Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (20): 4022-4034.doi: 10.3864/j.issn.0578-1752.2024.20.008

• SPECIAL FOCUS: OCCURRENCE AND CONTROL OF MIGRATORY PESTS • Previous Articles     Next Articles

Effects of miRNA on Gene Expression of Sphingolipids Metabolism and Small RNA Analysis of Silencing NlSPT1 and NlSMase4 in Nilaparvata lugens

WANG Ni1,2,3,4(), SHI ZheYi1,2,3, YOU YuanZheng1,2,3, ZHANG Chao1,2,3, ZHOU WenWu1,2,3, ZHOU Ying2,3, ZHU ZengRong1,2,3()   

  1. 1 Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University/State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs, Hangzhou 310058
    2 Hainan Institute of Zhejiang University, Sanya 572025, Hainan
    3 Zhejiang Yuhang Rice Science and Technology Institute, Yuhang 311121, Zhejiang
    4 Key Laboratory of Monitoring and Safe Prevention and Control of Agricultural and Forestry Pests, College of Agriculture, Xinjiang Agricultural University, Urumqi 830052
  • Received:2024-07-07 Accepted:2024-07-26 Online:2024-10-16 Published:2024-10-24
  • Contact: ZHU ZengRong

Abstract:

【BackgroundSphingolipids are the second major type of membrane lipids and mediate various biological processes as signal transducers, including cell growth, development, reproduction and apoptosis. Sphingolipid metabolism is tightly regulated by sphingolipid metabolizing enzymes to maintain the homeostasis of metabolism in vivo.aaaaa【Objective】The objectives of this study are to investigate the relative transcript levels of genes related to the sphingolipid metabolism pathway after silencing of the core components of microRNA (miRNA) biosynthesis pathway, NlAgo1, NlDicer1 and NlDrosha by RNA interference (RNAi), and analyze the differentially expressed miRNAs after silencing of serine palmitoyltransferase 1 (SPT1) and sphingomyelinase 4 (SMase4) gene combined with small RNA sequencing of Nilaparvata lugens, explore the role of miRNAs in the sphingolipid metabolism of N. lugens, and to provide a new molecular target for pest control.【Method】RNAi was performed with double stranded RNAs (dsRNAs) targeting NlAgo1, NlDicer1 and NlDrosha at 1 day post adult eclosion (1 PAE), respectively, and dsGFP was used as control. The ovaries at 5 PAE were dissected and β-actin was used as internal reference gene, the transcript levels of genes related to the sphingolipid metabolism pathway were detected by reverse-transcription quantitative PCR (qRT-PCR). miRNAs that may regulate the expression of NlSPT1 and NlSMase4 were predicated based on small RNA libraries combined with miRNA-target prediction software. Differentially expressed miRNAs after the silencing of NlSPT1 and NlSMase4 were identified and the target gene enrichment was analyzed by small RNA sequencing.【Result】RNAi-mediated silencing of NlAgo1, NlDicer1 or NlDrosha significantly up-regulated the expression of genes related to the sphingolipid metabolism pathway, including NlSPT1 and NlSMase4 in ovaries. Target gene prediction revealed 6 miRNAs and 13 miRNAs that could bind NlSPT1 and NlSMase4. The target genes of differentially expressed miRNAs that silencing NlSPT1 and NlSMase4 were significantly enriched in biological processes, including nuclear and protein binding, as well as metabolic pathways such as endocytosis, endoplasmic reticulum processing, MAPK signaling pathway, TOR signaling pathway, apoptosis, and lipid metabolism.【Conclusion】NlAgo1, NlDicer1, and NlDrosha-dependent miRNAs affect sphingolipid metabolism by influencing the expression of genes encoding sphingolipid metabolizing enzymes. The silencing of NlSPT1 and NlSMase4 induced changes in miRNA expression levels in N. lugens ovaries. These research results can provide a theoretical basis for pest control based on sphingolipid metabolism genes.

Key words: Nilaparvata lugens, microRNA (miRNA), sphingolipid, RNA interference (RNAi), small RNA sequencing

Table 1

The primers used in this study"

目的Purpose 引物名称Primer name 引物序列Primer sequence (5°‒3°)
dsRNA合成
dsRNA synthesis
dsNlAgo-1_F T7-GTTTTGCGAGCCAATCATTT
dsNlAgo-1_R T7-CCTCCGAGCGGATGATAATA
dsNlDicer-1_F T7-GCAAGAAATATGGAGAGGCG
dsNlDicer-1_R T7-GTAGGTGGTGATGGCGAACT
dsNlDrosha_F T7-GCACACCCTCCAACGGATTA
dsNlDrosha_R T7-ATTTCGGCCTCGGCTTCTAC
dsGFP_F T7-AAGTTCAGCGTGTCCGGCGA
dsGFP_R T7-CACCTTGATGCCGTTCTTCT
实时荧光定量PCR分析
qRT-PCR analysis

qNlAgo-1_F GAAAGCCGTTGACTGACTCC
qNlAgo-1_R ACTCCACAGTTTGCCCATTC
qNlDicer-1_F CACGCCTCCTATCACACCAA
qNlDicer-1_R TCCATGTCGAACGGCTAATG
qNlDrosha_F GAAGCTTTTCTGGGCGCTTT
qNlDrosha_R CGTTGGCCCTATGCACTCTA
qNlSPT1_F CGGCTCCTGTACCAAATAG
qNlSPT1_R GTAGATCACGTCCCGCTTGT
qNlSPT2_F TGCCTATCAGCGGCACATAC
qNlSPT2_R CAGATCCATAGACGACCGGC
qNlSMase4_F TGGACACCTCGTTCCGATTG
qNlSMase4_R GTTCCACAACCATGGGGCTA
qNlKDR_F GCGACGGCTACATTGTGTTC
qNlKDR_R GCTTCAGCCACACCTCTGAT
qNlDES_F GTTACCTATCCGAAGCCCCC
qNlDES_R CCCAGCATGTAAGCAAGCAC
qNlCerS_F ACCATGGCTGTGGCGAATTA
qNlCerS_R TCCTTGCGAATCACGTCGAA
qNlCDase_F ACTGGACCAAGTGCCAAACA
qNlCDase_R GATCGCGAACTGCCCTATGA
qNlSMSL1_F TACCACACACTCGCCAACAA
qNlSMSL1_R ACAGCGTGTCGTACTCGTTT
qNlSMSL2_F GTGTCGTTCGCATCGACTTG
qNlSMSL2_R GCCAGAGACAGTGTCGTGAT
qNlGBA1_F GGTCCCAACTGGGTCAACAA
qNlGBA1_R GCAACTGCCGATGAACTTGG
qNlGBA2_F GAACAACGTGCGGTAACGAG
qNlGBA2_R TACTGGGCTACCCACTCTCC
qNlSPPase_F GGCAGATGAGTGAACCCCAA
qNlSPPase_R AGCGCATAGGACACCGATTT
β-actin_F GTGCGTGACATCAAGGAGAAGC
β-actin_R GGAAGGAAGGCTGGAACAGAG

Fig. 1

Effect of silencing NlAgo1 on sphingolipid metabolic genes expression in N. lugens"

Fig. 2

Effect of silencing NlDicer1 on sphingolipid metabolic genes expression in N. lugens"

Fig. 3

Effect of silencing NlDrosha on sphingolipid metabolic genes expression in N. lugens"

Table 2

Predication of miRNAs targeting NlSPT1"

miRNA名称
miRNA name
miRNA序列
miRNA sequence (5°‒3°)
bmo-miR-316-5p_1ss23GT TGTCTTTTTCCGCTTTGCTGCTT
tca-miR-316-5p_R+2 TGTCTTTTTCCGCTTTGCTGCCG
bmo-miR-9a-5p_L+2R-2 AATCTTTGGTTATCTAGCTGTAT
tca-miR-14-3p_L-4R+1 TCTTTTTCTCTCTCCTATT
tca-miR-277-3p TAAATGCACTATCTGGTACGACA
tca-miR-92b-3p_L-1R+1 TTGCACTTGTCCCGGCCTGT

Table 3

Predication of miRNAs targeting NlSMase4"

miRNA名称
miRNA name
miRNA序列
miRNA sequence (5°‒3°)
aae-miR-33_R-1 GTGCATTGTAGTTGCATTGC
dme-miR-276a-5p_L-1R-1_1ss22CT AGCGAGGTATAGAGTTCCTAT
pca-miR-276-5p_R+4 AGCGAGGTATAGAGTTCCTACGAA
tca-miR-276-5p_R-2 AGCGAGGTATAGAGTTCCTACG
tca-miR-14-3p TCAGTCTTTTTCTCTCTCCTAT
tca-miR-14-3p_R+1_1ss22TC TCAGTCTTTTTCTCTCTCCTACT
tca-miR-14-3p_R-2_1ss15TC TCAGTCTTTTTCTCCCTCCT
tca-miR-14-3p_R-2_1ss8TC TCAGTCTCTTTCTCTCTCCT
tca-miR-14-3p_R-3_1ss19CA TCAGTCTTTTTCTCTCTCA
tca-miR-14-3p_R-4 TCAGTCTTTTTCTCTCTC
tca-miR-14-3p_R-2_1ss1TC CCAGTCTTTTTCTCTCTCCT
tca-miR-210-5p_R+1_1ss12GA AGCTGCTGGACACTGCACAAGA
tca-miR-307-3p_R+2 TCACAACCTCCTTGAGTGAGCG

Fig. 4

Silencing efficiency of NlSPT1 and NlSMase4"

Fig. 5

Cluster heat map of the differentially expressed miRNAs"

Fig. 6

GO (A) and KEGG (B) enrichment for the target genes of differentially expressed miRNAs in the dsNlSPT1 vs dsGFP"

Fig. 7

GO (A) and KEGG (B) enrichment for the target genes of differentially expressed miRNAs in the dsNlSMase4 vs dsGFP"

[1]
XUE J, BAO Y Y, LI B L, CHENG Y B, PENG Z Y, LIU H, XU H J, ZHU Z R, LOU Y G, CHENG J A, ZHANG C X. Transcriptome analysis of the brown planthopper Nilaparvata lugens. PLoS ONE, 2010, 5(12): e14233.
[2]
HUANG H J, LIU C W, ZHOU X, ZHANG C X, BAO Y Y. A mitochondrial membrane protein is a target for rice ragged stunt virus in its insect vector. Virus Research, 2017, 229: 48-56.
[3]
MAO K K, ZHANG X L, ALI E, LIAO X, JIN R H, REN Z J, WAN H, LI J H. Characterization of nitenpyram resistance in Nilaparvata lugens (Stål). Pesticide Biochemistry and Physiology, 2019, 157: 26-32.
[4]
WU S F, ZENG B, ZHENG C, MU X C, ZHANG Y, HU J, ZHANG S, GAO C F, SHEN J L. The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) of China in the period 2012-2016. Scientific Reports, 2018, 8: 4586.
[5]
ZHANG X L, LIAO X, MAO K K, ZHANG K X, WAN H, LI J H. Insecticide resistance monitoring and correlation analysis of insecticides in field populations of the brown planthopper Nilaparvata lugens (Stål) in China 2012-2014. Pesticide Biochemistry and Physiology, 2016, 132: 13-20.
[6]
SHEN Y, CHEN Y Z, LOU Y H, ZHANG C X. Vitellogenin and vitellogenin-like genes in the brown planthopper. Frontiers in Physiology, 2019, 10: 1181.

doi: 10.3389/fphys.2019.01181 pmid: 31620015
[7]
ASGARI S. Role of microRNAs in insect host-microorganism interactions. Frontiers in Physiology, 2011, 2: 48.

doi: 10.3389/fphys.2011.00048 pmid: 21886625
[8]
CHEN J, LI T, PANG R. miR-2703 regulates the chitin biosynthesis pathway by targeting chitin synthase 1a in Nilaparvata lugens. Insect Molecular Biology, 2020, 29(1): 38-47.
[9]
ZHANG Q, DOU W, TANING C N T, YU S S, YUAN G R, SHANG F, SMAGGHE G, WANG J J. miR-309a is a regulator of ovarian development in the oriental fruit fly Bactrocera dorsalis. PLoS Genetics, 2022, 18(9): e1010411.
[10]
SHANG F, NIU J, DING B Y, ZHANG W, WEI D D, WEI D, JIANG H B, WANG J J. The miR-9b microRNA mediates dimorphism and development of wing in aphids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(15): 8404-8409.
[11]
HARRISON P J, DUNN T M, CAMPOPIANO D J. Sphingolipid biosynthesis in man and microbes. Natural Product Reports, 2018, 35(9): 921-954.

doi: 10.1039/c8np00019k pmid: 29863195
[12]
HANNUN Y A, OBEID L M. Sphingolipids and their metabolism in physiology and disease. Nature Reviews Molecular Cell Biology, 2018, 19(3): 175-191.

doi: 10.1038/nrm.2017.107 pmid: 29165427
[13]
KITATANI K, IDKOWIAK-BALDYS J, HANNUN Y A. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cellular Signalling, 2008, 20(6): 1010-1018.

doi: 10.1016/j.cellsig.2007.12.006 pmid: 18191382
[14]
史肖肖. 鞘脂类及其代谢酶在褐飞虱发育与生殖中的功能[D]. 杭州: 浙江大学, 2018.
SHI X X. The functions of sphingolipids and their metabolic enzymes in development and reproduction of the rice brown planthopper, Nilaparvata lugens (Stål)[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
[15]
SHI X X, HUANG Y J, BEGUM M A, ZHU M F, LI F Q, ZHANG M J, ZHOU W W, MAO C G, ZHU Z R. A neutral ceramidase, NlnCDase, is involved in the stress responses of brown planthopper, Nilaparvata lugens (Stål). Scientific Reports, 2018, 8: 1130.
[16]
张鹤. 褐飞虱鞘磷脂合酶和鞘磷脂酶同源基因的功能研究[D]. 杭州: 浙江大学, 2020.
ZHANG H. Functional research of homologous genes of sphingomyelin synthase and sphingomyelinase in Nilaparvata lugens (Stål)[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
[17]
SHI X X, ZHANG H, CHEN M, ZHANG Y D, ZHU M F, ZHANG M J, LI F Q, WRATTEN S, ZHOU W W, MAO C, ZHU Z R. Two sphingomyelin synthase homologues regulate body weight and sphingomyelin synthesis in female brown planthopper, N. lugens (Stål). Insect Molecular Biology, 2019, 28(2): 253-263.

doi: 10.1111/imb.12549 pmid: 30375099
[18]
SHI X X, ZHANG H, QUAIS M K, CHEN M, WANG N, ZHANG C, MAO C G, ZHU Z R. Knockdown of sphingomyelinase (NlSMase) causes ovarian malformation of brown planthopper, Nilaparvata lugens (Stål). Insect Molecular Biology, 2022, 31(4): 391-402.
[19]
陈明. 褐飞虱两个丝氨酸棕榈酰转移酶基因的功能研究[D]. 杭州: 浙江大学, 2019.
CHEN M. Function of two serine palmitoyltransferase genes in Nilaparvata lugens (Stål)[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
[20]
朱晴子. 褐飞虱鞘脂质代谢酶microRNA的鉴定及其功能研究[D]. 杭州: 浙江大学, 2016.
ZHU Q Z. Identification and functional analysis of microRNA related with enzymes of sphingolipid metabolism in brown rice planthoppers[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
[21]
李飞强. 褐飞虱靶向鞘脂质代谢酶SPT1和SPP的microRNA的鉴定及其生物学功能分析[D]. 杭州: 浙江大学, 2018.
LI F Q. Identification and functional analysis of microRNA targetting SPT1 and SPP, key sphingolipid-metabolizing enzymes, in Nilaparvata lugens (Stål)[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
[22]
WANG N, CHEN M, ZHOU Y, ZHOU W W, ZHU Z R. The microRNA pathway core genes are indispensable for development and reproduction in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 2023, 32(5): 528-543.
[23]
WANG N, ZHANG C, CHEN M, SHI Z Y, ZHOU Y, SHI X X, ZHOU W W, ZHU Z R. Characterization of microRNAs associated with reproduction in the brown planthopper, Nilaparvata lugens. International Journal of Molecular Sciences, 2022, 23(14): 7808.
[24]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct method. Methods, 2001, 25(4): 402-408.
[25]
BUSHATI N, COHEN S M. MicroRNA functions. Annual Review of Cell and Developmental Biology, 2007, 23: 175-205.

pmid: 17506695
[26]
RAHIMPOUR H, MOHARRAMIPOUR S, ASGARI S, MEHRABADI M. The microRNA pathway core genes are differentially expressed during the development of Helicoverpa armigera and contribute in the insect’s development. Insect Biochemistry and Molecular Biology, 2019, 110: 121-127.
[27]
ZHANG X, LU K, ZHOU Q. Dicer 1 is crucial for the oocyte maturation of telotrophic ovary in Nilaparvata lugens (Stål) (Hemiptera: Geometroidea). Archives of Insect Biochemistry and Physiology, 2013, 84(4): 194-208.
[28]
ZENG Q, LONG G, YANG H, ZHOU C, YANG X, WANG Z, JIN D. SfDicer1 participates in the regulation of molting development and reproduction in the white-backed planthopper, Sogatella furcifera. Pesticide Biochemistry and Physiology, 2023, 191: 105347.
[29]
YANG R L, ZHANG Q, FAN J Y, YUE Y, CHEN E H, YUAN G R, DOU W, WANG J J. RNA interference of Argonaute-1 delays ovarian development in the oriental fruit fly, Bactrocera dorsalis (Hendel). Pest Management Science, 2021, 77(9): 3921-3933.
[30]
MAO K, JIN R, REN Z, ZHANG J, LI Z, HE S, MA K, WAN H, LI J. miRNAs targeting CYP6ER1 and CarE1 are involved in nitenpyram resistance in Nilaparvata lugens. Insect Science, 2022, 29(1): 177-187.
[31]
DUAN T F, GAO S J, WANG H C, LI L, LI Y Y, TAN Y, PANG B P. MicroRNA let-7-5p targets the juvenile hormone primary response gene Kruppel homolog 1 and regulates reproductive diapause in Galeruca daurica. Insect Biochemistry and Molecular Biology, 2022, 142: 103727.
[32]
DUAN T F, LI L, WANG H C, PANG B P. MicroRNA miR-2765-3p regulates reproductive diapause by targeting FoxO in Galeruca daurica. Insect Science, 2023, 30(2): 279-292.
[33]
LAMPE L, JENTZSCH M, KIERSZNIOWSKA S, LEVASHINA E A. Metabolic balancing by miR-276 shapes the mosquito reproductive cycle and Plasmodium falciparum development. Nature Communications, 2019, 10: 5634.
[34]
HE J, CHEN Q, WEI Y, JIANG F, YANG M, HAO S, GUO X, CHEN D, KANG L. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(3): 584-589.
[35]
SONG J, LI W, ZHAO H, ZHOU S. Clustered miR-2, miR-13a, miR-13b and miR-71 coordinately target Notch gene to regulate oogenesis of the migratory locust Locusta migratoria. Insect Biochemistry and Molecular Biology, 2019, 106: 39-46.
[36]
SONG J, LI W, ZHAO H, GAO L, FAN Y, ZHOU S. The microRNAs let-7 and miR-278 regulate insect metamorphosis and oogenesis by targeting the juvenile hormone early-response gene Kruppel-homolog 1. Development, 2018, 145(24): dev170670.
[37]
HE K, XIAO H, SUN Y, SITU G, XI Y, LI F. MicroRNA-14 as an efficient suppressor to switch off ecdysone production after ecdysis in insects. RNA Biology, 2019, 16(9): 1313-1325.

doi: 10.1080/15476286.2019.1629768 pmid: 31184522
[38]
VARGHESE J, COHEN S M. MicroRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes & Development, 2007, 21(18): 2277-2282.
[39]
KUMARSWAMY R, CHANDNA S. Inhibition of microRNA-14 contributes to actinomycin-D-induced apoptosis in the Sf9 insect cell line. Cell Biology International, 2010, 34(8): 851-857.

doi: 10.1042/CBI20100035 pmid: 20486901
[40]
XU P, VERNOOY S Y, GUO M, HAY B A. The Drosophila microRNA miR-14 suppresses cell death and is required for normal fat metabolism. Current Biology, 2003, 13(9): 790-795.
[41]
NELSON C, AMBROS V, BAEHRECKE E H. miR-14 regulates autophagy during developmental cell death by targeting ip3-kinase 2. Molecular Cell, 2014, 56(3): 376-388.

doi: 10.1016/j.molcel.2014.09.011 pmid: 25306920
[42]
LIU Z, LING L, XU J, ZENG B, HUANG Y, SHANG P, TAN A. MicroRNA-14 regulates larval development time in Bombyx mori. Insect Biochemistry and Molecular Biology, 2018, 93: 57-65.
[43]
张圣锋. miR-2b-2-5p靶向CREB调控橘小实蝇脂质代谢和生殖发育的分子机制[D]. 武汉: 华中农业大学, 2022.
ZHANG S F. miR-2b-2-5p regulates lipid metabolism and reproduction by targeting CREB in Bactrocera dorsalis[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese)
[1] CHEH ErHu, YUAN GuoQing, CHEN Yan, CHEN MengQiu, SUN ShengYuan, TANG PeiAn. Mitochondrial Protein-Coding Genes Nad5, Nad6 and Atp6 are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2024, 57(9): 1722-1733.
[2] LUO LiDan, CHEN JiaMing, AN Qi, LIU Lei, SUN QinZhe, LIU Huan, WANG SenShan, SONG LiWen. Effects of Extreme High Temperature on Trehalose Content and Trehalose Transporter Gene in Tetranychus truncatus [J]. Scientia Agricultura Sinica, 2024, 57(6): 1091-1101.
[3] ZHAO YiYan, GUO HongFang, LIU WeiMin, ZHAO XiaoMing, ZHANG JianZhen. Effects of Apolipophorin on Ovarian Development and Lipid Deposition in Locusta migratoria [J]. Scientia Agricultura Sinica, 2024, 57(4): 711-720.
[4] YUAN GuoQing, CHEN ErHu, TANG PeiAn. The Mechanisms of Mitochondrial Protein-Coding Genes ND6 and ATP6 in Regulating Cold Tolerance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2024, 57(22): 4483-4494.
[5] LI ChuXin, SONG ChenHu, ZHOU JinHuan, LI JiaXin, WANG XinLiang, TIAN XuBin, SONG Zhen. Research on Prevention and Control Technology of Citrus Yellow Vein Clearing Virus Based on VIGS [J]. Scientia Agricultura Sinica, 2024, 57(22): 4473-4482.
[6] CAI YuBiao, ZHANG KunJie, WANG YaXuan, LAI FengXiang, HE JiaChun, WAN PinJun, FU Qiang. Effect of Rice Varieties on the Preference of Nilaparvata lugens to Rice Plants Infested by Chilo suppressalis [J]. Scientia Agricultura Sinica, 2024, 57(20): 3998-4006.
[7] WEI Qi, SHAN Yao, FENG ZeLin, HE JiaChun, LAI FengXiang, WAN PinJun, WANG WeiXia, YAO Qing, BIAN Lei, FU Qiang. The Vibration Propagation Laws and Perception Behavior of Mating Calls of Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2024, 57(20): 3989-3997.
[8] CHEH ErHu, SHEN DanRong, DU WenWei, MENG HongJie, TANG PeiAn. Cuticle Protein Genes are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2023, 56(9): 1696-1707.
[9] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[10] LIU Fang, XU MengBei, WANG QiaoLing, MENG Qian, LI GuiMing, ZHANG HongJu, TIAN HuiDan, XU Fan, LUO Ming. Cloning and Functional Characterization of the Promoter of GhSLD1 Gene That Predominantly Expressed in Cotton Fiber [J]. Scientia Agricultura Sinica, 2023, 56(19): 3712-3722.
[11] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[12] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[13] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[14] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[15] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!