Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (5): 935-950.doi: 10.3864/j.issn.0578-1752.2023.05.010

• HORTICULTURE • Previous Articles     Next Articles

Development and Validation of KASP Markers Based on a Whole- Genome Resequencing Approach in a Hybrid Population of Luli × Red No. 1

ZHENG WenYan1(), CHANG YuanSheng1, HE Ping1, HE XiaoWen1, WANG Sen1, GAO WenSheng2, LI LinGuang1(), WANG HaiBo1()   

  1. 1 Shandong Institute of Pomology, Tai’an 271000, Shandong
    2 Shandong Agricultural Technology Extension Center, Ji’nan 250100
  • Received:2022-04-26 Accepted:2022-07-14 Online:2023-03-01 Published:2023-03-13

Abstract:

【Objective】 A series of kompetitive allele-specific PCR (KASP) markers for traits related to apple leaves were developed to provide a reference to effectively utilize light in apple breeding using a Luli ×Red No. 1 hybrid population as materials. 【Method】This study investigated the leaf trait phenotypic data (including leaf length, width, contents of chlorophyll and anthocyanin, photosynthetic rate and chlorophyll fluorescence parameters) of Luli, a type I red-fleshed apple, Red No. 1, and 134 hybrids. Whole-genome resequencing was conducted on an Illumina HiSeq 2500 platform. The clean sequencing reads were mapped to the apple reference genome using BWA software. GATK software was used to identify single nucleotide polymorphisms (SNPs). 【Result】A total of 164 776 660, 149 482 876, and 3 927 370 200 clean reads were obtained by whole-genome resequencing from Luli, Red No. 1 and 134 hybrid individuals, respectively. The data were aligned to the reference genome sequences with mapping rates of 98.77%, 98.89%, and 97.79%, respectively. A total of 6 445 766 SNPs were identified. The SNPs were then filtered, and 94 208 accurate and high-quality SNPs were selected for subsequent KASP primer design. Finally, 5 802 KASP markers were developed based on a high-throughput whole-genome resequencing approach. The average polymorphism information content (PIC) of these KASP markers was 0.31, and there were 30.13% PICs>0.35. The Simpson genetic diversity index ranged from 0.01 to 0.67, with an average value of 0.53. The mean observed heterozygosity was 0.32. A Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the genes for KASP marker revealed that “one carbon pool by folate” was the most significant pathway. An analysis of the phenotypic data of leaf-related traits in both the parents and individuals from the Luli ×Red No. 1 cross showed that there were significant differences in the phenotypic values of leaf net photosynthetic rate, stomatal conductance (Gs) and other traits between the parents Luli and Red No. 1. The F1 generation exhibited a wide phenotypic variation, and the most traits segregated extensively. Α detailed study of the phenotypic data of leaf traits of the hybrid population with the genotype and annotations of the KASP markers finally resulted in the development of 21 KASP markers, which was correlated with leaf-related traits, including chlorophyll content, Gs and leaf length and width.【Conclusion】Use of the whole-genome resequencing data of Luli, Red No. 1 and 134 hybrid individuals resulted in the development of 5 802 KASP. A total of 21 of these KASP markers significantly correlated with leaf traits, which provided a theoretical reference for the high utilization of light energy in apple breeding.

Key words: apple, whole-genome resequencing, leaf-related traits, KASP marker

Fig. 1

Morphology of the 4th to 10th leaves of both parents and three individuals derived from the Luli ×Red No. 1 cross"

Table 1

Summary of the resequencing data"

样品 Sample Reads数 Clean reads 碱基数 Bases (bp) Q30百分比Q30 (%) GC含量 GC (%)
‘鲁丽’ Luli 164776660 24684144730 93.59 38.64
‘红1#’ Red No. 1 149482876 22391415716 94.24 38.72
杂交后代 Offsprings 3927370200 588153323320 92.87 38.61
总计 Total 4241629736 635228883766 92.88 38.61

Table 2

Number of single nucleotide polymorphisms (SNPs) in chromosomes before and after filtration"

染色体Chromosome 染色体长度
Length of chromosome (Mb)
SNP数
SNP number
SNP密度(个/Mb)
SNP density
(No./Mb)
过滤后SNP数
SNP number after filtration
过滤后SNP密度(个/Mb)
SNP density after filtration (No./Mb)
Chr01 32.625 278600 8539 3216 99
Chr02 37.578 404259 10758 5965 159
Chr03 37.524 372841 9936 5747 153
Chr04 32.302 331145 10252 5380 167
Chr05 47.952 486261 10141 6655 139
Chr06 37.137 291836 7858 3291 89
Chr07 36.691 352192 9599 5113 139
Chr08 31.609 302356 9566 4445 141
Chr09 37.605 373414 9930 5601 149
Chr10 41.762 442804 10603 6965 167
Chr11 43.060 406159 9432 5570 129
Chr12 33.050 366784 11098 6256 189
Chr13 44.340 417525 9416 6019 136
Chr14 32.513 329508 10135 4574 141
Chr15 54.945 525072 9556 7431 135
Chr16 41.389 406794 9829 5892 142
Chr17 34.749 358216 10309 6088 175

Fig. 2

Distribution of KASP primers for each chromosome The abscissa represents the physical location of the chromosome, and the window size is 0.1 Mb; the ordinate represents the chromosome; green to red represent the regions with KASP marker density from low to high"

Fig. 3

Missing rate (A), PIC (B), genetic diversity index (C) and observed heterozygosity (D) of 5802 SNP loci"

Fig. 4

Genetic structure analyses depicting the relationships among hybrids of Luli × Red No. 1 A: The principal component analysis of individuals from Luli × Red No. 1 population were carried out by SNP markers; B: Phylogenetic analysis"

Fig. 5

Annotation of the SNP locus variation type and distribution A: Statistics on the types and number of SNP locus; B: Annotation of SNP locus genome distribution region"

Fig. 6

GO classification of putative functions of the genes for KASP marker"

Fig. 7

KEGG enrichment analysis of the genes for KASP marker"

Fig. 8

The 20 most significant KEGG metabolic pathways of the genes for KASP marker The Y-axis represents the name of the KEGG pathway; the X-axis shows the rich factor. The size of the q value is indicated by the color of the dot, where the redder the color indicates a smaller q value, and the number of genes involved in each pathway is represented by the size of the dot"

Table 3

Phenotypic analysis of leaf traits in an F1 population derived from Luli × Red No. 1"

性状
Traits
亲本 Parents 杂交后代 Hybrids
鲁丽
Luli
红1#
Red No. 1
范围
Range
平均值±标准差
Mean±SD
变异系数
CV (%)
正态性检验
Shapiro-Wilk test
Ci 206a 212a 105-245 184±30 16.47 Normal
Pn 20.42a 14.68b 8.20-24.50 17.40±3.37 19.22 Non
Gs 178a 145b 77-226 147±36 24.64 Normal
Tr 4.68a 3.95b 2.00-5.10 3.60±0.70 18.47 Normal
VPD 2.96a 3.06a 2.00-3.30 2.70±0.20 7.57 Non
WUE 4.38a 3.72b 2.90-8.40 4.90±1.20 24.17 Non
Vc 0.10a 0.07a 0.04-0.19 0.10±0.03 33.90 Normal
Chla 0.27a 0.20b 0.11-0.27 0.18±0.03 17.83 Normal
Chlb 0.11a 0.06b 0.03-0.11 0.06±0.01 22.35 Normal
Chl(a+b) 0.38a 0.26b 0.14-0.38 0.24±0.05 18.74 Normal
Anthocyanin 0.09b 0.31a 0.00-0.55 0.20±0.13 64.17 Non
Area 31.25a 29.49a 11.20-44.13 29.81±6.03 20.10 Normal
Length 11.95a 11.15b 6.25-14.94 11.12±1.41 12.57 Normal
Width 4.61a 4.85a 3.01-5.79 4.76±0.49 10.17 Non
Perimeter 30.99a 27.87a 17.44-39.09 30.23±3.47 11.43 Normal
Fv/Fm 0.81a 0.82a 0.30-0.84 0.73±0.09 11.77 Non
ABS/RC 1.09b 1.17a 1.05-4.75 1.81±0.67 36.78 Non
DIo/RC 0.20a 0.22a 0.17-3.19 0.58±0.49 84.19 Non
TRo/RC 0.89b 0.96a 0.88-2.08 1.25±0.24 18.78 Normal
ETo/RC 0.55a 0.51b 0.44-0.94 0.63±0.08 12.92 Non
ABS/CSo 6146a 6202a 5921-10932 7746±1090 14.01 Non
DIo/CSo 1143a 1137a 973-6117 2212±1051 7.35 Non
TRo/CSo 5003b 5065a 4251-6912 5575±343 6.12 Non
ETo/CSo 3097a 2700b 1669-3586 2929±347 11.81 Normal

Table 4

Twenty-one KASP markers of leaf-related traits"

KASP名称
KASP name
变异
Variation type
性状
Traits
亲本基因型 Parental genotype 杂交后代基因型 Hybrid genotype 卡方检验
χ 2
鲁丽
Luli
红1#
Red No. 1
20个高表型极端个体
20 extremely high-phynotype individuals
20个低表型极端个体
20 extremely low-phynotype individuals
KASP3343 C/A Anthocyanin CA CA CC:CA:AA=12:2:4 CC:CA:AA=3:2:13 10.17**
KASP5095 A/C Chlb AC AA AA:AC=8:6 AA:AC=15:1 5.59*
KASP5105 G/A Chla GA GG GA:GG=8:6 GA:GG=15:1 5.59*
KASP3508 C/T Chlb CT CT CC:CT:TT=3:9:2 CC:CT:TT=10:1:6 11.99**
KASP2936 T/C Gs TT TC TT:TC=8:9 TT:TC=14:3 4.64*
KASP3022 A/G Gs AG GG AG:GG=0:15 AG:GG=6:7 8.81**
KASP2608 A/T Length TT AT AT:TT=4:11 AT:TT=9:4 5.07*
KASP2718 T/A Length TT TA TT:TA=7:11 TT:TA=11:4 3.92*
KASP2744 G/A Length GG GA GG:GA=7:11 GG:GA=11:4 3.92*
KASP4678 A/T Length TT AT AT:TT=6:7 AT:TT=1:13 5.34*
KASP3350 A/G Width AG AA AA:AG=10:2 AA:AG=5:7 4.44*
KASP4591 G/T Width GT GG GG:GT=14:2 GG:GT=7:7 5.00*
KASP1587 T/C Width TC TC TT:TC:CC=9:6:3 TT:TC:CC=6:2:10 6.37*
KASP1588 C/T Width CT CT CC:CT:TT=12:2:5 CC:CT:TT=4:6:7 6.24*
KASP1584 G/T ETo/CSo GT GG GG:GT=6:5 GG:GT=17:1 6.62*
KASP1586 T/C ETo/CSo TC TT TT:TC=6:9 TT:TC=14:2 7.63**
KASP1589 C/T ETo/CSo CT CC CC:CT=7:9 CC:CT=13:3 4.80*
KASP1587 T/C ETo/CSo TC TC TT:TC:CC=4:4:9 TT:TC:CC=12:2:2 9.10**
KASP1588 C/T ETo/CSo CT CT CC:CT:TT=4:5:10 CC:CT:TT=11:4:1 10.56**
KASP1592 G/T ETo/CSo GT TT GT:TT=2:17 GT:TT=8:6 8.29**
KASP4533 G/A ETo/CSo GA AA GA:AA=2:14 GA:AA=6:6 4.73*
[1]
王金政, 毛志泉, 丛佩华, 吕德国, 马锋旺, 任小林, 束怀瑞, 李保华, 郭玉蓉, 郝玉金, 姜远茂, 张新忠, 杨欣, 曹克强, 赵政阳, 韩振海, 霍学喜, 魏钦平. 新中国果树科学研究70年: 苹果. 果树学报, 2019, 36(10): 1255-1263.
WANG J Z, MAO Z Q, CONG P H, D G, MA F W, REN X L, SHU H R, LI B H, GUO Y R, HAO Y J, JIANG Y M, ZHANG X Z, YANG X, CAO K Q, ZHAO Z Y, HAN Z H, HUO X X, WEI Q P. Fruit scientific research in New China in the past 70 years: Apple. Journal of Fruit Science, 2019, 36(10): 1255-1263.(in Chinese)
[2]
李民吉, 张强, 李兴亮, 周贝贝, 杨雨璋, 张军科, 周佳, 魏钦平. 4种矮化砧木对再植苹果幼树生长、产量和品质的影响. 中国农业科学, 2020, 53(11): 2264-2271. doi: 10.3864/j.issn.0578-1752.2020.11.012.

doi: 10.3864/j.issn.0578-1752.2020.11.012
LI M J, ZHANG Q, LI X L, ZHOU B B, YANG Y Z, ZHANG J K, ZHOU J, WEI Q P. Effects of 4 dwarfing rootstocks on growth, yield and fruit quality of ‘fuji’ sapling in apple replant orchard. Scientia Agricultura Sinica, 2020, 53(11): 2264-2271. doi: 10.3864/j.issn.0578-1752.2020.11.012.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.11.012
[3]
陈学森, 韩明玉, 苏桂林, 刘凤之, 过国南, 姜远茂, 毛志泉, 彭福田, 束怀瑞. 当今世界苹果产业发展趋势及我国苹果产业优质高效发展意见. 果树学报, 2010, 27(4): 598-604.
CHEN X S, HAN M Y, SU G L, LIU F Z, GUO G N, JIANG Y M, MAO Z Q, PENG F T, SHU H R. Discussion on today’s world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China. Journal of Fruit Science, 2010, 27(4): 598-604.(in Chinese)
[4]
赵德英, 程存刚, 仇贵生, 董雅凤, 张彩霞, 李壮, 张怀江, 胡国君, 厉恩茂. 苹果高质量发展技术创新途径. 中国果树, 2021(8): 1-5.
ZHAO D Y, CHENG C G, QIU G S, DONG Y F, ZHANG C X, LI Z, ZHANG H J, HU G J, LI E M. Technological innovation approach of high quality development in apple industry. China Fruits, 2021(8): 1-5.(in Chinese)
[5]
GANAL M W, POLLEY A, GRANER E M, PLIESKE J, WIESEKE R, LUERSSEN H, DURSTEWITZ G. Large SNP arrays for genotyping in crop plants. Journal of Biosciences, 2012, 37(5): 821-828.

pmid: 23107918
[6]
THOMSON M J. High-throughput SNP genotyping to accelerate crop improvement. Plant Breeding and Biotechnology, 2014, 2(3): 195-212.

doi: 10.9787/PBB.2014.2.3.195
[7]
SEMAGN K, BABU R, HEARNE S, OLSEN M. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): Overview of the technology and its application in crop improvement. Molecular Breeding, 2014, 33(1): 1-14.

doi: 10.1007/s11032-013-9917-x
[8]
MACKAY I J, BANSEPT-BASLER P, BARBER T, BENTLEY A R, COCKRAM J, GOSMAN N, GREENLAND A J, HORSNELL R, HOWELLS R, O’SULLIVAN D M, ROSE G A, HOWELL P J. An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: Creation, properties, and validation. G3: Genes|Genomes|Genetics, 2014, 4(9): 1603-1610.

doi: 10.1534/g3.114.012963
[9]
PHAM A T, HARRIS D K, BUCK J, HOSKINS A, SERRANO J, ABDEL-HALEEM H, CREGAN P, SONG Q J, BOERMA H R, LI Z L. Fine mapping and characterization of candidate genes that control resistance to Cercospora sojina K. Hara in two soybean germplasm accessions. PLoS ONE, 2015, 10(5): e0126753.
[10]
BAUMGARTNER I O, KELLERHALS M, COSTA F, DONDINI L, PAGLIARANI G, GREGORI R, TARTARINI S, LEUMANN L, LAURENS F, PATOCCHI A. Development of SNP-based assays for disease resistance and fruit quality traits in apple (Malus × domestica Borkh.) and validation in breeding pilot studies. Tree Genetics & Genomes, 2016, 12(35): 1-21.
[11]
JIA D J, SHEN F, WANG Y, WU T, XU X F, ZHANG X Z, HAN Z H. Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes: MdSAUR37, MdPP2CH and MdALMTII. The Plant Journal: for Cell and Molecular Biology, 2018, 95(3): 427-443.

doi: 10.1111/tpj.2018.95.issue-3
[12]
WANG H B, ZHAO S, MAO K, DONG Q L, LIANG B W, LI C, WEI Z W, LI M J, MA F W. Mapping QTLs for water-use efficiency reveals the potential candidate genes involved in regulating the trait in apple under drought stress. BMC Plant Biology, 2018, 18(1): 136.

doi: 10.1186/s12870-018-1308-3 pmid: 29940853
[13]
SHEN F, HUANG Z Y, ZHANG B G, WANG Y, ZHANG X, WU T, XU X F, ZHANG X Z, HAN Z H. Mapping gene markers for apple fruit ring rot disease resistance using a multi-omics approach. G3: Genes|Genomes|Genetics, 2019, 9(5): 1663-1678.

doi: 10.1534/g3.119.400167
[14]
ZHENG W Y, SHEN F, WANG W Q, WU B, WANG X, XIAO C, TIAN Z D, YANG X L, YANG J, WANG Y, WU T, XU X F, HAN Z H, ZHANG X Z. Quantitative trait loci-based genomics-assisted prediction for the degree of apple fruit cover color. The Plant Genome, 2020, 13(3): e20047.
[15]
WU B, SHEN F, WANG X, ZHENG W Y, XIAO C, DENG Y, WANG T, HUANG Z Y, ZHOU Q, WANG Y, WU T, XUE F X, HAN Z H, ZHANG X Z. Role of MdERF3 and MdERF118 natural variations in apple flesh firmness/crispness retainability and development of QTL-based genomics-assisted prediction. Plant Biotechnology Journal, 2021, 19(5): 1022-1037.

doi: 10.1111/pbi.v19.5
[16]
LIU J, SHEN F, XIAO Y, FANG H C, QIU C P, LI W, WU T, XU X F, WANG Y, ZHANG X Z, HAN Z H. Genomics-assisted prediction of salt and alkali tolerances and functional marker development in apple rootstocks. BMC Genomics, 2020, 21(1): 550.

doi: 10.1186/s12864-020-06961-9 pmid: 32778069
[17]
MILLER B A, TILLMAN J R, HOWARD N P, KOSTICK S A, EVANS K M, LUBY J J. A DNA test for high incidence of soft scald and soggy breakdown postharvest disorders in Malus domestica Borkh. Molecular Breeding, 2021, 41: 57.

doi: 10.1007/s11032-021-01245-w
[18]
WINFIELD M, BURRIDGE A, ORDIDGE M, HARPER H, WILKINSON P, THOROGOOD D, COPAS L, EDWARDS K, BARKER G. Development of a minimal KASP marker panel for distinguishing genotypes in apple collections. PLoS ONE, 2020, 15(11): e0242940.
[19]
SIMKIN A J, LÓPEZ-CALCAGNO P E, RAINES C A. Feeding the world: improving photosynthetic efficiency for sustainable crop production. Journal of Experimental Botany, 2019, 70(4): 1119-1140.

doi: 10.1093/jxb/ery445 pmid: 30772919
[20]
JIN F L, ZHANG F W, YUE X, LI M, AO X X. Correlation between leaf size and fruit quality of Kiwi. Agricultural Basic Science and Technology, 2016, 17 (11): 2472-2488.
[21]
MAEDA H, AKAGI T, TAO R. Quantitative characterization of fruit shape and its differentiation pattern in diverse persimmon (Diospyros kaki) cultivars. Scientia Horticulturae, 2018, 228: 41-48.

doi: 10.1016/j.scienta.2017.10.006
[22]
江锡兵, 章平生, 杨龙, 吴强, 吴聪连, 吴小云, 龚榜初, 赖俊声. 板栗和锥栗种间杂交F1代叶片表型及其遗传变异研究. 园艺学报, 2019, 46(11): 2129-2142.
JIANG X B, ZHANG P S, YANG L, WU Q, WU C L, WU X Y, GONG B C, LAI J S. Genetic variation of leaf phenotypic traits in F1 progeny of interspecific cross between Castanea mollissima and C. henryi. Acta Horticulturae Sinica, 2019, 46(11): 2129-2142.(in Chinese)
[23]
张小猜, 赵政阳, 樊红科, 党志国, 张志敏. 苹果杂种F1代叶片性状分离及早期选择研究. 西北农业学报, 2009, 18(5): 228-231.
ZHANG X C, ZHAO Z Y, FAN H K, DANG Z G, ZHANG Z M. Study on the leaf trait segregation of apple hybrid seedlings and application in pre-selection. Acta Agriculturae Boreali-Occidentalis Sinica, 2009, 18(5): 228-231.(in Chinese)
[24]
刘遵春, 苗卫东, 刘大亮, 陈学森. 苹果叶片相关性状的QTL定位及其遗传效应分析. 西北植物学报, 2014, 34(3): 481-487.
LIU Z C, MIAO W D, LIU D L, CHEN X S. Identification of quantitative trait loci associated with leaf traits in apple and analysis of their genetic effects. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(3): 481-487.(in Chinese)
[25]
张兴平, 钱前, 张嘉楠, 邓兴旺, 万建民, 徐云碧. 分子植物育种助推南繁种业转型升级. 中国农业科学, 2021, 54(18): 3789-3804. doi: 10.3864/j.issn.0578-1752.2021.18.001.

doi: 10.3864/j.issn.0578-1752.2021.18.001
ZHANG X P, QIAN Q, ZHANG J N, DENG X W, WAN J M, XU Y B. Transforming and upgrading off-season breeding in Hainan through molecular plant breeding. Scientia Agricultura Sinica, 2021, 54(18): 3789-3804. doi: 10.3864/j.issn.0578-1752.2021.18.001.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.18.001
[26]
吕天星, 伊凯, 刘志, 王冬梅, 闫忠业, 姜孝军, 王铭. 苹果实生苗叶片叶绿素含量遗传趋势. 西北农业学报, 2013, 22(12): 91-95.
T X, YI K, LIU Z, WANG D M, YAN Z Y, JIANG X J, WANG M. Genetic trend of leaf chlorophyll content in apple seedling plant. Acta Agriculturae Boreali-Occidentalis Sinica, 2013, 22(12): 91-95.(in Chinese)
[27]
姜卫兵, 庄猛, 沈志军, 宋宏峰, 曹晶, 李刚. 不同季节红叶桃、紫叶李的光合特性研究. 园艺学报, 2006, 33(3): 577-582.
JIANG W B, ZHUANG M, SHEN Z J, SONG H F, CAO J, LI G. Study on the photosynthetic characteristics of red-leaf peach and purpleleaf plum in different seasons. Acta Horticulturae Sinica, 2006, 33(3): 577-582.(in Chinese)
[28]
CHEN X S, FENG T, ZHANG Y M, HE T M, FENG J R, ZHANG C Y. Genetic diversity of volatile components in Xinjiang Wild Apple (Malus sieversii). Journal of Genetics and Genomics, 2007, 34(2): 171-179.

doi: 10.1016/S1673-8527(07)60018-6 pmid: 17469789
[29]
VAN NOCKER S, BERRY G, NAJDOWSKI J, MICHELUTTI R, LUFFMAN M, FORSLINE P, ALSMAIRAT N, BEAUDRY R, NAIR M F, ORDIDGE M. Genetic diversity of red-fleshed apples (Malus). Euphytica, 2012, 185: 281-293.

doi: 10.1007/s10681-011-0579-7
[30]
GIUSTI M M, WROLSTAD R E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Current Protocols in Food Analytical Chemistry, 2001, (1): F1.2.1-1.2.13.
[31]
HOSSEINIAN F S, LI W D, BETA T. Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chemistry, 2008, 109(4): 916-924.

doi: 10.1016/j.foodchem.2007.12.083 pmid: 26050008
[32]
ARNON D I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta Vulgaris. Plant Physiology, 1949, 24(1): 1-15.

doi: 10.1104/pp.24.1.1
[33]
DOBRÁNSZKI J, MENDLER-DRIENYOVSZKI N. Cytokinin- induced changes in the chlorophyll content and fluorescence of in vitro apple leaves. Journal of Plant Physiology, 2014, 171(16): 1472-1478.

doi: 10.1016/j.jplph.2014.06.015
[34]
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.

doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[35]
MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303.

doi: 10.1101/gr.107524.110 pmid: 20644199
[36]
CINGOLANI P, PLATTS A, WANG L L, COON M, NGUYEN T, WANG L, LAND S J, LU X Y, RUDEN D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 2012, 6(2): 80-92.

doi: 10.4161/fly.19695
[37]
WEINER J, PARIDA S K, MAERTZDORF J, BLACK G F, REPSILBER D, TELAAR A, MOHNEY R P, ARNDT-SULLIVAN C, GANOZA C A, FAÉ K C, WALZL G, KAUFMANN S H E. Biomarkers of inflammation, immunosuppression and stress with active disease are revealed by metabolomic profiling of tuberculosis patients. PLoS ONE, 2012, 7(7): e40221.

doi: 10.1371/journal.pone.0040221
[38]
PRICE M N, DEHAL P S, ARKIN A P. FastTree 2: Approximately maximum-likelihood trees for large alignments. PLoS ONE, 2010, 5(3): e9490.

doi: 10.1371/journal.pone.0009490
[39]
HANSON A D, ROJE S. One-carbon metabolism in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 119-137.

pmid: 11337394
[40]
CHRISTENSEN K E, MACKENZIE R E. Mitochondrial one-carbon metabolism is adapted to the specific needs of yeast, plants and mammals. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 2006, 28(6): 595-605.
[41]
YIN X R, XIE X L, XIA X J, YU J Q, FERGUSON I B, GIOVANNONI J J, CHEN K S. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening. The Plant Journal: for Cell and Molecular Biology, 2016, 86(5): 403-412.

doi: 10.1111/tpj.2016.86.issue-5
[42]
LI S J, XIE X L, LIU S C, CHEN K S, YIN X R. Auto- and mutual-regulation between two CitERFs contribute to ethylene- induced citrus fruit degreening. Food Chemistry, 2019, 299: 125163.

doi: 10.1016/j.foodchem.2019.125163
[43]
HAN Z Y, HU Y N, LV Y D, ROSE J K C, SUN Y Q, SHEN F, WANG Y, ZHANG X Z, XU X F, WU T, HAN Z H. Natural variation underlies differences in ETHYLENE RESPONSE FACTOR17 activity in fruit peel degreening. Plant Physiology, 2018, 176(3): 2292-2304.

doi: 10.1104/pp.17.01320 pmid: 29431631
[44]
SHI Y, LIU X N, ZHAO S S, GUO Y. The PYR-PP2C-CKL2 module regulates ABA-mediated actin reorganization during stomatal closure. The New Phytologist, 2022, 233(5): 2168-2184.

doi: 10.1111/nph.v233.5
[45]
曹柳青. 赤霉素对冬枣光合作用和内源激素的影响[D]. 保定: 河北农业大学, 2006.
CAO L Q. Effects of gibberellin on photosynthesis and endogenous hormones of Dongzao jujube[D]. Baoding: Hebei Agricultural University, 2006.(in Chinese)
[46]
AHAMMED G J, GAO C J, OGWENO J O, ZHOU Y H, XIA X J, MAO W H, SHI K, YU J Q. Brassinosteroids induce plant tolerance against phenanthrene by enhancing degradation and detoxification in Solanum lycopersicum L. Ecotoxicology and Environmental Safety, 2012, 80: 28-36.

doi: 10.1016/j.ecoenv.2012.02.004
[47]
王延玲. 新疆红肉苹果红色发育机理的初步研究[D]. 泰安: 山东农业大学, 2011.
WANG Y L. Preliminary study on the red development mechanism of Xinjiang red meat apple[D]. Tai’an: Shandong Agricultural University, 2011.(in Chinese)
[48]
CHAGNÉ D, CARLISLE C M, BLOND C, VOLZ R K, WHITWORTH C J, ORAGUZIE N C, CROWHURST R N, ALLAN A C, ESPLEY R V, HELLENS R P, GARDINER S E. Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics, 2007, 8: 212.

pmid: 17608951
[49]
ESPLEY R V, BRENDOLISE C, CHAGNÉ D, KUTTY-AMMA S, GREEN S, VOLZ R, PUTTERILL J, SCHOUTEN H J, GARDINER S E, HELLENS R P, ALLAN A C. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. The Plant Cell, 2009, 21(1): 168-183.

doi: 10.1105/tpc.108.059329
[50]
UMEMURA H, OTAGAKI S, WADA M, KONDO S, MATSUMOTO S. Expression and functional analysis of a novel MYB gene, MdMYB110a_JP, responsible for red flesh, not skin color in apple fruit. Planta, 2013, 238(1): 65-76.

doi: 10.1007/s00425-013-1875-3
[51]
LAMBERT P, PASCAL T. Mapping Rm2 gene conferring resistance to the green peach aphid (Myzus persicar Sulzer) in the peach cultivar ‘Rubira®’. Tree Genetics and Genomes, 2011, 7(5): 1057-1068.

doi: 10.1007/s11295-011-0394-2
[52]
周晖. 桃花青苷着色及原花青素合成的调控机制研究[D]. 武汉: 中国科学院研究生院(武汉植物园), 2015.
ZHOU H. Mechanisms underlying the regulation of anthocyanin coloration and proanthocyanidin synthesis in peach[D]. Wuhan: Wuhan Botanical Garden, Chinese Academy of Sciences, 2015.(in Chinese)
[53]
GOULD K S, VOGELMANN T C, HAN T, CLEARWATER M J. Profiles of photosynthesis within red and green leaves of Quintinia serrata. Physiologia Plantarum, 2002, 116(1): 127-133.

doi: 10.1034/j.1399-3054.2002.1160116.x
[54]
HATIER J H B, CLEARWATER M J, GOULD K S. The functional significance of black-pigmented leaves: Photosynthesis, photoprotection and productivity in Ophiopogon planiscapus ‘Nigrescens’. PLoS ONE, 2013, 8(6): e67850.

doi: 10.1371/journal.pone.0067850
[55]
HUGHES N M, MORLEY C B, SMITH W K. Coordination of anthocyanin decline and photosynthetic maturation in juvenile leaves of three deciduous tree species. The New Phytologist, 2007, 175(4): 675-685.

doi: 10.1111/nph.2007.175.issue-4
[56]
周振翔, 李志康, 陈颖, 王志琴, 杨建昌, 顾骏飞. 叶绿素含量降低对水稻叶片光抑制与光合电子传递的影响. 中国农业科学, 2016, 49(19): 3709-3720. doi: 10.3864/j.issn.0578-1752.2016.19.004

doi: 10.3864/j.issn.0578-1752.2016.19.004
ZHOU Z X, LI Z K, CHEN Y, WANG Z Q, YANG J C, GU J F. Effects of reduced chlorophyll content on photoinhibition and photosynthetic electron transport in rice leaves. Scientia Agricultura Sinica, 2016, 49(19): 3709-3720. doi: 10.3864/j.issn.0578-1752.2016.19.004.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.19.004
[57]
李卫星, 杨舜博, 何智冲, 金飚. 植物叶色变化机制研究进展. 园艺学报, 2017, 44(9): 1811-1824.
LI W X, YANG S B, HE Z C, JIN B. Research advances in the regulatory mechanisms of leaf coloration. Acta Horticulturae Sinica, 2017, 44(9): 1811-1824.(in Chinese)
[1] WANG ZiDun, WANG Hui, FENG YuChen, ZHANG XueLiang, YAN LeiYu, LIU XiaoJie, ZHAO ZhengYang. Effects of Different Color Fruit Bags on Quality of Ruixue Apple Fruits [J]. Scientia Agricultura Sinica, 2023, 56(4): 729-740.
[2] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[3] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[4] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[5] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[6] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[7] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[8] SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95.
[9] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[10] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[11] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
[12] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
[13] SUN Qing,ZHAO YanXia,CHENG JinXin,ZENG TingYu,ZHANG Yi. Fruit Growth Modelling Based on Multi-Methods - A Case Study of Apple in Zhaotong, Yunnan [J]. Scientia Agricultura Sinica, 2021, 54(17): 3737-3751.
[14] LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501.
[15] ZHOU Zhe,BIAN ShuXun,ZHANG HengTao,ZHANG RuiPing,GAO QiMing,LIU ZhenZhen,YAN ZhenLi. Screening of ARF-Aux/IAA Interaction Combinations Involved in Apple Fruit Size [J]. Scientia Agricultura Sinica, 2021, 54(14): 3088-3096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!