Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (20): 4130-4144.doi: 10.3864/j.issn.0578-1752.2024.20.017

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Full-Length Transcriptomic Analysis of Chicken Pituitary Reveals Candidate Genes for Testicular Trait

MA JingE(), XIONG XinWei, ZHOU Min, WU SiQi, HAN Tian, RAO YouSheng, WANG ZhangFeng, XU JiGuo()   

  1. Institution of Biological Technology, Nanchang Normal University/JiangXi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang 330032
  • Received:2023-08-23 Accepted:2024-09-06 Online:2024-10-16 Published:2024-10-24
  • Contact: XU JiGuo

Abstract:

【Background】Testis is an important reproductive organ of male animals, which has the function of producing sperm and secreting androgen. The quality of testis is directly related to reproductive performance. Testicular traits are regulated by multiple genes in the hypothalamic-pituitary-gonadal axis, but the molecular mechanism is still unclear. The variation coefficient of testicular traits was large in Ningdu yellow chicken, with poor reproductive performance consistency. 【Objective】 In order to explore candidate genes and key signaling pathways, full-length transcriptome sequencing was performed on pituitary tissues of six individuals with different testicular traits. The selection and breeding of testis traits was expected to develop local chicken breeding with these founding genetic basis.【Method】A total of seventy 22-week-old Ningdu yellow roosters were studied. Six individuals were randomly selected, including three individuals with large testicular and others with small testicular. Full-length transcript expression profile was constructed on pituitary tissue for each individual. Then the genes or transcripts were selected with high expression or different expression between two groups of individuals. Gene function enrichment analysis was also performed for these differentially expressed genes or transcripts. Six genes were randomly selected to verify the gene expression level. Referred to known marker genes in pituitary cells, screening the differentially expressed genes or transcripts were carried out corresponding to the marker genes in the eight kinds of cells. The correlation was analyzed between testicular traits and these genes or transcripts and also those with high expressional level.【Result】In six pituitary tissues, 21 834 genes and 29 355 full-length transcripts were detected. Among them, 332 genes and 229 transcripts were differentially expressed between the two groups. KEGG pathway analysis showed that differentially expressed genes or transcripts were mainly concentrated in apelin signaling pathway, and glycerophospholipid metabolism. Five marker genes of the gonadotropin cell were identified related to part of testicular traits, including NFASC (neurofascin) and its transcript XM_015298904.2, TESC(tescalcin) and its transcript XM_025155510.1, ONT.20974.4 (one transcript of follicle stimulating hormone beta), RLN3 (relaxin 3), ONT.1176.4 (one transcript of NADH: ubiquinone oxidoreductase subunit B2). Four genes were also identified related to part of testicular traits, including EGR1 (early growth response 1) as one of the marker genes in the lactotrophs, TMSB4X (thymosin beta 4, X-linked) and C1H12ORF57(chromosome 1 open reading frame) as the marker genes of the folliculo-stellate cells, CHGB (chromogranin B) as one of the marker genes in the thyrotrophs. Two highly expressed genes were identified related to part of testicular traits, including TMSB4X and HSP90AA1 (heat shock protein 90 alpha family class A member 1). FSHB and EGR1 were found as node genes in the gene interaction network.【Conclusion】Preliminary functional analysis showed that EGR1, TMSB4X, FSHB and RLN3 were the key genes in testicular trait regulation. MAPK, neuroactive ligand-receptor interaction and GnRH signaling pathway played the key role in the regulation of testicular traits.

Key words: transcriptome sequencing, Ningdu yellow chicken, testicular quality, candidate gene

Table 1

Specific primers used for qRT-PCR"

基因名 Gene name 上游引物 Forward primer 下游引物 Reverse primer
WNT4 CATCGAGGAGTGCCAGTACC TCGCATCCACACTTGTCCAG
GH TGCCGAGACATATAAAGAGTTC GAGCTGGGATGGTTTCTGAGTA
POMC CCATAGCTCCTCCGCAGTTT CCACGCTCCCACTTACCAAA
TPH1 TCTTGCATCACTTGGGGCAT GCGAGTGCTTGAGCTCACTA
TSHB ACTGCCTGGCCATCAACAC ACACGTTTTGAGACAGAGCACTTTT
COCH TTCATCTTTCTCAGTGACTCCAGG AACATGAGGCCCTTCCGTTC
β-actin TCATTGTGCTAGGTGCCA CCTCTTCCAGCCATCTTT

Table 2

Statistical analysis table of testicular trait"

性状
Traits
最小值
Minus
最大值
Max
平均值±标准差
Mean ± SD
变异系数
Variation coefficient
左侧睾丸质量 Left testis weight (g) 3.4 35.3 16.67±6.45 0.39
右侧睾丸质量 Right testis weight (g) 2.6 32.9 15±6.31 0.42
睾丸总质量 Total testis weight (g) 6.0 61.2 31.67±12.45 0.39
左睾丸系数 Left testis percentage 0.002 0.09 0.01±0.01 0.37
右睾丸系数 Right testis percentage 0.0017 0.06 0.01±0.01 0.40
睾丸系数 Total testis percentage 0.0037 0.15 0.02±0.02 0.37
屠宰活重 Body weight (g) 1776 2196 1778.76±276.47 0.11

Table 3

Statistical analysis table of testicular trait for six sequencing individuals"

组别
Group
屠宰活重
Body weight (g)
左侧睾丸质量
Left testis weight (g)
右侧睾丸质量
Right testis weight (g)
睾丸总质量
Total testis weight (g)
左睾丸系数
Left testis percentage
右睾丸系数
Right testis percentage
睾丸系数
Total testis percentage
屠宰活重平均值±标准差
Mean ± SD of the body weight
睾丸总质量平均值±标准差
Mean ± SD of the total testis weight
大睾丸组
H-PIT
1548.5 27.6 32.9 60.5 0.0180 0.0210 0.0390 1827±199.0 58.2±3.8*
1931.4 23.9 28.9 52.8 0.0120 0.0150 0.0270
2001.0 35.3 25.9 61.2 0.0180 0.0130 0.0310
小睾丸组
L-PIT
1586.1 5.1 4.1 9.2 0.0032 0.0026 0.0058 1432±113.4 7.8±1.4
1316.9 4.5 3.8 8.3 0.0034 0.0029 0.0063
1392.0 3.4 2.6 6.0 0.0024 0.0019 0.0043

Table 4

The top 10 transcripts with the highest expression level in the pituitary tissue of Ningdu yellow chicken"

转录本编号
Transcript ID
对应基因名
Gene name
H-PIT组平均CPM值
The mean CPM of the H-PIT
L-PIT组平均CPM值
The mean CPM of the L-PIT
6个样品平均CPM值
The mean CPM of the six individuals
ONT.45201.8 ONT.45201 59338.9 54252.0 56795.5
XM_421330.6 CHGA 49840.5 53654.7 51747.6
XM_015285103.2 POMC 39287.1 38699.3 38993.2
ONT.14667.8 CGA 36811.5 24317.2 30564.4
ONT.9069.1 PRL 26192.1 22811.4 24501.7
NM_204359.2 GH 14833. 4 27171.4 21002.4
NM_205500.2 CST3 13824.6 12563.8 13194.2
XM_004946664.3 UBB 7980.8 6959.8 7470.3
ONT.14667.1 ONT.14667 5623.5 8094.4 6858.9
ONT.39062.2 PPIA 5717.97 4953.3 5335.7

Fig. 1

Comparison of six genes expression between qRT-PCR (A, B) and RNA-sequencing (C, D)"

Table 5

The top 10 transcripts with the highest differential multiple up-regulated in the small testicular group"

转录本编号 Transcript ID 基因名 Gene name 基因描述 Gene description
XM_420332.6 THOC2 THO复合体2 THO complex 2
XM_015299935.2 CIRBP 低温诱导RNA结合蛋白 cold inducible RNA binding protein
XM_025147888.1 GREB1L GREB1样视黄酸受体共激活剂 GREB1 like retinoic acid receptor coactivator
XM_025154119.1 SCAPER S期细胞周期素A相关蛋白 S-phase cyclin A associated protein in the ER
NM_001305114.2 ARL6 类ADP核糖化因子GTPase 6 ADP ribosylation factor like GTPase 6
NM_001012919.2 DNPEP 天门冬氨酰氨肽酶 Aspartyl aminopeptidase
ONT.28408.11 OTOS 耳螺菌素 Otospiralin
XM_421638.6 ABCG2 ATP结合盒G亚族成员2 ATP binding cassette subfamily G member 2
ONT.45513.10 TRIR 19号染色体开放阅读框43 Chromosome 19 open reading frame 43
XM_015298649.2 FDPS 法尼基二磷酸合成酶 Farnesyl diphosphate synthase

Table 6

The top 10 transcripts with the highest differential multiple down-regulated in the small testicular group"

转录本编号 Transcript ID 基因名 Gene name 基因描述 Gene description
XM_025149862.1 THOC2 THO复合体2 THO complex 2
XM_004940000.3 NUDCD1 NudC结构域1 NudC domain containing 1
NM_001278016.1 LYRM2 LYR 模块2 LYR motif containing 2
XM_015276855.2 GIGYF2 GRB10互作GYF蛋白2 GRB10 interacting GYF protein 2
XM_004935722.3 AHI1 Abelson助手集成点1 Abelson helper integration site 1
XM_001232161.4 ADAR RNA特异性腺苷脱氨酶 Adenosine deaminase, RNA specific
XM_015290097.2 HSP40 热应激蛋白40 Heat shock protein 40
XM_015296842.2 AGRN 集聚蛋白 Agrin
ONT.45513.1 TRIR 19号染色体开放阅读框43 Chromosome 19 open reading frame 43
ONT.37858.1 WFDC2L WAP四二硫核结构域样蛋白2 WAP four-disulfide core domain protein 2-like

Fig. 2

Bubble map of KEGG enrichment pathway of pituitary differentially expressed genes (A) and transcripts (B) The abscissa represents the enrichment factor corresponding to the pathway, and the ordinate represents the pathway name"

Table 7

Analysis of candidate genes related to testicular trait"

基因名
Gene name
基因描述
Gene description
细胞类型
Cell type
染色体号
Chromosome No.
平均CPM值
The mean CPM
表达量上/下调
Up/down regulated
TFPI2 组织因子途径抑制物2 Tissue factor pathway inhibitor 2 Endo 2 39.01 up
TMSB4X 胸腺素β4X Thymosin beta 4, X-linked FS 1 3765.66 down
C1H12ORF57 1号染色体开放阅读框人类C12orf57
Chromosome 1 open reading frame, human C12orf57
FS 1 32.85 up
MRPS12 线粒体核糖体蛋白S12 Mitochondrial ribosomal protein S12 FS 32 29.37 up
NFASC 神经束蛋白 Neurofascin Gona 26 398.44 down
RLN3 松弛素3 Relaxin 3 Gona Z 3.9 down
TESC 钙结合蛋白 Tescalcin Gona 15 350.5 down
NDUFB2 NADH: 泛醌氧化还原酶B2亚基
NADH: ubiquinone oxidoreductase subunit B2
Gona 1 157.41 up
BTG2 抗增殖因子2 BTG anti-proliferation factor 2 Lac 26 234.04 up
DUSP1 双特异性磷酸酶1 Dual specificity phosphatase 1 Lac 13 51.76 up
EGR1 早期生长反应1 Early growth response 1 Lac 13 120.79 up
GPX1 谷胱甘肽过氧化物酶1 Glutathione peroxidase 1 RBC 12 117.38 up
CHGB 嗜铬粒蛋白B Chromogranin B Thy 3 2338.41 up
DIO2 去碘酶,碘甲状腺原氨酸II型 Deiodinase, iodothyronine type II Thy 5 134.46 up
SPCS3 信号肽酶复合体亚基3 Signal peptidase complex subunit 3 WBC 4 80.44 up

Table 8

Analysis of candidate transcripts related to testicular trait"

转录本编号
Transcript ID
对应基因名
Gene name
基因描述
Gene description
细胞类型
Cell type
染色体号
Chromosome No.
平均CPM值
The mean
CPM
表达量上/下调
Up/down regulated
ONT.1176.4 NDUFB2 NADH: 泛醌氧化还原酶B2亚基
NADH: ubiquinone oxidoreductase subunit B2
Gona 1 95.7 上调Up
XM_015298904.2 NFASC 神经束蛋白 Neurofascin Gona 26 1.4 下调Down
XM_025155510.1 TESC 钙结合蛋白 Tescalcin Gona 15 149.8 下调Down
ONT.20974.4 FSHB 促卵泡激素亚基 Follicle stimulating hormone beta subunit Gona 5 111.4 下调Down
ONT.34028.6 ACTB β-肌动蛋白 Actin, beta Lac 14 7.2 上调Up
XM_015294201.2 HAGH 羟酰谷胱甘肽水解酶 Hydroxyacylglutathione hydrolase RBC 14 1.5 上调Up

Table 9

Correlation analysis table between genes or transcripts and testicular traits"

基因名/转录本编号
Gene name/
transcript ID
屠宰重
Body
weight
左睾丸重
Left testis
weight
右睾丸重
Right testis weight
睾丸总重
Total testis weight
左睾丸率
Left testis percentage
右睾丸率
Right testis percentage
总睾丸率
Total testis percentage
NFASC 0.6 0.94** 0.94** 0.94** 0.94** 0.89* 0.94**
RLN3 0.7 0.8 0.8 0.8 0.8 0.83* 0.8
TESC 0.5 0.83* 1.0** 0.83* 0.89* 0.94** 0.89*
TMSB4X 0.4 0.89* 0.89* 0.89* 1.0** 0.94** 1.0**
CHGB -0.6 -0.8 -0.94** -0.8 -0.8 -.083* -0.8
C1H12ORF57 -0.7 -0.829* -0.7 -0.83* -0.7 -0.6 -0.7
EGR1 -0.6 -0.8 -0.94** -0.8 -0.8 -0.83* -0.8
GPX1 -0.7 -0.83* -0.7 -0.83* -0.7 -0.6 -0.7
TFPI2 -0.94** -0.89* -0.7 -0.89* -0.7 -0.6 -0.7
ONT.1176.4 -0.4 -0.7 -0.7 -0.7 -0.83* -0.8 -0.83*
XM_015298904.2 0.4 0.6 0.81* 0.6 0.8 0.81* 0.8
XM_025155510.1 0.8 1.0** 0.83* 1.0** 0.89* 0.8 0.89*
ONT.20974.4 0.83* 0.83* 0.83* 0.83* 0.7 0.8 0.7
HSP90AA1 0.79 0.84* 0.75 0.81 0.82* 0.7 0.77

Fig. 3

The protein interaction network from differentially expressed genes (A) and transcripts (B) Nodes represents the name of protein, edge represents interaction between the two link proteins, and the colour of the node represents value of the clustering coefficient, the biggest point, the closer to dark. The size of a node represents the number of edges connected to it, the more edges there are, the larger the node"

[1]
KASTELIC J P. Understanding and evaluating bovine testes. Theriogenology, 2014, 81(1): 18-23.

doi: 10.1016/j.theriogenology.2013.09.001 pmid: 24274406
[2]
HUANG Y T, JOHNSON R K. Effect of selection for size of testes in boars on semen and testis traits. Journal of Animal Science, 1996, 74(4): 750-760.

pmid: 8727995
[3]
CARDOSO-MOREIRA M, HALBERT J, VALLOTON D, VELTEN B, CHEN C Y, SHAO Y, LIECHTI A, ASCENÇÃO K, RUMMEL C, OVCHINNIKOVA S, et al. Gene expression across mammalian organ development. Nature, 2019, 571(7766): 505-509.
[4]
ZHANG J N, LV C, MO C H, LIU M, WAN Y P, LI J, WANG Y J. Single-cell RNA sequencing analysis of chicken anterior pituitary: a bird’s-eye view on vertebrate pituitary. Frontiers in Physiology, 2021, 12: 562817.
[5]
LI Y D, LIU X, BAI X, WANG Y X, LENG L, ZHANG H, LI Y M, CAO Z P, LUAN P, XIAO F, GAO H H, SUN Y H, WANG N, LI H, WANG S Z. Genetic parameters estimation and genome-wide association studies for internal organ traits in an F2 chicken population. Journal of Animal Breeding and Genetics, 2022, 139(4): 434-446.
[6]
ZHANG H, YU J Q, YANG L L, KRAMER L M, ZHANG X Y, NA W, REECY J M, LI H. Identification of genome-wide SNP-SNP interactions associated with important traits in chicken. BMC Genomics, 2017, 18(1): 892.
[7]
ZHANG H, NA W, ZHANG H L, WANG N, DU Z Q, WANG S Z, WANG Z P, ZHANG Z W, LI H. TCF21 is related to testis growth and development in broiler chickens. Genetics, Selection, Evolution: GSE, 2017, 49(1): 25.
[8]
SUN Y F, LIU R R, ZHAO G P, ZHENG M Q, LI P, LIU L, WEN J. Genome-wide linkage analysis identifies loci for testicle and ovary traits in chickens. Animal Biotechnology, 2018, 29(4): 309-315.

doi: 10.1080/10495398.2017.1397004 pmid: 29300118
[9]
字向东, 罗斌, 夏威, 郑玉才, 熊显荣, 李键, 钟金城, 朱江江, 张正帆. 基于RNA-Seq技术的牦牛体外受精胚胎发育转录组分析. 中国农业科学, 2018, 51(8): 1577-1589.

doi: 10.3864/j.issn.0578-1752.2018.08.015
ZI X D, LUO B, XIA W, ZHENG Y C, XIONG X R, LI J, ZHONG J C, ZHU J J, ZHANG Z F. Transcriptomic analysis of IVF embryonic development in the yak (Bos grunniens) via RNA-seq. Scientia Agricultura Sinica, 2018, 51(8): 1577-1589. (in Chinese)
[10]
李鹏飞, 孟金柱, 景炅婕, 毕锡麟, 王锴, 朱芷葳, 吕丽华. 转录组测序筛选牛卵泡发育相关基因及其表达差异分析. 中国农业科学, 2018, 51(15): 3000-3008.

doi: 10.3864/j.issn.0578-1752.2018.15.015
LI P F, MENG J Z, JING J J, BI X L, WANG K, ZHU Z W, L H. Follicular development related genes screening and differential expressed analysis by transcriptome sequencing in bovine ovary. Scientia Agricultura Sinica, 2018, 51(15): 3000-3008. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.15.015
[11]
朱志明, 陈红萍, 林如龙, 缪中纬, 辛清武, 李丽, 张丹青, 郑嫩珠. 山麻鸭开产期和产蛋高峰期卵巢组织转录组分析. 中国农业科学, 2016, 49(5): 998-1007.

doi: 10.3864/j.issn.0578-1752.2016.05.020
ZHU Z M, CHEN H P, LIN R L, MIAO Z W, XIN Q W, LI L, ZHANG D Q, ZHENG N Z. Transcriptome analysis of ovary tissue in early laying period and egg laying peak period of Shanma ducks. Scientia Agricultura Sinica, 2016, 49(5): 998-1007. (in Chinese)
[12]
李丽, 缪中纬, 辛清武, 朱志明, 章琳俐, 庄晓东, 郑嫩珠. 半番鸭与番鸭精巢组织差异表达转录组测序分析. 中国农业科学, 2017, 50(18): 3608-3619.

doi: 10.3864/j.issn.0578-1752.2017.18.016
LI L, MIAO Z W, XIN Q W, ZHU Z M, ZHANG L L, ZHUANG X D, ZHENG N Z. Transcriptome analysis of differential gene expression associated with testis tissue in mule duck and Muscovy duck. Scientia Agricultura Sinica, 2017, 50(18): 3608-3619. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.18.016
[13]
SHEN X, BAI X, LUO C L, JIANG D L, LI X J, ZHANG X M, TIAN Y B, HUANG Y M. Quantitative proteomic analysis of chicken serum reveals key proteins affecting follicle development during reproductive phase transitions. Poultry Science, 2021, 100(1): 325-333.

doi: 10.1016/j.psj.2020.09.058 pmid: 33357697
[14]
MISHRA S K, CHEN B L, ZHU Q, XU Z X, NING C Y, YIN H D, WANG Y, ZHAO X L, FAN X L, YANG M Y, YANG D Y, NI Q Y, LI Y, ZHANG M W, LI D Y. Transcriptome analysis reveals differentially expressed genes associated with high rates of egg production in chicken hypothalamic-pituitary-ovarian axis. Scientific Reports, 2020, 10(1): 5976.
[15]
BRADY K, LIU H C, HICKS J A, LONG J A, PORTER T E. Transcriptome analysis of the hypothalamus and pituitary of Turkey hens with low and high egg production. BMC Genomics, 2020, 21(1): 647.
[16]
WANG D D, ZHANG Y Y, TENG M L, WANG Z, XU C L, JIANG K R, MA Z, LI Z J, TIAN Y D, KANG X T, LI H, LIU X J. Integrative analysis of hypothalamic transcriptome and genetic association study reveals key genes involved in the regulation of egg production in indigenous chickens. Journal of Integrative Agriculture, 2022, 21(5): 1457-1474.
[17]
BRADY K, LONG J A, LIU H C, PORTER T E. Characterization of hypothalamo-pituitary-thyroid axis gene expression in the hypothalamus, pituitary gland, and ovarian follicles of Turkey hens during the preovulatory surge and in hens with low and high egg production. Poultry Science, 2021, 100(4): 100928.
[18]
马丽娜, 杨进波, 丁逸菲, 李颖康. 三代测序技术及其应用研究进展. 中国畜牧兽医, 2019, 46(8): 2246-2256.

doi: 10.16431/j.cnki.1671-7236.2019.08.007
MA L N, YANG J B, DING Y F, LI Y K. Research progress on three generations sequencing technology and its application. China Animal Husbandry & Veterinary Medicine, 2019, 46(8): 2246-2256. (in Chinese)
[19]
LIN J Y, GUAN L F, GE L Y, LIU G Y, BAI Y J, LIU X L. Nanopore-based full-length transcriptome sequencing of Muscovy duck (Cairina moschata) ovary. Poultry Science, 2021, 100(8): 101246.
[20]
谢书琼, 马士龙, 唐娇, 刘益丽, 江明锋. 牦牛皱胃全长转录组测序分析. 中国畜牧兽医, 2022, 49(5): 1610-1620.

doi: 10.16431/j.cnki.1671-7236.2022.05.002
XIE S Q, MA S L, TANG J, LIU Y L, JIANG M F. Sequencing analysis of full-length transcriptome of abomasum in yak. China Animal Husbandry & Veterinary Medicine, 2022, 49(5): 1610-1620. (in Chinese)
[21]
魏文景, 孙学良, 占思远, 陈瑜, 张国俊, 苗斌, 张红平, 郭家中. 山羊5个组织的全长转录组构建与分析. 四川农业大学学报, 2022, 40(3): 421-426.
WEI W J, SUN X L, ZHAN S Y, CHEN Y, ZHANG G J, MIAO B, ZHANG H P, GUO J Z. The construction and analysis of full-length transcriptome of five tissues in goat. Journal of Sichuan Agricultural University, 2022, 40 (3): 421-426. (in Chinese)
[22]
YIN Z T, ZHANG F, SMITH J, KUO R, HOU Z C. Full-length transcriptome sequencing from multiple tissues of duck, Anas platyrhynchos. Scientific Data, 2019, 6(1): 275.
[23]
张德祥, 詹惠娜, 张细权. NPY基因SNPs与优质鸡睾丸性状的关联分析研究. 中国家禽, 2012, 34(20): 23-25.
ZHANG D X, ZHAN H N, ZHANG X Q. Association analysis of NPY gene single nucleotide polymorphisms with testis trait in high-quality chicken. China Poultry, 2012, 34(20): 23-25. (in Chinese)
[24]
VIZCARRA J A, KIRBY J D, KREIDER D L. Testis development and gonadotropin secretion in broiler breeder males 1. Poultry Science, 2010, 89(2): 328-334.

doi: 10.3382/ps.2009-00286 pmid: 20075286
[25]
SARABIA FRAGOSO J, PIZARRO DÍAZ M, ABAD MORENO J, CASANOVAS INFESTA P, RODRIGUEZ-BERTOS A, BARGER K. Relationships between fertility and some parameters in male broiler breeders (body and testicular weight, histology and immunohistochemistry of testes, spermatogenesis and hormonal levels). Reproduction in Domestic Animals, 2013, 48(2): 345-352.

doi: 10.1111/j.1439-0531.2012.02161.x pmid: 22957657
[26]
LA Y F, MA F L, MA X M, BAO P J, CHU M, LIANG C N, GUO X, YIN M C, LI J Y, YAN P. Different expression of LHR, PRLR, GH and IGF1 during testicular development of yak. Reproduction in Domestic Animals = Zuchthygiene, 2022, 57(2): 221-227.
[27]
周敏, 梁菲菲, 饶友生, 曾华, 张德祥, 张细权. VIPR-1基因12个多态位点与鸡早期产蛋性状的相关性. 畜牧兽医学报, 2008, 39(9): 1147-1152.
ZHOU M, LIANG F F, RAO Y S, ZENG H, ZHANG D X, ZHANG X Q. Association of twelve polymorphisms of the VIPR-1 gene with chicken early egg production traits. Acta Veterinaria et Zootechnica Sinica, 2008, 39(9): 1147-1152. (in Chinese)
[28]
李江曼. 宁都黄鸡FSH β和PRL基因多态性与产蛋性能的关联性分析[D]. 南昌: 江西农业大学, 2013.
LI J M. Correlation analysis between FSH β and PRL gene polymorphism and laying performance of Ningdu yellow chicken.[D]. Nanchang: Jiangxi Agricultural University, 2013. (in Chinese)
[29]
金恒. 宁都黄鸡BMP15、INHA基因多态性与生长、繁殖性状的关联分析[D]. 南昌: 江西农业大学, 2016.
JIN H. Association analysis of BMP15 and INHA gene polymorphism with growth and reproductive traits in Ningdu yellow chicken[D]. Nanchang: Jiangxi Agricultural University, 2016. (in Chinese)
[30]
XIONG X W, LIU X X, ZHU X N, TAN Y W, WANG Z F, XU J G, TU X T, RAO Y S, DUAN J H, ZHAO W L, ZHOU M. A mutation in PHKG1 causes high drip loss and low meat quality in Chinese Ningdu yellow chickens. Poultry Science, 2022, 101(1): 101556.
[31]
XIONG X W, ZHOU M, ZHU X N, TAN Y W, WANG Z F, GONG J S, XU J G, WEN Y F, LIU J X, TU X T, RAO Y S. RNA sequencing of the pituitary gland and association analyses reveal PRKG2 as a candidate gene for growth and carcass traits in Chinese Ningdu yellow chickens. Frontiers in Veterinary Science, 2022, 9: 892024.
[32]
CHEN B, LIANG G T, ZHU X N, TAN Y W, XU J G, WU H X, MAO H R, ZHANG Y T, CHEN J K, RAO Y S, ZHOU M, LIU S F. Gene expression profiling in ovaries and association analyses reveal HEP21 as a candidate gene for sexual maturity in chickens. Animals: an Open Access Journal from MDPI, 2020, 10(2): 181.
[33]
申东航. 宁都黄鸡睾丸发育规律[D]. 广州: 华南农业大学, 2017.
SHEN D H. Testicular development law of Ningdu yellow chicken[D]. Guangzhou: South China Agricultural University, 2017. (in Chinese)
[34]
武艳平, 魏岳, 康昭风, 陈荣俊, 周敏, 谢金防. 宁都黄鸡品系选育效果及性能比较. 江西农业学报, 2022, 34(3): 80-83.
WU Y P, WEI Y, KANG Z F, CHEN R J, ZHOU M, XIE J F. Breeding effect and performance comparison of Ningdu yellow chicken strains. Acta Agriculturae Jiangxi, 2022, 34(3): 80-83. (in Chinese)
[35]
周敏, 朱学农, 谭玉文, 章逸, 王远彬, 罗锦胜, 朱沙, 余艳, 郑世军. 宁都黄公鸡睾丸质量与不同周龄第二性征的回归与主成分分析. 河南农业科学, 2019, 48(9): 148-156.
ZHOU M, ZHU X N, TAN Y W, ZHANG Y, WANG Y B, LUO J S, ZHU S, YU Y, ZHENG S J. Regressive and principal component analyses of testis weight and secondary sexual characteristics at different weeks of Ningdu Huang roosters. Journal of Henan Agricultural Sciences, 2019, 48(9): 148-156. (in Chinese)
[36]
马荆鄂, 许继国, 姚利君, 谭玉文, 朱学农, 杨艳北, 饶友生, 周敏. GH基因SNPs与宁都黄鸡睾丸性状的关联分析. 中国家禽, 2023, 45(6): 11-18.
MA J E, XU J G, YAO L J, TAN Y W, ZHU X N, YANG Y B, RAO Y S, ZHOU M. Association between SNPs of GH gene and testis trait of Ningdu yellow chicken. China Poultry, 2023, 45(6): 11-18. (in Chinese)
[37]
LI H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 2018, 34(18): 3094-3100.

doi: 10.1093/bioinformatics/bty191 pmid: 29750242
[38]
ZHOU X B, LINDSAY H, ROBINSON M D. Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Research, 2014, 42(11): e91.
[39]
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12): 550.
[40]
CUI Z P, ZHANG J, SUN Z H, LIU B Z, HAN Y L, ZHAO C, CHANG Y Q. Testis-specific expression pattern of dmrt1 and its putative regulatory region in the sea urchin (Mesocentrotus nudus). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2022, 257: 110668.
[41]
RENGARAJ D, HWANG Y S, LIANG X H, DENG W B, YANG Z M, HAN J Y. Comparative expression and regulation of TMSB4X in male reproductive tissues of rats and chickens. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 2013, 319(10): 584-595.

doi: 10.1002/jez.1820 pmid: 24039044
[42]
HO Y, HU P, PEEL M T, CHEN S X, CAMARA P G, EPSTEIN D J, WU H, LIEBHABER S A. Single-cell transcriptomic analysis of adult mouse pituitary reveals sexual dimorphism and physiologic demand- induced cellular plasticity. Protein & Cell, 2020, 11(8): 565-583.
[43]
BANG A K, ALMSTRUP K, NORDKAP L, PRISKORN L, PETERSEN J H, BLOMBERG JENSEN M, KRAUSE M, HOLMBOE S A, EGEBERG PALME D L, WINGE S B, et al. FSHB and FSHR gene variants exert mild modulatory effect on reproductive hormone levels and testis size but not on semen quality: a study of 2020 men from the general Danish population. Andrology, 2021, 9(2): 618-631.
[44]
BOHACZUK S C, CASSIN J, SLAIWA T I, THACKRAY V G, MELLON P L. Distal enhancer potentiates activin- and GnRH- induced transcription of FSHB. Endocrinology, 2021, 162(7): bqab069.
[45]
YANG L Y, LI Y L, WU Y, SUN S H, SONG Q, WEI J, SUN L N, LI M H, WANG D S, ZHOU L Y. Rln3a is a prerequisite for spermatogenesis and fertility in male fish. The Journal of Steroid Biochemistry and Molecular Biology, 2020, 197: 105517.
[46]
LI X J, LIN B J, ZHANG X M, SHEN X, OUYANG H J, WU Z P, TIAN Y B, FANG L Z, HUANG Y M. Comparative transcriptomics in the hypothalamic-pituitary-gonad axis of mammals and poultry. Genomics, 2022, 114(4): 110396.
[47]
HECHT N B. Intracellular and intercellular transport of many germ cell mRNAs is mediated by the DNA- and RNA-binding protein, testis-brain-RNA-binding protein (TB-RBP). Molecular Reproduction and Development, 2000, 56(2 Suppl): 252-253.

pmid: 10824978
[48]
SHEN F F, LONG Y, LI F Y, GE G D, SONG G L, LI Q, QIAO Z G, CUI Z B. De novo transcriptome assembly and sex-biased gene expression in the gonads of Amur catfish (Silurus asotus). Genomics, 2020, 112(3): 2603-2614.

doi: S0888-7543(19)30760-8 pmid: 32109564
[49]
ZHANG K, GUO J H, ZHU Y, ZHANG R. Zhibai Dihuang pill alleviates Ureaplasma urealyticum-induced spermatogenic failure and testicular dysfunction via MAPK signaling pathway. Computational and Mathematical Methods in Medicine, 2022, 2022: 7174399.
[50]
MA K Y, ZHANG S F, WANG S S, QIU G F. Molecular cloning and characterization of a gonadotropin-releasing hormone receptor homolog in the Chinese mitten crab, Eriocheir sinensis. Gene, 2018, 665: 111-118.
[1] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[2] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[3] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[4] HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao. QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4175-4191.
[5] SHANG Hang, CHENG YuKun, REN Yi, GENG HongWei. Genome-Wide Association Analysis of Starch Gelatinization Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(18): 3507-3521.
[6] LIU DeLong, LI ShiRu, WANG ChuanXing, GUO ShuQing, MA ZhiXiu, WU YongJiang, HAN HuiBing, LI YuJie, ZHANG PanPan, YANG Pu. Phenotypical Variation and Dynamic QTL Mapping of Plant Height in Foxtail Millet at Different Developmental Stages [J]. Scientia Agricultura Sinica, 2024, 57(18): 3533-3550.
[7] BAI BingNan, QIAO Dan, GE Qun, LUAN YuJuan, LIU XiaoFang, LU QuanWei, NIU Hao, GONG JuWu, GONG WanKui, ELAMEER ELSAMMAN, YAN HaoLiang, LI JunWen, LIU AiYing, SHI YuZhen, WANG HaiZe, YUAN YouLu. QTN Mining and Candidate Gene Screening of Upland Cotton (Gossypium hirsutum L.) Seed-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(15): 2901-2913.
[8] ZHANG LiYun, HUANG ZhiRong, YANG Liu, CHEN JunPeng, LIN ZhenPing, HUANG HongYan, WU ZhongPing, ZHANG XuMeng, TIAN YunBo, HUANG YunMao, LI XiuJin. Identification of Copy Number Variation and Its Association with Body Weight and Size of Lion-Head Geese by Next-Generation Sequencing [J]. Scientia Agricultura Sinica, 2024, 57(14): 2889-2900.
[9] MIAO Long, SHU Kuo, HU YanJiao, HUANG Ru, HE GenHua, ZHANG WenMing, WANG XiaoBo, QIU LiJuan. Identification and Gene Mapping of Hard Seededness Mutant Mzp661 in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(11): 2065-2078.
[10] ZHANG YuMei, DING WenTao, LAN XinLong, LI QingHua, HU RunFang, GUO Na, LIN GuoQiang, ZHAO JinMing. Genome Wide Association Analysis of Soluble Sugar Content in Fresh Seeds of Soybean Landraces [J]. Scientia Agricultura Sinica, 2024, 57(11): 2079-2091.
[11] LI ShengYou, WANG ChangLing, YAN ChunJuan, ZHANG LiJun, SUN XuGang, CAO YongQiang, WANG WenBin, SONG ShuHong. Evaluation of Drought Resistance in Soybean Germplasm and Identification of Candidate Drought-Resistant Genes [J]. Scientia Agricultura Sinica, 2024, 57(10): 1857-1869.
[12] WANG HuiLing, YAN AiLing, WANG XiaoYue, LIU ZhenHua, REN JianCheng, XU HaiYing, SUN Lei. Genome-Wide Association Studies for Grape Berry Weight Related Traits [J]. Scientia Agricultura Sinica, 2023, 56(8): 1561-1573.
[13] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[14] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[15] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!