropping, monocropping wheat and monocropping maize were set up. Four treatments application systems were set up for maize: no nitrogen application (N0), 20% nitrogen fertilizer postponing (N1), 10% nitrogen fertilizer postponing (N2), and traditional nitrogen fertilizer without postponing (N3). The total nitrogen application rates of intercropping maize and monocropping maize were 210 and 360 kg·hm-2, respectively. The effects of different planting systems and nitrogen fertilizer postponing ratios on soil evaporation, water consumption characteristics and water use of wheat and maize were studied.【Result】During wheat and maize independent growth stage, the intercropping tree evaporation was greater than that of monocropping, the intercropping wheat tree evaporation increased 15.9%-16.7% than that of monocropping wheat, and the intercropping maize tree evaporation increased 5.4%-14.7% than that of monocropping maize, while wheat and maize symbiosis of intercropping tree evaporation compared with the monocropping weighted reduction of 4.6%-6.1%; the total amount of evaporation during the whole life cycle tree performance: wheat maize in the intercropping mode, intertree evaporation was reduced by 6.5% in the 20% N fertilization setback treatment compared with N3, and intertree evaporation in the wheat belt increased by 12.6%-17.3% compared with that in the maize belt, which was the main source of intertree evaporation in the intercropping system. In the intercropping system, water consumption was 34.3 and 18.9 mm lower than that of traditional N application under the 20% and 10% N fertilizer setback treatments, respectively, but the difference between E/ET and traditional N application was not significant. The seed yield of intercropping system was increased by 21.1%-39.0% compared with the weighted average of monocrop, and the seed yield of intercropping system with 20% N fertilizer setback treatment was increased by 28.8% compared with the traditional N application, among which the intercropped wheat and intercropped maize with 20% N fertilizer setback treatments were increased by 24.3% and 30.8%, respectively, compared with the traditional application of N. The water consumption during the whole growth period under intercropping system with 20% and 10% N fertilizer setback treatment was decreased by 34.3 and 18.9 mm that under traditional application of N, respectively. The E/ET of intercropping system with 20% N fertilization was increased by 20% than that under the traditional N application. The water use efficiency of intercropping planting pattern nitrogen fertilizer setback treatment was significantly increased by 15.0% and 12.3% than that under the weighted average of monocrops; among which the nitrogen fertilizer setback 20% treatment was increased by 35.9% compared with the traditional nitrogen application, and the nitrogen fertilizer setback 10% treatment was increased by 19.3% compared with the traditional nitrogen application.【Conclusion】The wheat-maize intercropping pattern combined with 20% nitrogen fertilizer postponing could reduce soil evaporation and water consumption during the whole growth period, and increase yield and water productivity, which was a nitrogen application system that could be used for high-yield and high-efficiency production of wheat-maize intercropping in oasis irrigation areas.

Key words: intercropping, nitrogen fertilizer postponing application, soil evaporation, yield, water use efficiency

Fig. 1

Day-by-day average temperature and precipitation in the test area in 2020-2021"

Table 1

Nitrogen fertilization application scheme under different treatments"

种植模式
Cropping
pattern
氮水平
Nitrogen level
基肥
Base fertilizer (kg·hm-2)
追肥Topdressing (kg·hm-2) 后移比例
Postponed percentage (%)
总施氮量
Total fertilizer (kg·hm-2)
拔节期
Jointing
大喇叭口期
Pre-tasseling
开花后15 d
15 d after flowering
W Nw 108 0 72 0 180
W||M Nw 46 0 30 0 76
M N1 72 36 144 108 20 360
N2 72 72 144 72 10 360
N3 72 108 144 36 0 360
W||M N1 42 21 83 63 20 210
N2 42 42 83 42 10 210
N3 42 63 83 21 0 210

Table 2

Soil evaporation at different stages and during the whole growth period under different treatments (mm)"

种植模式
Cropping
pattern
施氮水平
N fertilizer
level
小麦独立生长期
Wheat independent
growth period
麦玉共生期
Symbiotic period of
wheat and maize
玉米独立生长期
Maize independent
growth period
全生育期
Entire growing period
2020 2021 2020 2021 2020 2021 2020 2021
W||M N0 67.6a 68.2a 217.4d 208.4cd 78.4a 69.3a 363.4a 345.8a
N1 62.4b 63.2b 193.5g 188.6e 67.6de 60.2cd 323.4d 312.0c
N2 62.8b 62.5b 202.1f 195.4e 68.9cd 63.2bc 333.9c 321.1c
N3 63.0b 63.7b 209.1e 203.4d 74.8ab 65.7ab 347.0b 332.9b
M N0 251.9a 230.3a 72.6bc 88.4a 324.5d 299.5d
N1 222.5cd 212.9c 58.2f 72.5e 280.7g 266.1g
N2 228.3c 220.7b 63.9e 79.3d 292.2f 279.0f
N3 238.8b 227.3ab 67.9de 83.5bc 306.7e 289.8e
W N0 57.5c 59.6c 156.6h 160.3f 214.2h 219.9h
Nw 52.4d 56.1d 138.6i 147.0g 191.0i 204.4i
显著性(P值) Significance (P value)
种植模式 Cropping pattern (C) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
施氮水平 N fertilizer level (N) 0.002 0.019 0.000 0.000 0.000 0.000 0.000 0.000
种植模式×施氮水平 C×N 0.452 0.842 0.108 0.696 0.479 0.218 0.025 0.070

Fig. 2

Total soil evaporation in different crop strips of intercropping systems"

Table 3

Water storage before sowing and after harvest and total water consumption during the whole growth period under different treatments (mm)"

种植模式
Cropping pattern
施氮水平
N fertilizer level
播前贮水量
Soil water storage before sowing
收后贮水量
Soil water storage after harvest
总耗水量
Total water consumption
2020 2021 2020 2021 2020 2021
W||M N0 272.8b 267.6b 242.5e 242.3cd 643.3ab 672.6a
N1 276.9b 268.9b 261.1bcd 273.0a 628.8bcd 643.3bc
N2 281.4b 269.9b 256.9abcd 252.0bc 637.5abc 665.1ab
N3 287.9b 275.9b 247.8de 231.7d 653.1a 687.4a
M N0 318.3a 325.0a 247.0de 263.7ab 609.3de 621.6cd
N1 326.6a 320.7a 278.4a 273.8a 586.2f 607.1d
N2 326.1a 319.4a 260.7bcd 267.0ab 603.4ef 612.6d
N3 331.2a 323.1a 251.4cde 253.1bc 617.8cde 630.2cd
W N0 284.5b 269.8b 272.8ab 267.5bc 331.2h 379.6f
Nw 277.2b 273.8b 265.5abc 234.9cd 354.7g 416.2e
显著性(P值) Significance (P value)
种植模式 Cropping pattern (C) 0.000 0.000 0.008 0.001 0.000 0.000
施氮水平 N fertilizer level (N) 0.135 0.896 0.006 0.002 0.037 0.017
种植模式×施氮水平 C×N 0.615 0.930 0.011 0.000 0.036 0.007

Fig. 3

Ratio of evaporation to water consumption between different crops"

Table 4

Grain yield performance of crops under different treatments"

种植模式
Cropping pattern
施氮水平
N fertilizer level
小麦产量 Wheat yield (kg·hm-2) 玉米产量 Maize yield (kg·hm-2) 系统产量 Compound (kg·hm-2)
2020 2021 2020 2021 2020 2021
W||M N0 3040.1e 2858.7e 7420.5g 7229.3h 10460.6e 10087.9d
N1 4632.0bc 4959.0bc 11336.6cd 11382.3d 15968.6a 16341.3a
N2 4390.8cd 4374.9c 10169.8e 10092.0f 14560.7b 14466.9b
N3 4028.0d 3690.2d 8757.2f 8613.6g 12785.2c 12303.8c
M N0 10915.9de 10753.9e 10915.9e 10753.9d
N1 15092.4a 15137.1a 15092.4b 15137.1b
N2 13162.1b 12903.7b 13162.1c 12903.7c
N3 12015.3c 12125.0c 12015.3d 12125.0c
W N0 5121.8b 5087.2b 5121.8g 5087.2f
Nw 6806.4a 6949.3a 6806.4f 6949.3e
显著性(P值) Significance (P value)
种植模式 Cropping pattern (C) 0.000 0.000 0.000 0.000 0.000 0.000
施氮水平 N fertilizer level (N) 0.000 0.000 0.000 0.000 0.000 0.000
种植模式×施氮水平 C×N 0.942 0.552 0.532 0.089 0.000 0.000

Fig. 4

Water use efficiency of crops under different treatments"

[1]
王红丽, 张绪成, 魏胜文. 气候变化对西北半干旱区旱作农业的影响及解决途径. 农业资源与环境学报, 2015, 32(6): 517-524.
WANG H L, ZHANG X C, WEI S W. Impact of climate change on rain-fed farming and response solutions in semiarid area of Northwest China. Journal of Agricultural Resources and Environment, 2015, 32(6): 517-524. (in Chinese)
[2]
卓玛草, 袁建钰, 韩博, 李广, 马维伟, 王钧, 刘强. 气候变化对甘肃省雨养农业区玉米种植区划的影响. 干旱地区农业研究, 2021, 39(2): 211-219.
ZHUO M C, YUAN J Y, HAN B, LI G, MA W W, WANG J, LIU Q. Impact of climate change on maize-planting zoning in rainfed agricultural area of Gansu Province. Agricultural Research in the Arid Areas, 2021, 39(2): 211-219. (in Chinese)
[3]
王占彪, 王猛, 尹小刚, 张海林, 褚庆全, 文新亚, 陈阜. 气候变化背景下华北平原夏玉米各生育期水热时空变化特征. 中国生态农业学报, 2015, 23(4): 473-481.
WANG Z B, WANG M, YIN X G, ZHANG H L, CHU Q Q, WEN X Y, CHEN F. Spatiotemporal characteristics of heat and rainfall changes in summer maize season under climate change in the North China Plain. Chinese Journal of Eco-Agriculture, 2015, 23(4): 473-481. (in Chinese)
[4]
要家威, 齐永青, 李怀辉, 沈彦俊. 地下滴灌技术节水潜力及机理研究进展. 中国生态农业学报, 2021, 29(6): 1076-1084.
YAO J W, QI Y Q, LI H H, SHEN Y J. Water saving potential and mechanisms of subsurface drip irrigation: A review. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1076-1084. (in Chinese)
[5]
柴强, 杨彩红, 黄高宝. 干旱区绿洲不同种植模式作物的耗水特征. 中国沙漠, 2010, 30(5): 1153-1159.
CHAI Q, YANG C H, HUANG G B. Characteristics of crop water consumption of different cropping patterns in an arid oasis. Journal of Desert Research, 2010, 30(5): 1153-1159. (in Chinese)
[6]
蔡倩, 孙占祥, 王文斌, 白伟, 杜桂娟, 张悦, 张哲, 冯晨, 向午燕, 赵凤艳. 辽西半干旱区玉米大豆间作对作物产量及水分利用的影响. 中国农业气象, 2022, 43(7): 551-562.
CAI Q, SUN Z X, WANG W B, BAI W, DU G J, ZHANG Y, ZHANG Z, FENG C, XIANG W Y, ZHAO F Y. Yield and water use of maize/soybean intercropping systems in semi-arid western Liaoning. Chinese Journal of Agrometeorology, 2022, 43(7): 551-562. (in Chinese)
[7]
任旭灵, 滕园园, 王一帆, 殷文, 柴强. 玉米间作豌豆种间竞争互补对少耕密植的响应. 中国生态农业学报, 2019, 27(6): 860-869.
REN X L, TENG Y Y, WANG Y F, YIN W, CHAI Q. Response of interspecific competition and complementarity of maize/pea intercropping to reduced tillage and high-density planting. Chinese Journal of Eco-Agriculture, 2019, 27(6): 860-869. (in Chinese)
[8]
牛伊宁, 刘冬梅, 罗珠珠, 柴强. 不同供水水平对玉米/豌豆间作系统作物耗水特征的影响. 干旱地区农业研究, 2018, 36(1): 83-88, 101.
NIU Y N, LIU D M, LUO Z Z, CHAI Q. Characteristics of crop water consumption under maize/pea intercropping systems with different irrigation levels. Agricultural Research in the Arid Areas, 2018, 36(1): 83-88, 101. (in Chinese)
[9]
李含婷, 柴强, 王琦明, 胡发龙, 于爱忠, 赵财, 殷文, 樊志龙, 范虹. 绿洲灌区不同施氮水平下玉米绿肥间作模式的水分利用特征. 中国农业科学, 2021, 54(12): 2608-2618. doi: 10.3864/j.issn.0578-1752.2019.07.012.
LI H T, CHAI Q, WANG Q M, HU F L, YU A Z, ZHAO C, YIN W, FAN Z L, FAN H. Water use characteristics of maize-green manure intercropping under different nitrogen application levels in the oasis irrigation area. Scientia Agricultura Sinica, 2021, 54(12): 2608-2618. doi: 10.3864/j.issn.0578-1752.2019.07.012. (in Chinese)
[10]
张海星, 常生华, 贾倩民, 周大梁, 张程, 刘永杰, 李红, 侯扶江. 禾豆间作与施氮对河西地区青贮玉米产量及水氮利用的影响. 中国土壤与肥料, 2021(3): 51-62.
ZHANG H X, CHANG S H, JIA Q M, ZHOU D L, ZHANG C, LIU Y J, LI H, HOU F J. Effects of maize-legume intercropping and nitrogen application on yield,water and nitrogen utilization of silage maize in Hexi Area. Soil and Fertilizer Sciences in China, 2021(3): 51-62. (in Chinese)
[11]
任媛媛, 赵兰兰, 张岁岐. 旱区间作水分高效利用机制探讨. 干旱地区农业研究, 2023, 41(3): 55-62.
REN Y Y, ZHAO L L, ZHANG S Q. Mechanism of high-efficient water use of intercropping in arid regions. Agricultural Research in the Arid Areas, 2023, 41(3): 55-62. (in Chinese)
[12]
张伟纳, 刘宇娟, 董成, 谢迎新, 马冬云, 赵旭, 岳艳军, 王晨阳, 郭天财. 氮肥运筹对潮土冬小麦/夏玉米产量及氮肥利用率的影响. 土壤学报, 2019, 56(1): 165-175.
ZHANG W N, LIU Y J, DONG C, XIE Y X, MA D Y, ZHAO X, YUE Y J, WANG C Y, GUO T C. Effect of nitrogen application on yield and nitrogen use efficiency of winter wheat and summer maize in fluvo-aquic soil. Acta Pedologica Sinica, 2019, 56(1): 165-175. (in Chinese)
[13]
范虹, 殷文, 柴强. 间作优势的光合生理机制及其冠层微环境特征. 中国生态农业学报, 2022, 30(11): 1750-1761.
FAN H, YIN W, CHAI Q. Research progress on photo-physiological mechanisms and characteristics of canopy microenvironment in the formation of intercropping advantages. Chinese Journal of Eco- Agriculture, 2022, 30(11): 1750-1761. (in Chinese)
[14]
高艳梅, 孙敏, 高志强, 崔凯, 赵红梅, 杨珍平, 郝兴宇. 不同降水年型旱地小麦覆盖对产量及水分利用效率的影响. 中国农业科学, 2015, 48(18): 3589-3599. doi: 10.3864/j.issn.0578-1752.2015.18.003.
GAO Y M, SUN M, GAO Z Q, CUI K, ZHAO H M, YANG Z P, HAO X Y. Effects of mulching on grain yield and water use efficiency of dryland wheat in different rainfall years. Scientia Agricultura Sinica, 2015, 48(18): 3589-3599. doi: 10.3864/j.issn.0578-1752.2015.18.003. (in Chinese)
[15]
王玉珑, 于爱忠, 吕汉强, 吕奕彤, 苏向向, 王鹏飞, 柴健. 绿洲灌区麦后复种绿肥并还田对翌年玉米根系性状及水分利用效率的影响. 作物学报, 2023, 49(5): 1350-1362.
WANG Y L, YU A Z, LYU H Q, LYU Y T, SU X X, WANG P F, CHAI J. Effects of green manure replanting and returning after wheat on following year’s maize root traits and water use efficiency in oasis irrigation area. Acta Agronomica Sinica, 2023, 49(5): 1350-1362. (in Chinese)
[16]
滕园园, 赵财, 柴强, 胡发龙, 冯福学. 氮肥后移对玉米间作豌豆耗水特性的调控效应. 作物学报, 2016, 42(3): 446-455.
TENG Y Y, ZHAO C, CHAI Q, HU F L, FENG F X. Effects of postponing nitrogen topdressing on water use characteristics of maize-pea intercropping system. Acta Agronomica Sinica, 2016, 42(3): 446-455. (in Chinese)

doi: 10.3724/SP.J.1006.2016.00446
[17]
彭霄, 蒲甜, 杨峰, 杨文钰, 王小春. 灌水时间和灌水比例对单套作玉米产量及水分利用效率的影响. 中国农业科学, 2019, 52(21): 3763-3772. doi: 10.3864/j.issn.0578-1752.2019.21.005.
PENG X, PU T, YANG F, YANG W Y, WANG X C. Effects of irrigation time and ratio on yield and water use efficiency of maize under monoculture and intercropping. Scientia Agricultura Sinica, 2019, 52(21): 3763-3772. doi: 10.3864/j.issn.0578-1752.2019.21.005. (in Chinese)
[18]
李倩倩, 王星运, 李孟浩, 陈小莉, 任小龙, 赵西宁. 小麦玉米间作和氮肥对作物耗水特性及水分利用的影响. 西北农业学报, 2021, 30(6): 819-828.
LI Q Q, WANG X Y, LI M H, CHEN X L, REN X L, ZHAO X N. Effects of wheat/maize strip intercropping and nitrogen fertilizer on crops water consumption and water use. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30(6): 819-828. (in Chinese)
[19]
王娟, 张瑜, 黄成真, 庄晔, 冯绍元. 不同覆盖方式对新复垦区土壤水热及春玉米产量的影响. 中国生态农业学报, 2021, 29(5): 844-854.
WANG J, ZHANG Y, HUANG C Z, ZHUANG Y, FENG S Y. Effects of different mulching on soil water-heat and spring maize yield in newly reclaimed land. Chinese Journal of Eco-Agriculture, 2021, 29(5): 844-854. (in Chinese)
[20]
WANG Y F, YIN W, HU F L, FAN Z L, ZHAO C, YU A Z, CHAI Q. Interspecies interaction intensity influences water consumption in wheat-maize intercropping by regulating root length density. Crop Science, 2022, 62(1): 441-454.

doi: 10.1002/csc2.v62.1
[21]
胡发龙, 柴强, 甘延太, 殷文, 赵财, 冯福学. 少免耕及秸秆还田小麦间作玉米的碳排放与水分利用特征. 中国农业科学, 2016, 49(1): 120-131. doi: 10.3864/j.issn.0578-1752.2016.01.011.
HU F L, CHAI Q, GAN Y T, YIN W, ZHAO C, FENG F X. Characteristics of soil carbon emission and water utilization in wheat/maize intercropping with minimal/zero tillage and straw retention. Scientia Agricultura Sinica, 2016, 49(1): 120-131. doi: 10.3864/j.issn.0578-1752.2016.01.011. (in Chinese)
[22]
李慧, 王旭敏, 刘朋召, 刘苗, 王小利, 王瑞, 李军. 耦合效应弥补水氮减量对夏玉米养分吸收和利用的不利影响. 植物营养与肥料学报, 2022, 28(7): 1283-1296.
LI H, WANG X M, LIU P Z, LIU M, WANG X L, WANG R, LI J. Interaction offset the adverse impacts of water and nitrogen reduction on nutrient accumulation and utilization of summer maize. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1283-1296. (in Chinese)
[23]
魏廷邦, 胡发龙, 赵财, 冯福学, 于爱忠, 刘畅, 柴强. 氮肥后移对绿洲灌区玉米干物质积累和产量构成的调控效应. 中国农业科学, 2017, 50(15): 2916-2927. doi: 10.3864/j.issn.0578-1752.2017.15.006.
WEI T B, HU F L, ZHAO C, FENG F X, YU A Z, LIU C, CHAI Q. Response of dry matter accumulation and yield components of maize under N-fertilizer postponing application in oasis irrigation areas. Scientia Agricultura Sinica. 2017, 50(15): 2916-2927. doi: 10.3864/j.issn.0578-1752.2017.15.006. (in Chinese)
[24]
X M, ZHANG Y X, HU L, ZHANG Y, ZHANG B, XIA H Y, DU W Y, FAN S J, KONG L G. Low-nitrogen stress stimulates lateral root initiation and nitrogen assimilation in wheat: Roles of phytohormone signaling. Journal of Plant Growth Regulation, 2021, 40(1): 436-450.

doi: 10.1007/s00344-020-10112-5
[25]
LI Y P, GU X B, LI Y N, FANG H, CHEN P P. Ridge-furrow mulching combined with appropriate nitrogen rate for enhancing photosynthetic efficiency, yield and water use efficiency of summer maize in a semi-arid region of China. Agricultural Water Management, 2023, 287: 108450.

doi: 10.1016/j.agwat.2023.108450
[26]
SHI W X, ZHANG Q, LI L T, TAN J F, XIE R H, WANG Y L. Hole fertilization in the root zone facilitates maize yield and nitrogen utilization by mitigating potential N loss and improving mineral N accumulation. Journal of Integrative Agriculture, 2023, 22(4): 1184-1198.

doi: 10.1016/j.jia.2022.09.018
[27]
马阳, 吴敏, 刘晓明, 李赟虹, 张世卿, 王亚玲, 孙坤雁, 彭正萍. 夏玉米根系活性、养分吸收和产量对不同施肥方式的响应. 中国土壤与肥料, 2020(5): 95-100.
MA Y, WU M, LIU X M, LI Y H, ZHANG S Q, WANG Y L, SUN K Y, PENG Z P. Responses of root activity, nutrient uptake and yield of summer maize to different fertilization methods. Soil and Fertilizer Sciences in China, 2020(5): 95-100. (in Chinese)
[28]
王林, 王琦, 张恩和, 刘青林, 俞华林. 间作与施氮对秸秆覆盖作物生产力和水分利用效率的影响. 中国生态农业学报, 2014, 22(8): 955-964.
WANG L, WANG Q, ZHANG E H, LIU Q L, YU H L. Effect of nitrogen application on productivity and water use efficiency of wheat/maize intercropping system under straw mulching. Chinese Journal of Eco-Agriculture, 2014, 22(8): 955-964. (in Chinese)
[29]
冯福学, 孔学夫, 殷文, 胡发龙, 赵财, 柴强, 杨彩红. 小麦间作玉米农田耗水特性及产量变化对根系分隔的响应. 干旱地区农业研究, 2016, 34(4): 205-210.
FENG F X, KONG X F, YIN W, HU F L, ZHAO C, CHAI Q, YANG C H. Water consumption characteristic and yield changes in response to different root partition patterns in wheat-maize intercropping system. Agricultural Research in the Arid Areas, 2016, 34(4): 205-210. (in Chinese)
[30]
XIAO Q, ZHU L X, ZHANG H P, LI X Y, SHEN Y F, LI S Q. Soil amendment with biochar increases maize yields in a semi-arid region by improving soil quality and root growth. Crop and Pasture Science, 2016, 67(5): 495-507.

doi: 10.1071/CP15351
[31]
徐珂, 樊志龙, 殷文, 赵财, 于爱忠, 胡发龙, 柴强. 氮肥后移及间作对玉米光合特性的耦合效应. 中国农业科学, 2022, 55(21): 4131-4143. doi: 10.3864/j.issn.0578-1752.2022.21.004.
XU K, FAN Z L, YIN W, ZHAO C, YU A Z, HU F L, CHAI Q. Coupling effects of N-fertilizer postponing application and intercropping on maize photosynthetic physiological characteristics. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143. doi: 10.3864/j.issn.0578-1752.2022.21.004. (in Chinese)
[32]
YIN W, FENG F X, ZHAO C, YU A Z, HU F L, CHAI Q, GAN Y T, GUO Y. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments. International Journal of Biometeorology, 2016, 60(9): 1423-1437.

doi: 10.1007/s00484-016-1134-y pmid: 26813883
[33]
殷文, 柴强, 胡发龙, 樊志龙, 范虹, 于爱忠, 赵财. 干旱内陆灌区不同秸秆还田方式下春小麦田土壤水分利用特征. 中国农业科学, 2019, 52(7): 1247-1259. doi: 10.3864/j.issn.0578-1752.2019.07.012.
YIN W, CHAI Q, HU F L, FAN Z L, FAN H, YU A Z, ZHAO C. Characteristics of soil water utilization in spring wheat field with different straw retention approaches in dry inland irrigation areas. Scientia Agricultura Sinica, 2019, 52(7): 1247-1259. doi: 10.3864/j.issn.0578-1752.2019.07.012. (in Chinese)
[34]
杨君林, 马忠明, 张立勤, 王智琦, 连彩云, 薛亮. 施氮量对河西绿洲灌区垄作春小麦土壤水氮动态及吸收利用的影响. 麦类作物学报, 2015, 35(9): 1262-1268.
YANG J L, MA Z M, ZHANG L Q, WANG Z Q, LIAN C Y, XUE L. Effect of nitrogen fertilizer rate on soil water-nitrogen dynamics and absorption and utilization of ridge culture spring wheat in Hexi oasis irrigation district. Journal of Triticeae Crops, 2015, 35(9): 1262-1268. (in Chinese)
[35]
陈国栋, 万素梅, 冯福学, 柴强, 赵宏福, 陈锦锋. 带型对小麦间作玉米产量和种间竞争力的影响. 西北农业学报, 2017, 26(7): 990-997.
CHEN G D, WAN S M, FENG F X, CHAI Q, ZHAO H F, CHEN J F. Effects of rows arrangement on yield and interspecific competition of intercropped wheat and maize. Acta Agriculturae Boreali-occidentalis Sinica, 2017, 26(7): 990-997. (in Chinese)
[36]
吕明洋, 王俊, 胡宁, 隋标, 王鸿斌, 赵兴敏, 赵兰坡. 吉林玉米带不同玉米//小麦间作模式对作物产量及水分利用率的影响. 玉米科学, 2019, 27(2): 106-112.
M Y, WANG J, HU N, SUI B, WANG H B, ZHAO X M, ZHAO L P. Effects of different maize//wheat intercropping systems on crop yield and water use efficiency in Jilin maize belt. Journal of Maize Sciences, 2019, 27(2): 106-112. (in Chinese)
[37]
XU K, CHAI Q, HU F L, FAN Z L, YIN W. N-fertilizer postponing application improves dry matter translocation and increases system productivity of wheat/maize intercropping. Scientific Reports, 2021, 11(1): 22825.
[38]
杨明达, 马守臣, 杨慎骄, 张素瑜, 关小康, 李学梅, 王同朝, 李春喜. 氮肥后移对抽穗后水分胁迫下冬小麦光合特性及产量的影响. 应用生态学报, 2015, 26(11): 3315-3321.
YANG M D, MA S C, YANG S J, ZHANG S Y, GUAN X K, LI X M, WANG T C, LI C X. Effects of postponing nitrogen application on photosynthetic characteristics and grain yield of winter wheat subjected to water stress after heading stage. Chinese Journal of Applied Ecology, 2015, 26(11): 3315-3321. (in Chinese)
[39]
付威, 樊军, 胡雨彤, 赵晶, 郝明德. 施肥和地膜覆盖对黄土旱塬土壤理化性质和冬小麦产量的影响. 植物营养与肥料学报, 2017, 23(5): 1158-1167.
FU W, FAN J, HU Y T, ZHAO J, HAO M D. Effects of fertilization and film mulching on soil physical and chemical properties and winter wheat yield on the Loess Plateau. Journal of Plant Nutrition and Fertilizer, 2017, 23(5): 1158-1167. (in Chinese)
[1] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[2] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[3] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[4] WANG XiaoBin, YAN Xiang, LI XiuYing, SUN ZhaoKai, TU Cheng. Assessment of Application Efficacy for Agro-Forestry Absorbent Polymers and Their Environmental Risks [J]. Scientia Agricultura Sinica, 2024, 57(6): 1117-1136.
[5] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[6] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[7] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[8] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[9] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[10] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
[11] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
[12] WANG YueMei, TIAN HaiMei, WANG XiNa, HAO WenYue, LÜ ZheMing, YU JinMing, TAN JunLi, WANG ZhaoHui. Effect of Continuous Reduction of Fertilizer Application on Yield Stability of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2024, 57(3): 539-554.
[13] LEI XinHui, WU YiXin, WANG JiaLe, TAO JinCai, WAN ChenXi, WANG Meng, GAO XiaoLi, FENG BaiLi, GAO JinFeng. Effects of Planting Density and Fertilization Level on Photosynthesis, Yield and Lodging Resistance of Common Buckwheat [J]. Scientia Agricultura Sinica, 2024, 57(2): 264-277.
[14] DONG ErWei, WANG Yuan, WANG JinSong, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan. Effects of Nitrogen Fertilization Levels on Grain Yield, Plant Nitrogen Utilization Characteristics and Grain Quality of Foxtail Millet [J]. Scientia Agricultura Sinica, 2024, 57(2): 306-318.
[15] HE Jing, WANG ZhenHua, LIU Jian, MA ZhanLi, WEN Yue. Effects of Irrigation Water Temperature and Nitrogen Application Rate on Soil Hydrothermal Environment and Cotton Growth and Yield Under Mulched Drip Irrigation [J]. Scientia Agricultura Sinica, 2024, 57(2): 319-335.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!