Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (19): 3814-3828.doi: 10.3864/j.issn.0578-1752.2023.19.009

• PLANT PROTECTION • Previous Articles     Next Articles

Identification and Expression Analysis of Heat Shock Protein Superfamily Genes in Callosobruchus chinensis

ZHANG Xin(), YANG XingYu, ZHANG ChaoRan, ZHANG Chong, ZHENG HaiXia, ZHANG XianHong()   

  1. College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2023-06-19 Accepted:2023-07-03 Online:2023-10-01 Published:2023-10-08
  • Contact: ZHANG XianHong

Abstract:

【Objective】The purpose of this study is to identify the gene members of the Callosobruchus chinensis heat shock protein (HSP) superfamily, and to clarify the expression changes of HSP genes in C. chinensis after high and low temperature stress, so as to provide a theoretical basis for further exploration of HSP gene function.【Method】The CDS and protein sequences of HSP genes of different insects were downloaded from Insect Base 2.0 and used as a reference for local BLASTp and tBLASTn comparison search in the full-length transcriptome sequencing database of C. chinensis. At the same time, target sequences were screened again by combining HMMER and key words to complete the summary of search results. Bioinformatics analysis of HSP superfamily genes in C. chinensis was performed using CDD, MEGA, ProtParam, and other online analytical tools. Seven candidate HSP genes were screened out based on high and low temperature transcriptome sequencing data of C. chinensis adults and the expression characteristics of 7 CcHsps were compared and analyzed by qRT-PCR technique under different developmental stages and temperature stresses of C. chinensis.【Result】A total of 31 HSP genes were identified, including 3 HSP90s, 8 HSP70s, 8 HSP60s, and 12 sHSPs (small HSP). Physicochemical analysis showed that the proteins encoded by CcHsps contain 159-776 amino acid residues (aa), the molecular weights are about 18.4-88.9 kDa, and the theoretical isoelectric points are 4.95-9.17. Subcellular localization results showed that most CcHsps were located in the cytoplasm, while a few genes were located in the mitochondrial matrix, endoplasmic reticulum and nucleus. Phylogenetic analysis showed that different family members of HSPs in C. chinensis could integrate well with HSP in other insects, which indicating their evolutionary conservation. The results of qRT-PCR showed that the 7 candidate CcHsps were differentially expressed under different temperature stresses. After high temperature stress, the expression level of CcHsp20.102 in male and female adults was up-regulated by 1 000 and 500 times, respectively, and the expression level of CcHsp70-5 in male and female adults was up-regulated by 500 and 450 times. After the larvae undergoing high and low temperature stress, the expression level of CcHsp19.855 and CcHsp70-5 was significantly different.【Conclusion】A total of 31 complete HSP superfamily gene members were identified by the full-length transcriptome sequencing data of C. chinensis, which were divided into 4 subfamilies. Different HSP families had different gene structures, protein conserved domains and gene expression characteristics. The differential expression of 7 candidate CcHsps in different developmental stages and under different temperature stresses indicated that they played different functions and roles. It is speculated that CcHsp20.102 and CcHsp70-5 may perform important functions in the adult resistance to high temperature stress, and the high temperature tolerance of larvae may be related to the differential expression of CcHsp19.855 and CcHsp70-5.

Key words: Callosobruchus chinensis, full-length transcriptome sequencing, heat shock protein, gene family, bioinformatics analysis, expression analysis

Table 1

qRT-PCR primer information and result analysis"

基因名
Gene name
引物序列
Primer sequence (5′ to 3′)
产物长度
Product length (bp)
标准曲线
Standard curve (Y=)
扩增效率Amplification efficacy (%) 相关系数
Correlation coefficient
CcHsp90-2 F: TAATCAGTCGTTGAAGCAG
R: TACATTGCTGTTGCGATTC
103 -3.276*log2X+15.55 102.0 0.992
CcHsp70-5 F: ACAGATTCCGTGTTTTGA
R: GCTAAAACTCAGTCTATTCG
109 -3.379*log2X+14.43 97.7 0.987
CcHsp70-6 F: CGACAGTGTAAACAACTCTAGC
R: GAATGTCACAGCAGATACTACTA
160 -3.184*log2X+22.40 106.1 0.998
CcHsp60-3 F: GCATAATGGGTCTGCGTCG
R: AGCATAGCCGAGGTTGGA
116 -3.178*log2X+19.36 106.4 0.998
CcHsp20.102 F: TGCTAGTGTCAGTGTTCAAC
R: ACATACAAAATCAACCTTCC
126 -3.146*log2X+24.81 107.9 0.994
CcHsp19.855 F: GAGCGACTTTTCGTATCAA
R: TCCAACACCAATCTTTCAT
175 -3.197*log2X+20.01 105.5 0.999
CcHsp18.572 F: CGTTTTTTGACTGGAATAC
R: TGGATAGAAATACCTGCTT
144 -3.362*log2X+20.68 98.4 0.999
β-tubulin F: CTTCAGAGGCAGGATGTC
R: TCCCCTTGGTGGAATGTC
133 -3.269*log2X+16.20 102.3 0.997

Table 2

Physicochemical properties of protein encoded by HSP superfamily gene in C. chinensis"

基因名
Gene name
编码数
CDS number
氨基酸数
AA number
分子量
MW (kDa)
等电点
PI
不稳定指数
II
脂肪指数
AI
亲水性平均值
GH
亚细胞定位
SL
CcHsp18.444 492 163 18.444 7.75 52.21 71.04 -0.942 细胞质Cytoplasm
CcHsp18.572 480 159 18.572 6.45 39.20 83.96 -0.686 细胞质、细胞核
Cytoplasm, nucleus
CcHsp19.121 504 167 19.121 8.79 53.82 73.41 -0.863 细胞质Cytoplasm
CcHsp19.855 525 174 19.855 6.96 43.56 78.39 -0.690 细胞质Cytoplasm
CcHsp20.102 531 176 20.102 6.97 48.14 76.42 -0.657 细胞质Cytoplasm
CcHsp20.103 534 177 20.103 6.30 59.44 84.24 -0.541 细胞质Cytoplasm
CcHsp20.956 533 176 20.956 6.24 62.18 77.68 -0.658 细胞质Cytoplasm
CcHsp21.032 573 190 21.032 7.59 56.39 67.58 -0.552 线粒体基质
Mitochondrial matrix
CcHsp21.936 585 194 21.936 8.34 57.23 85.82 -0.730 细胞质、细胞核
Cytoplasm, nucleus
CcHsp22.154 591 196 22.154 6.18 56.98 89.90 -0.610 细胞质Cytoplasm
CcHsp22.763 606 201 22.763 7.90 65.18 85.72 -0.544 细胞质Cytoplasm
CcHsp24.313 600 199 24.313 7.94 51.07 62.61 -0.957 细胞质Cytoplasm
CcHsp60-1 1605 534 57.326 6.36 33.89 111.59 0.078 细胞质Cytoplasm
CcHsp60-2 1605 534 57.594 5.74 35.65 101.78 -0.063 细胞核Nucleus
CcHsp60-3 1593 530 57.978 6.84 28.57 101.94 -0.122 细胞质Cytoplasm
CcHsp60-4 1626 541 58.777 5.84 40.52 104.21 -0.032 细胞质Cytoplasm
CcHsp60-5 1623 540 59.011 7.49 32.25 100.07 -0.089 细胞质Cytoplasm
CcHsp60-6 1593 530 60.038 6.74 32.45 104.41 -0.002 线粒体基质
Mitochondrial matrix
CcHsp60-7 1656 551 60.969 5.98 44.86 96.46 -0.230 细胞质Cytoplasm
CcHsp60-8 1725 574 61.300 5.44 33.69 95.96 -0.170 线粒体基质
Mitochondrial matrix
CcHsp70-1 1755 584 64.129 9.17 37.20 86.68 -0.346 细胞质Cytoplasm
CcHsp70-2 1767 588 64.938 5.66 21.45 89.20 -0.383 内质网
Endoplasmic reticulum
CcHsp70-3 1887 628 69.211 5.55 33.47 83.73 -0.429 细胞质Cytoplasm
CcHsp70-4 1905 634 69.864 4.97 25.51 84.89 -0.496 内质网
Endoplasmic reticulum
CcHsp70-5 1917 638 70.000 5.50 34.26 81.54 -0.467 细胞质Cytoplasm
CcHsp70-6 1935 644 70.496 5.50 38.54 82.87 -0.423 细胞质Cytoplasm
CcHsp70-7 1965 654 71.593 5.56 38.44 82.22 -0.445 细胞质Cytoplasm
CcHsp70-8 1980 659 72.901 5.07 25.59 86.56 -0.482 内质网Endoplasmic reticulum
CcHsp90-1 2091 696 78.856 8.04 40.02 88.97 -0.424 线粒体基质
Mitochondrial matrix
CcHsp90-2 2172 723 82.812 4.97 39.90 80.24 -0.681 细胞质Cytoplasm
CcHsp90-3 2331 776 88.900 4.95 39.29 81.40 -0.603 细胞外Extracellular

Fig. 1

Phylogenetic analysis of HSP from different insect species A: HSP; B: sHSP"

Fig. 2

Phylogenetic relationship, protein structure and the conserved motif analysis of the HSP gene superfamily in C. chinensis"

Fig. 3

Multiple sequence alignments of the HSP gene superfamily in C. chinensis"

Table 3

Expression profiles of 31 CcHsps in high and low temperature transcriptomes of C. chinensis adult"

基因ID
Gene ID
基因名
Gene name
描述
Description
A1 (FPKM) A2 (FPKM) A3 (FPKM) B1 (FPKM) B2 (FPKM) B3 (FPKM) C1 (FPKM) C2 (FPKM) C3 (FPKM)
F01_transcript_43299 CcHsp18.572 Alpha-crystallin B chain-like 8.98 5.94 4.90 5188.18 3905.53 4239.34 11.05 17.72 0
F01_transcript_42933 CcHsp19.855 Alpha-crystallin B chain-like 20.60 26.01 18.35 5155.01 5338.97 5536.08 49.24 27.53 19.29
F01_transcript_40250 CcHsp20.102 Protein lethal (2) essential for life 8.19 12.68 11.84 14663.45 14417.42 12560.95 12.78 42.34 10.79
F01_transcript_39920 CcHsp21.032 Alpha-crystallin B chain-like 0 0 0 1.49 1.16 0.32 0 0 0
F01_transcript_38328 CcHsp19.121 Alpha-crystallin B chain-like 31.83 30.27 19.40 793.80 422.20 553.81 18.71 42.25 15.67
F01_transcript_28534 CcHsp18.444 Alpha-crystallin B chain-like 0 2.17 1.50 12.66 0 0 0.14 0.65 0
F01_transcript_27941 CcHsp20.103 Protein lethal (2) essential for life 29.99 21.96 22.74 16.40 70.62 4.77 64.49 13.95 21.07
F01_transcript_24610 CcHsp22.154 Protein lethal (2) essential for life 26.12 27.01 16.63 1208.61 508.81 769.67 17.83 34.94 13.28
F01_transcript_24085 CcHsp20.956 Protein lethal (2) essential for life 122.65 191.95 87.92 3007.42 3623.59 4306.85 118.63 76.41 78.69
F01_transcript_24011 CcHsp22.763 Alpha-crystallin B chain-like 0 0 0 0 0 0 0 0 0
F01_transcript_22315 CcHsp21.936 Protein lethal (2) essential for life 20.37 49.74 23.53 616.41 1482.13 892.17 13.49 26.33 37.90
F01_transcript_5515 CcHsp24.313 Alpha-crystallin B chain-like 239.53 273.50 197.18 250.14 431.63 251.55 208.14 381.78 263.16
F01_transcript_128 CcHsp60-8 60 kDa heat shock protein 152.30 368.87 363.28 445.95 297.55 250.78 237.47 397.82 120.83
F01_transcript_40995 CcHsp60-5 T-complex protein 1 subunit eta-like 41.21 38.76 37.33 71.18 21.85 33.86 38.20 49.72 18.06
F01_transcript_20569 CcHsp60-4 T-complex protein 1 subunit epsilon 13.40 21.90 49.28 31.97 30.52 16.34 14.34 44.61 20.79
F01_transcript_694 CcHsp60-3 T-complex protein 1 subunit zeta 102.08 125.65 112.61 100.87 67.07 98.74 86.41 116.36 71.93
F01_transcript_639 CcHsp60-6 T-complex protein 1 subunit alpha 46.86 86.59 94.75 95.54 54.49 94.64 71.68 122.22 69.76
F01_transcript_578 CcHsp60-2 T-complex protein 1 subunit beta 63.48 71.65 69.67 66.85 61.50 77.62 63.93 95.76 70.86
F01_transcript_501 CcHsp60-1 T-complex protein 1 subunit delta 80.57 93.12 71.84 58.52 45.90 53.01 36.07 83.26 77.10
F01_transcript_442 CcHsp60-7 T-complex protein 1 subunit gamma 89.12 101.69 91.83 85.56 64.15 75.93 95.03 109.45 79.94
F01_transcript_73 CcHsp70-6 Heat shock protein 70 6.03 3.74 9.44 1609.09 1163.31 1709.61 6.05 12.11 0
F01_transcript_18358 CcHsp70-2 Heat shock 70 kDa protein cognate 3 isoform X1 426.14 211.25 179.19 536.20 53.68 35.18 105.66 82.65 21.55
F01_transcript_16333 CcHsp70-4 Heat shock 70 kDa protein cognate 3 0.31 0 0 0 0.77 0 0 0 0
F01_transcript_277 CcHsp70-3 Heat shock 70 kDa protein cognate 2 39.45 40.46 65.39 55.88 81.61 43.11 83.69 35.19 31.18
F01_transcript_168 CcHsp70-5 Heat shock protein 70 10.63 10.46 9.83 5992.26 4679.61 6348.31 11.82 21.93 5.07
F01_transcript_122 CcHsp70-8 Heat shock 70 kDa protein cognate 3 isoform X3 112.90 305.41 319.01 851.12 1148.55 644.20 274.10 555.56 385.90
F01_transcript_120 CcHsp70-1 Heat shock protein 70 0.03 1.12 2.54 133.45 574.24 386.62 1.94 1.71 1.50
F01_transcript_56 CcHsp70-7 Heat shock protein 70 0 110.53 0 0 2.09 0 0 1.63 1.13
F01_transcript_42638 CcHsp90-1 Heat shock protein 75 kDa 20.55 22.54 21.28 21.17 22.56 23.64 18.12 22.08 30.43
F01_transcript_59 CcHsp90-3 Endoplasmin 254.32 274.77 261.66 361.26 319.09 296.49 136.10 214.31 168.92
F01_transcript_57 CcHsp90-2 Heat shock protein 83 1122.57 1278.61 1487.83 3408.15 3540.80 3795.53 758.88 1352.60 1729.74

Table 4

Statistical analysis of expression level of differentially expressed HSP gene under high and low temperature stress transcriptomes"

基因ID
Gene ID
A1_Count A2_Count A3_Count B1_Count B2_Count B3_Count 错误发现率
FDR
差异倍数的
对数值
Log2FC
基因调节
Gene regulated
F01_transcript_43299 83 52 47 45192 36760 34185 1.25E-281 8.875292037 Up
F01_transcript_38328 326 295 207 7703 4431 4996 6.02E-50 4.188931643 Up
F01_transcript_24624 63 152 42 22981 31416 26459 1.09E-69 6.883143797 Up
F01_transcript_3613 125 152 105 23298 32452 32178 3.91E-195 7.499200641 Up
F01_transcript_20561 0 0 0 54 42 36 6.81E-13 3.780936629 Up
F01_transcript_25418 23 7 18 19904 19924 16508 1.20E-208 9.246980188 Up
F01_transcript_5284 33 23 0 3143 1904 1905 0.019906364 1.64057389 Up
F01_transcript_36652 31 52 52 128 278 165 2.89E-05 1.884678396 Up
F01_transcript_43228 0 0 1 67 149 724 1.88E-08 3.227036338 Up
F01_transcript_33596 270 269 146 693 709 451 2.48E-05 1.476145857 Up
F01_transcript_41848 1258 1272 1250 3286 3617 2559 1.85E-13 1.448039781 Up
F01_transcript_28277 1 3 7 86 296 795 1.67E-09 3.378050236 Up
F01_transcript_6174 11 6 54 4940 9656 5025 7.99E-21 4.73690697 Up
F01_transcript_18613 0 12 4 5653 5050 3444 1.44E-65 7.225268629 Up
F01_transcript_17534 42 21 92 753 630 959 3.63E-11 3.117146973 Up
F01_transcript_42430 2164 1080 1190 7186 7757 5735 2.46E-12 2.200081315 Up
F01_transcript_38496 650 797 647 1878 2100 1393 1.56E-09 1.459606834 Up
F01_transcript_40250 53 77 79 88274 93445 68696 0 9.709356267 Up
F01_transcript_29133 1 7 7 1406 1481 1820 1.86E-85 1.723134458 Up
F01_transcript_19811 32 30 55 154 154 108 3.71E-05 1.065158394 Up
F01_transcript_47 296002 298628 475364 749443 723281 659223 0.003868698 1.109360769 Up
F01_transcript_34439 20 15 20 42 42 36 0.039086603 1.605846729 Up
F01_transcript_122 3620 9409 10704 26414 38741 19064 0.001900569 6.502458533 Up
F01_transcript_30785 0 0 0 423 320 442 1.43E-52 1.382236836 Up
F01_transcript_46898 164 175 56 253 693 263 0.02788211 4.184196848 Up
F01_transcript_22315 242 565 292 6981 18172 9444 2.10E-24 4.4489631 Up
F01_transcript_24085 1209 1799 902 27990 36460 37206 2.08E-50 1.286238774 Up
F01_transcript_25973 19 16 16 36 65 34 0.024418377 1.601501158 Up
F01_transcript_45548 90 137 174 425 381 428 1.92E-05 3.316756015 Up
F01_transcript_35814 3 7 3 82 82 60 6.56E-14 5.119419417 Up
F01_transcript_21658 17 14 17 1080 557 1040 5.07E-47 3.788445916 Up
F01_transcript_37597 601 727 663 11682 10180 6929 1.31E-55 1.272772815 Up
F01_transcript_28254 31 11 27 77 55 52 0.033458361 6.722645203 Up
F01_transcript_73 206 123 339 53457 42010 54200 1.57E-75 1.4927542 Up
F01_transcript_21952 22 11 52 133 87 98 0.021134189 1.513921055 Up
F01_transcript_57 38595 42246 53536 113486 128163 120611 7.83E-09 1.538732717 Up
F01_transcript_23965 425 382 379 927 1591 841 2.81E-06 7.802804908 Up
F01_transcript_42933 223 268 207 52943 59323 52969 0 2.20861966 Up
F01_transcript_27028 6 4 3 44 49 18 0.000136632 1.259693495 Up
F01_transcript_19334 197 244 249 536 451 555 1.31E-05 1.467376685 Up
F01_transcript_11744 43 21 0 2103 1367 1285 0.045002773 4.400867923 Up
F01_transcript_27257 1970 2940 2585 57913 52839 57508 1.67E-76 4.702861053 Up
F01_transcript_24610 349 344 231 15406 7026 9202 3.65E-48 1.199883723 Up
F01_transcript_33669 222 189 244 530 461 405 6.09E-06 8.919378418 Up
F01_transcript_168 325 306 314 177176 150364 178888 0 1.504407815 Up
F01_transcript_120 1 34 86 4186 19580 11567 0.036109917 6.953691731 Up
F01_transcript_23373 17 20 17 5167 4047 2431 3.95E-103 1.674610512 Up
F01_transcript_3052 452 458 419 1457 1384 1062 1.08E-18 5.053735916 Up
F01_transcript_41976 16 2 1 920 920 826 1.98E-27 3.220154002 Up
F01_transcript_4271 0 13 18 434 520 280 4.73E-09 1.781266067 Up
F01_transcript_36223 8 0 0 24988 25210 20569 0.009242401 8.875292037 Up

Fig. 4

Expression profiles of CcHsps at different developmental stages under high and low temperature stress The different uppercase and lowercase letters on the bars represented significant differences in expression among different developmental stages at high (45 ℃) and low (-3 ℃) temperatures, respectively (P<0.05, analysis of ANOVA and LDS test); Asterisk and ns indicated significant difference and no significant difference under different temperature treatments at the same developmental stage, respectively (P<0.05, two-tailed test)"

[1]
仲建锋, 万正煌, 李莉, 陈宏伟, 伍广洪. 低温和高温对仓储绿豆象的防治效果. 中国农业科学, 2013, 46(1): 54-59. doi: 10.3864/j.issn.0578-1752.2013.01.007.
ZHONG J F, WAN Z H, LI L, CHEN H W, WU G H. Effect of low and high temperatures on controlling Azuki bean beetle (Callosobruchus chinensis L., Coleoptera: Bruchidae) in storage. Scientia Agricultura Sinica, 2013, 46(1): 54-59. doi: 10.3864/j.issn.0578-1752.2013.01.007. (in Chinese)
[2]
XIE J, PENG G, HU X, GU S, BI J, WEI L, TANG J, SONG X, FENG F, LI B. Functional analysis of a novel orthologous small heat shock protein (shsp) hsp21.8a and seven species-specific shsps in Tribolium castaneum. Genomics, 2020, 112(6): 4474-4485.

doi: 10.1016/j.ygeno.2020.07.040
[3]
JIANG X, ZHAI H, WANG L, LUO L, SAPPINGTON T W, ZHANG L. Cloning of the heat shock protein 90 and 70 genes from the beet armyworm, Spodoptera exigua, and expression characteristics in relation to thermal stress and development. Cell Stress and Chaperones, 2012, 17(1): 67-80.

doi: 10.1007/s12192-011-0286-2
[4]
CHEN H, XU X L, LI Y P, WU J X. Characterization of heat shock protein 90, 70 and their transcriptional expression patterns on high temperature in adult of Grapholita molesta (Busck). Insect Science, 2014, 21(4): 439-448.

doi: 10.1111/ins.2014.21.issue-4
[5]
BENOIT J B, LOPEZ-MARTINEZ G, PHILLIPS Z P, PATRICK K R, DENLINGER D L. Heat shock proteins contribute to mosquito dehydration tolerance. Journal of Insect Physiology, 2010, 56(2): 151-156.

doi: 10.1016/j.jinsphys.2009.09.012 pmid: 19782687
[6]
ZHAO L, JONES W A. Expression of heat shock protein genes in insect stress responses. Invertebrate Survival Journal, 2012, 9(1): 93-101.
[7]
KING A M, MACRAE T H. Insect heat shock proteins during stress and diapause. Annual Review of Entomology, 2015, 60: 59-75.

doi: 10.1146/annurev-ento-011613-162107 pmid: 25341107
[8]
RINEHART J P, LI A, YOCUM G D, ROBICH R M, HAYWARD S A, DENLINGER D L. Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11130-11137.
[9]
CHENG J, SU Q I, XIA J, YANG Z, SHI C, WANG S, WU Q, LI C, ZHANG Y. Comparative transcriptome analysis of differentially expressed genes in Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae) at different acute stress temperatures. Genomics, 2020, 112(5): 3739-3750.

doi: 10.1016/j.ygeno.2020.04.019
[10]
CHANG Y W, ZHANG X X, LU M X, GONG W R, DU Y Z. Transcriptome analysis of Liriomyza trifolii (Diptera: Agromyzidae) in response to temperature stress. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2020, 34: 100677.

doi: 10.1016/j.cbd.2020.100677
[11]
XIONG Y, LIU X Q, XIAO P A, TANG G H, LIU S H, LOU B H, WANG J J, JIANG H B. Comparative transcriptome analysis reveals differentially expressed genes in the Asian citrus psyllid (Diaphorina citri) upon heat shock. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2019, 30: 256-261.

doi: 10.1016/j.cbd.2019.03.009
[12]
LI H, LI S, CHEN J, DAI L, CHEN R, YE J, HAO D. A heat shock 70 kDa protein MaltHSP70-2 contributes to thermal resistance in Monochamus alternatus (Coleoptera: Cerambycidae): Quantification, localization, and functional analysis. BMC Genomics, 2022, 23(1): 646.

doi: 10.1186/s12864-022-08858-1
[13]
DONG C L, ZHU F, LU M X, DU Y Z. Characterization and functional analysis of Cshsp19.0 encoding a small heat shock protein in Chilo suppressalis (Walker). International Journal of Biological Macromolecules, 2021, 188: 924-931.

doi: 10.1016/j.ijbiomac.2021.07.186
[14]
XU Y, SHI F, LI Y, ZONG S, TAO J. Genome-wide identification and expression analysis of the Hsp gene superfamily in Asian long-horned beetle (Anoplophora glabripennis). International Journal of Biological Macromolecules, 2022, 200: 583-592.

doi: 10.1016/j.ijbiomac.2022.01.014 pmid: 35016971
[15]
WANG X R, WANG C, BAN F X, ZHU D T, LIU S S, WANG X W. Genome-wide identification and characterization of HSP gene superfamily in whitefly (Bemisia tabaci) and expression profiling analysis under temperature stress. Insect Science, 2019, 26(1): 44-57.

doi: 10.1111/ins.2019.26.issue-1
[16]
AKER O, TUNCER C. Use of extreme low temperatures against Adzuki bean weevil (Callosobruchus chinensis L., Coleoptera: Chrysomelidae) in storage management. KSU Journal of Agriculture and Nature, 2022, 25(3): 511-520.
[17]
YIN C, SHEN G, GUO D, WANG S, MA X, XIAO H, LIU J, ZHANG Z, LIU Y, ZHANG Y, YU K, HUANG S, LI F. InsectBase: A resource for insect genomes and transcriptomes. Nucleic Acids Research, 2016, 44(D1): D801-D807.

doi: 10.1093/nar/gkv1204
[18]
FINN R D, CLEMENTS J, EDDY S R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Research, 2011, 39: W29-W37.

doi: 10.1093/nar/gkr367
[19]
KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.

doi: 10.1093/molbev/msy096 pmid: 29722887
[20]
CHEN C, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202.

doi: S1674-2052(20)30187-8 pmid: 32585190
[21]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.

doi: 10.1006/meth.2001.1262
[22]
Tribolium Genome Sequencing Consortium. The genome of the model beetle and pest Tribolium castaneum. Nature, 2008, 452(7190): 949-955.

doi: 10.1038/nature06784
[23]
CANNON S B, MITRA A, BAUMGARTEN A, YOUNG N D, MAY G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology, 2004, 4: 10.

doi: 10.1186/1471-2229-4-10
[24]
ZHENG H Y, QIN P H, YANG K, LIU T X, ZHANG Y J, CHU D. Genome-wide identification and analysis of the heat-shock protein gene superfamily in Bemisia tabaci and expression pattern analysis under heat shock. Insects, 2022, 13(7): 570.

doi: 10.3390/insects13070570
[25]
WANG Y, LIN J, CHEN Q Z, ZHU N, JIANG D Q, LI M X, WANG Y. Overexpression of mitochondrial Hsp75 protects neural stem cells against microglia-derived soluble factor-induced neurotoxicity by regulating mitochondrial permeability transition pore opening in vitro. International Journal of Molecular Medicine, 2015, 36(6): 1487-1496.

doi: 10.3892/ijmm.2015.2380
[26]
HAVIRD J C, SHAH A A, CHICCO A J. Powerhouses in the cold: Mitochondrial function during thermal acclimation in montane mayflies. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2020, 375(1790): 20190181.
[27]
BOORSTEIN W R, ZIEGELHOFFER T, CRAIG E A. Molecular evolution of the Hsp70 multigene family. Journal of Molecular Evolution, 1994, 38: 1-17.

pmid: 8151709
[28]
XIE J, HU X X, ZHAI M F, YU X J, SONG X W, GAO S S, WU W, LI B. Characterization and functional analysis of hsp18.3 gene in the red flour beetle, Tribolium castaneum. Insect Science, 2019, 26(2): 263-273.

doi: 10.1111/1744-7917.12543 pmid: 28980406
[29]
SONG J, LU M X, DU Y Z. Molecular cloning and expression patterns of two small heat shock proteins from Chilo suppressalis (Walker). Journal of Integrative Agriculture, 2020, 19(6): 1522-1529.

doi: 10.1016/S2095-3119(19)62808-X
[30]
YANG C L, MENG J Y, ZHOU L, YAO M S, ZHANG C Y. Identification of five small heat shock protein genes in Spodoptera frugiperda and expression analysis in response to different environmental stressors. Cell Stress and Chaperones, 2021, 26(3): 527-539.

doi: 10.1007/s12192-021-01198-1
[31]
MIAO Z Q, TU Y Q, GUO P Y, HE W, JING T X, WANG J J, WEI D D. Antioxidant enzymes and heat shock protein genes from Liposcelis bostrychophila are involved in stress defense upon heat shock. Insects, 2020, 11(12): 839.

doi: 10.3390/insects11120839
[32]
BAI J, WANG Y C, LIU Y C, CHANG Y W, LIU X N, GONG W R, DU Y Z. Isolation of two new genes encoding heat shock protein 70 in Bemisia tabaci and analysis during thermal stress. International Journal of Biological Macromolecules, 2021, 193: 933-940.

doi: 10.1016/j.ijbiomac.2021.10.186
[33]
CHANG Y W, ZHANG X X, LU M X, DU Y Z, ZHU-SALZMAN K. Molecular cloning and characterization of small heat shock protein genes in the invasive leaf miner fly, Liriomyza trifolii. Genes, 2019, 10(10): 775.

doi: 10.3390/genes10100775
[34]
BAI J, LIU X N, LU M X, DU Y Z. Characterization of genes encoding small heat shock proteins from Bemisia tabaci and expression under thermal stress. PeerJ, 2019, 7: e6992.

doi: 10.7717/peerj.6992
[1] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[2] ZHANG KaiJing, HE ShuaiShuai, JIA Li, HU YuChao, YANG DeKun, LU XiaoMin, ZHANG QiAn, YAN CongSheng. Genome-Wide Identification and Expression Analysis of DIR Gene Family in Cucumber [J]. Scientia Agricultura Sinica, 2023, 56(4): 711-728.
[3] WANG ZhuangZhuang, DONG ShaoYun, ZHOU Qi, MIAO Han, LIU XiaoPing, XU KuiPeng, GU XingFang, ZHANG ShengPing. Cloning and Analysis of Key Genes for Vitamin C Synthesis in Cucumber Fruit [J]. Scientia Agricultura Sinica, 2023, 56(3): 508-518.
[4] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[5] ZHANG YuJia, CUI KaiWen, DUAN LiSheng, CAO AiPing, XIE QuanLiang, SHEN HaiTao, WANG Fei, LI HongBin. Identification and Expression of CAD and CAD-Like Gene Families from Gossypium barbadense and Their Response to Verticillium dahliae [J]. Scientia Agricultura Sinica, 2023, 56(19): 3759-3771.
[6] YANG HuiZhen, YANG Huan, WU ZiXuan, FAN KuoHai, YIN Wei, SUN PanPan, ZHONG Jia, SUN Na, LI HongQuan. Prokaryotic Expression and Metal Binding Characterization of Metallothionein 1A and 2A of Sus scrofa [J]. Scientia Agricultura Sinica, 2023, 56(17): 3461-3478.
[7] KONG LeHui, ZONG DeQian, SHI QingYao, YIN PanPan, WU WenYu, TIAN Peng, SHAN WeiXing, QIANG XiaoYu. Identification of StCYP83 Gene Family in Potato and Analysis of Its Function in Resistance Against Late Blight [J]. Scientia Agricultura Sinica, 2023, 56(16): 3124-3139.
[8] HE Dan, YOU XiaoLong, HE SongLin, ZHANG MingXing, ZHANG JiaoRui, HUA Chao, WANG Zheng, LIU YiPing. Identification of Callose Synthetase Gene Family and Functional Analysis of PlCalS5 in Paeonia lactiflora [J]. Scientia Agricultura Sinica, 2023, 56(16): 3183-3198.
[9] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[10] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[11] GUO ShaoLei, XU JianLan, WANG XiaoJun, SU ZiWen, ZHANG BinBin, MA RuiJuan, YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[12] CHEN FengQiong, CHEN QiuSen, LIN JiaXin, WANG YaTing, LIU HanLin, LIANG BingRuoShi, DENG YiRu, REN ChunYuan, ZHANG YuXian, YANG FengJun, YU GaoBo, WEI JinPeng, WANG MengXue. Genome-Wide Identification of DIR Family Genes in Tomato and Response to Abiotic Stress [J]. Scientia Agricultura Sinica, 2022, 55(19): 3807-3821.
[13] HaiXia ZHENG,YuLin GAO,FangMei ZHANG,ChaoXia YANG,Jian JIANG,Xun ZHU,YunHui ZHANG,XiangRui LI. Cloning of Heat Shock Protein Gene Ld-hsp70 in Leptinotarsa decemlineata and Its Expression Characteristics under Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(6): 1163-1175.
[14] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[15] ZHENG FengSheng,WANG HaiHua,WU QingTao,SHEN Quan,TIAN JianHong,PENG XiXu,TANG XinKe. Genome-Wide Identification of VQ Gene Family in Fagopyrum tataricum and Its Expression Profiles in Response to Leaf Spot Pathogens [J]. Scientia Agricultura Sinica, 2021, 54(19): 4048-4060.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!