Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (10): 2010-2022.doi: 10.3864/j.issn.0578-1752.2024.10.012

• HORTICULTURE • Previous Articles     Next Articles

Basing Fuzzy Modeling to Evaluate Sensory Quality Differences of ‘Orah’ Mandarin Fruits from Various Production Regions

WU YaNuo(), LIU Yuan, KONG JiaTao, HU ZheHui, CHEN MingHua, WU JunChen, ZHANG HongYan, JIANG YouWu, XU Juan, CHEN JiaJing()   

  1. National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University/Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070
  • Received:2023-10-31 Accepted:2024-01-11 Online:2024-05-16 Published:2024-05-23
  • Contact: CHEN JiaJing

Abstract:

【Objective】 Fruit sensory quality is the most important factor in determining the competitive edge in the fruit market. The aim of this study was to establish a comprehensive sensory quality evaluation method for citrus fruits by analyzing Orah mandarin (Citrus reticulata Orah) fruits produced in nine different regions and showing quality differences. In addition, this study was aimed to identify sensory quality differences, consumer preference, and metabolites closely linked to citrus sensory attributes in Orah mandarin from different regions. This study could provide the theoretical support and digital method for citrus breeding, practical production and marketing. 【Method】 Firstly, evaluators assessed each sensory attribute and weight of fruit samples, and the fuzzy mathematics was used to derive the weight ranking of different sensory attributes. The samples were then ranked and grouped based on comprehensive sensory evaluation. Furthermore, the physical and chemical indexes were measured, and metabolites related to fruit flavor were analyzed by using GC-MS and HPLC, including soluble sugars, organic acids, amino acids, and flavonoids. OPLS-DA was used to analyze the main differential metabolites between samples from different groups. The relationship between sensory attributes and metabolites was determined by using Pearson correlation analysis. Finally, the important biomarkers reflecting the flavor quality of Orah mandarin were identifued. 【Result】 The sensory attribute weights of Orah mandarin were determined as pulp sweetness>pulp acidity>pulp mastication>fruit color>fruit aroma>fruit shape. Conventional solid-acid ratio was not suitable for accurate classification of the intrinsic quality of Orah mandarin samples. Therefore, based on comprehensive sensory quality, the nine Orah mandarin samples were divided into a high sensory quality group with a score larger than 60 and a low sensory quality group with a score smaller than 60. The OPLS-DA analysis revealed three key compounds (L-glutamic acid, hesperidin, and L-valine) distinguishing high and low sensory quality groups. Futhermore, the pearson correlation analysis indicated that the levels of α-ketoglutaric acid, L-glutamic acid and hesperidin were negatively correlated with sensory quality, sweetness and acidity. 【Conclusion】 Fuzzy mathematics was effectively used to evaluate the comprehensive quality of Orah mandarin. The results indicated that consumers were more concerned in pulp sweetness and acidity; L-glutamic acid and hesperidin might be trait components reflecting the flavor quality of Orah mandarin.

Key words: C. reticulata Orah, sensory quality, metabolites, sensory evaluation, fuzzy logic model

Table 1

Source of C. reticulata Orah samples"

样品编号
Number of samples
样品来源
Source of samples
采样地点
Sampling locations
1 永春芦柑综合试验站
Yongchun Rutabaga comprehensive experimental station
福建泉州市永春县岵山镇
Hushan town, Yongchun county, Quanzhou city, Fujian province
2 云南柠檬综合试验站
Yunnan lemon comprehensive experimental station
云南省瑞丽市勐卯镇沃柑示范基地
Orah Mandarin demonstration base in Mengmao town, Ruili city, Yunnan province
3 平和琯溪蜜柚综合试验站
Pinghe Guanximiyou comprehensive experimental station
福建漳州市平和县
Pinghe county, Zhangzhou city, Fujian province
4 桂中南柑橘综合试验站
Guizhongnan citrus comprehensive experimental station
广西壮族自治区南宁市西乡塘区
Xixiangtang district, Nanning city, Guangxi province
5 广州柑橘综合试验站
Guangzhou citrus comprehensive experimental station
广东茂名市化州市
Huazhou city, Maoming city, Guangdong province
6 沙田柚综合试验站
Shatianyou comprehensive experimental station
广东梅州市丰顺县龙岗镇
Longgang town, Fengshun county, Meizhou city, Guangdong province
7 桂北柑橘综合试验站
Guibei citrus comprehensive experimental station
广西壮族自治区桂林市七星区
Qixing district, Guilin city, Guangxi province
8 云南极早熟柑橘综合试验站
Yunnan comprehensive experimental station for extremely early-maturing citrus
云南玉溪市华宁县华溪镇
Huaxi town, Huaning county, Yuxi city, Yunnan province
9 广州柑橘综合试验站
Guangzhou citrus comprehensive experimental station
广东惠州市龙门县
Longmen county, Huizhou city, Guangdong province

Table 2

The individual attribute scores and comprehensive scores and rankings based on centroid of C. reticulata Orah"

样品编号
Number of samples
果实色泽
Peel
color
果实外形
Fruit
shape
果实香气
Fruit
aroma
果肉甜度
Pulp
sweetness
果肉酸度
Pulp
acidity
果肉化渣性
Pulp
mastication
质心排序综合得分及排名
Comprehensive scores and ranking based on centroid
1 4.37±0.83a 4.49±0.69a 3.77±0.99a 4.00±0.83a 3.80±0.79a 3.63±1.04bcd 70.24(1)
2 3.46±1.18b 3.83±1.00b 3.46±0.81abc 3.26±0.94b 3.29±1.00b 3.46±1.08cde 57.99(7)
3 3.94±0.98a 3.89±0.75b 3.57±0.80ab 3.86±0.93a 3.77±0.72a 3.66±0.86bcd 66.45(5)
4 3.91±0.69a 3.97±0.65b 3.83±0.81a 4.06±0.67a 3.77±0.83a 3.97±0.94ab 69.48(2)
5 3.14±0.99bc 3.34±1.07c 3.31±0.75bcd 3.80±1.04a 3.71±0.85a 3.86±0.96abc 61.07(6)
6 3.43±0.93b 3.83±0.77b 3.60±0.87ab 4.00±1.17a 3.89±1.04a 4.23±0.80a 67.11(3)
7 2.74±0.97c 2.97±0.88c 2.94±0.83d 3.09±0.73bc 3.23±0.93b 3.11±1.06e 49.84(8)
8 2.86±1.05c 2.97±0.97c 3.09±0.91cd 2.69±0.75c 3.14±0.96b 3.17±0.77de 47.99(9)
9 4.00±0.89a 3.97±0.84b 3.83±0.74a 3.83±0.91a 3.86±0.90a 3.40±0.90cde 66.58(4)

Table 3

Sensory attribute weight evaluation grade and relative weight ternary fuzzy number of C. reticulata Orah"

感官属性
Sensory attribute
人数 Number of people 权重三元模糊数
Weight ternary fuzzy number
相对权重三元模糊数
Relative weight ternary fuzzy number
不重要
Not
important
有些重要
Somewhat important
重要
Important
非常重要
Very important
极其重要
Extremely important
果实色泽Peel color 0 7 12 11 5 (60.00 25.00 21.43) (0.155 0.065 0.055)
果实外形Fruit shape 3 4 16 11 1 (52.14 22.86 24.29) (0.135 0.059 0.063)
果实香气Fruit aroma 2 9 13 8 3 (50.71 23.57 22.86) (0.131 0.061 0.059)
果肉甜度Pulp sweetness 0 0 3 12 20 (87.14 25.00 10.71) (0.226 0.065 0.028)
果肉酸度Pulp acidity 0 6 5 11 13 (72.14 25.00 15.71) (0.187 0.065 0.041)
果肉化渣性Pulp slag 1 4 12 10 8 (64.29 24.29 19.29) (0.166 0.063 0.050)

Table 4

Similarity value and ranking of different sensory attributes of C. reticulata Orah"

感官属性
Sensory attribute
F1 F2 F3 F4 F5 F6 F7 F8 F9 属性排名
Attribute ranking
果实色泽Peel color 0.000 0.000 0.045 0.253 0.684 0.749 0.436 0.104 0.005 4
果实外形Fruit shape 0.000 0.005 0.122 0.470 0.831 0.616 0.261 0.041 0.000 6
果实香气Fruit aroma 0.000 0.018 0.171 0.521 0.835 0.554 0.195 0.024 0.000 5
果肉甜度Pulp sweetness 0.000 0.000 0.000 0.000 0.029 0.279 0.700 0.872 0.435 1
果肉酸度Pulp acidity 0.000 0.000 0.000 0.039 0.343 0.730 0.782 0.381 0.042 2
果肉化渣性Pulp slag 0.000 0.000 0.000 0.139 0.604 0.816 0.595 0.197 0.016 3

Table 5

Regular internal quality of C. reticulata Orah fruits"

样品编号 Number of samples 可溶性固形物 Total soluble solid (%) 可滴定酸 Titratable acid (%) 固酸比 TSS/TA
1 13.40±0.45c 0.80±0.11ab 17.14±2.81
2 10.87±0.52e 0.72±0.05ab 15.15±1.07
3 13.80±0.29bc 0.75±0.16ab 19.41±5.22
4 12.17±0.34d 0.78±0.11ab 15.94±2.79
5 14.47±0.50ab 0.88±0.06a 16.61±1.60
6 15.37±0.66a 0.78±0.01ab 19.79±0.99
7 13.30±0.57c 0.76±0.10ab 17.79±1.65
8 11.60±0.24de 0.64±0.12b 18.59±3.11
9 14.27±0.62bc 0.67±0.11ab 21.91±3.33
变异系数 CV (%) 10.34 8.92 11.07

Table 6

The concentrations of soluble sugar in the juice sacs of C. reticulata Orah (mg·g-1 FW)"

样品编号
Number of samples
D-果糖
D-Fructose
α-D-(+)-塔罗糖
α-D-(+)-Talofuranose
D-(+)-葡萄糖
D-(+)-Glucose
异肌醇
Allo-Inositol
肌醇
Myo-Inositol
蔗糖
Sucrose
1 34.18±1.27abc 0.10±0.01c 29.79±0.80bc 1.96±0.19c 2.96±0.39bc 29.91±0.56ab
2 33.38±2.29bc 0.10±0.02c 29.86±0.86bc 1.65±0.21c 2.12±0.25d 30.61±1.93a
3 32.07±2.00c 0.12±0.01bc 28.36±1.29bc 2.60±0.11b 3.06±0.33b 32.05±0.82a
4 32.52±2.97bc 0.13±0.02abc 27.56±0.80c 3.67±0.59a 3.23±0.30b 24.86±2.41b
5 33.75±0.92abc 0.12±0.01abc 30.58±1.22bc 1.75±0.21c 2.42±0.10cd 33.06±0.38a
6 37.45±3.52ab 0.14±0.00ab 34.73±1.21a 1.85±0.18c 3.07±0.24b 32.26±4.31a
7 38.57±1.95a 0.15±0.00a 34.60±1.96a 1.92±0.14c 3.96±0.11a 24.94±3.82b
8 34.47±0.40abc 0.13±0.01abc 29.74±0.47bc 1.52±0.09c 2.72±0.15bc 27.57±2.64ab
9 33.62±2.09abc 0.11±0.01bc 31.14±2.93b 1.84±0.20c 2.42±0.23cd 32.09±1.48a

Table 7

The concentrations of organic acid in the juice sacs of C. reticulata Orah (mg·g-1 FW)"

样品编号
Number of samples
苹果酸
Malic acid
α-酮戊二酸
α-Ketoglutaric acid
柠檬酸
Citric acid
奎宁酸
Quininic acid
1 4.46±0.89ab 0.15±0.02de 6.17±0.16cd 0.22±0.03b
2 4.71±0.27a 0.15±0.03e 6.78±0.95bc 0.16±0.02b
3 4.37±0.79ab 0.21±0.04bc 5.14±0.35de 0.21±0.00b
4 3.12±0.13c 0.18±0.01cde 6.35±0.50bc 0.19±0.05b
5 3.37±0.07bc 0.18±0.02cde 7.47±0.46ab 0.17±0.01b
6 4.11±0.60abc 0.18±0.00cde 8.04±0.52a 0.18±0.04b
7 4.16±0.40abc 0.26±0.03ab 4.41±0.44e 0.31±0.03a
8 4.20±0.11abc 0.29±0.01a 4.95±0.45e 0.18±0.02b
9 3.79±0.04abc 0.20±0.01cd 7.35±0.36ab 0.21±0.03b

Table 8

The concentrations of amino acid in the juice sacs of C. reticulata Orah (μg·g-1 FW)"

样品编号
Number of samples
L-丙氨酸
L-Alanine
L-缬氨酸
L-Valine
L-脯氨酸
L-Proline
L-丝氨酸 L-Serine L-苏氨酸 L-Threonine L-天冬氨酸 L-Aspartic acid γ-氨基丁酸 γ-Aminobutyric acid L-谷氨酸 L-Glutamic acid L-天冬酰胺 L-Asparagine
1 277.22±5.58a 150.29±0.33a 573.97±3.44ef 243.15±2.79b 151.03±0.28bc 193.04±3.38e 553.16±6.15b 243.17±4.16b 513.09±5.29c
2 266.98±2.89ab 148.95±0.46bc 534.56±10.62f 241.41±1.88bc 151.72±0.54ab 219.31±0.94c 576.68±0.92a 245.11±2.24b 524.45±7.12b
3 182.02±0.68e 148.91±0.47bc 906.30±12.08b 247.81±1.06a 152.54±0.43a 205.69±3.04d 573.37±5.44a 228.65±1.99cd 507.15±2.22cd
4 266.03±6.16ab 149.60±0.11ab 782.29±4.95c 218.51±0.27f 151.78±0.39ab 188.69±2.07ef 567.68±13.35a 220.49±4.49d 503.57±2.41d
5 253.12±4.86bc 150.04±0.66a 893.21±13.10b 237.07±1.56cd 150.79±0.53bc 222.73±3.79c 574.39±4.58a 236.87±1.15bc 505.62±2.63cd
6 234.05±15.20d 148.89±0.10bc 608.71±24.48e 231.32±0.22e 148.70±0.26d 233.84±3.91b 551.91±7.04b 236.91±2.14bc 535.16±0.69a
7 264.82±3.09ab 147.69±0.40d 1008.50±65.63a 238.52±1.29bcd 149.92±0.97c 185.14±1.99f 545.12±1.78bc 243.03±5.50b 499.83±1.93d
8 242.22±3.50cd 148.29±0.01cd 878.32±42.11b 242.69±4.15b 150.93±0.21bc 240.72±4.61a 535.25±3.59c 256.00±8.26a 533.65±6.09a
9 239.86±12.63cd 148.16±0.43cd 673.25±10.68d 236.39±2.94d 150.45±0.74c 219.06±1.73c 578.65±6.49a 236.72±3.38bc 503.53±2.73d

Fig. 1

Flavonoid fingerprint of C. reticulata Orah juice sacs"

Table 9

The concentrations of flavonoids in juice sacs of C. reticulata Orah (μg·g-1 DW)"

样品编号
Number of samples
柚皮芸香苷
Narirutin
橙皮苷
Hesperidin
香蜂草苷
Didymin
1 2068.08±210.34cd 3464.90±463.24cd 272.18±37.37cd
2 1444.89±165.45ef 3817.86±199.82c 224.40±15.96de
3 1785.75±203.03de 3209.92±201.78cd 257.07±19.18cd
4 2631.20±198.73ab 4520.07±300.08b 436.40±21.32a
5 1949.73±267.77cd 3391.92±123.50cd 291.92±14.27c
6 1242.56±114.14f 3066.21±296.85d 181.96±16.36e
7 3027.64±300.91a 3824.79±278.29c 358.27±20.22b
8 2332.86±197.78bc 7048.41±348.07a 422.32±28.33a
9 1928.92±145.45cd 3232.93±200.55cd 250.30±12.85cd

Fig. 2

Orthogonal partial least squares discriminant analysis (A) and permutation test (B) of C. reticulata Orah"

Fig. 3

Correlation analysis of C. reticulata Orah sensory comprehensive score and each sensory attribute score"

Fig. 4

Correlation analysis between sensory evaluation score of C. reticulata Orah and related metabolites and indicators"

[1]
朱攀攀. 不同气候区沃柑果实产量和品质比较研究[D]. 重庆: 西南大学, 2020.
ZHU P P. Study on fruit yield and quality of Orah Mandarin in different climatic regions[D]. Chongqing: Southwest University, 2020. (in Chinese)
[2]
黄其椿, 李果果, 陈东奎, 刘吉敏, 陈香玲, 王茜, 刘要鑫, 胡承孝. 广西沃柑产业发展现状与对策建议. 中国南方果树, 2020, 49(5): 135-141, 149.
HUANG Q C, LI G G, CHEN D K, LIU J M, CHEN X L, WANG X, LIU Y X, HU C X. Current status and development strategies of orah industry in Guangxi. South China Fruits, 2020, 49(5): 135-141, 149. (in Chinese)
[3]
李文广, 赖恒鑫, 彭良志, 何义仲, 杨万云, 凌丽俐, 付行政, 张瑞芝. 云南沃柑二次开花的果实品质分析. 果树学报, 2022, 39(2): 184-192.
LI W G, LAI H X, PENG L Z, HE Y Z, YANG W Y, LING L L, FU X Z, ZHANG R Z. Quality analysis of fruits bore from summer and spring blooms of Orah mandarin (Citrus reticulata Blanco) in Yunnan Province. Journal of Fruit Science, 2022, 39(2): 184-192. (in Chinese)
[4]
周军, 李宏祥, 王春发, 孟亚萍, 张红, 李维. 我国晚熟沃柑发展存在的问题及建议. 现代农业科技, 2019(21): 100-101.
ZHOU J, LI H X, WANG C F, MENG Y P, ZHANG H, LI W. Problems and suggestions of late-ripening Citrus reticulata blanco orah development in China. Modern Agricultural Science and Technology, 2019(21): 100-101. (in Chinese)
[5]
王晶. 锦橙贮藏期主要风味品质变化与调控研究[D]. 重庆: 西南大学, 2020.
WANG J. Changes and regulation of main flavor quality in the fruit of Citrus sinensis Osbeck cv. Jincheng during postharvest storage time[D]. Chongqing: Southwest University, 2020. (in Chinese)
[6]
赵思颖, 李璐, 刘小茜, 赵钢军, 吴海滨, 罗剑宁, 龚浩, 郑晓明, 李俊星. 基于感官品质、质构特征及理化成分分析的中国南瓜果实感官综合评价预测模型. 食品科学, 2022, 43(23): 63-71.
ZHAO S Y, LI L, LIU X X, ZHAO G J, WU H B, LUO J N, GONG H, ZHENG X M, LI J X. Predictive model for comprehensive quality evaluation of pumpkin (Cucurbita moschata) fruit based on sensory analysis, texture characteristics and physicochemical components. Food Science, 2022, 43(23): 63-71. (in Chinese)

doi: 10.7506/spkx1002-6630-20211011-105
[7]
MATSUO Y, MIURA L A, ARAKI T, YOSHIE-STARK Y. Proximate composition and profiles of free amino acids, fatty acids, minerals and aroma compounds in Citrus natsudaidai peel. Food Chemistry, 2019, 279: 356-363.
[8]
LIU Y, XIANG S M, ZHANG H P, ZHANG H Y, WU C Y, TANG Z H, WANG J B, XU J. Sensory quality evaluation of Korla pear from different orchards and analysis of their primary and volatile metabolites. Molecules, 2020, 25(23): 5567.
[9]
张海朋, 彭昭欣, 石梅艳, 温欢, 张红艳, 徐娟. 柑橘果实风味组学研究进展. 华中农业大学学报, 2021, 40(1): 32-39.
ZHANG H P, PENG Z X, SHI M Y, WEN H, ZHANG H Y, XU J. Advances on citrus flavoromics. Journal of Huazhong Agricultural University, 2021, 40(1): 32-39. (in Chinese)
[10]
HE Y Z, LI W G, ZHU P P, WANG M, QIU J Y, SUN H Q, ZHANG R Z, LIU P, LING L L, FU X Z, CHUN C P, CAO L, PENG L Z. Comparison between the vegetative and fruit characteristics of ‘Orah’ (Citrus reticulata Blanco) mandarin under different climatic conditions. Scientia Horticulturae, 2022, 300: 111064.
[11]
LADO J, GAMBETTA G, ZACARIAS L. Key determinants of citrus fruit quality: Metabolites and main changes during maturation. Scientia Horticulturae, 2018, 233: 238-248.
[12]
CHEN G, LI J, SUN Z W, ZHANG S J, LI G L, SONG C H, SUO Y R, YOU J M. Rapid and sensitive ultrasonic-assisted derivatisation microextraction (UDME) technique for bitter taste-free amino acids (FAA) study by HPLC-FLD. Food Chemistry, 2014, 143: 97-105.

doi: 10.1016/j.foodchem.2013.07.099 pmid: 24054218
[13]
MANNINEN H, ROTOLA-PUKKILA M, AISALA H, HOPIA A, LAAKSONEN T. Free amino acids and 5'-nucleotides in Finnish forest mushrooms. Food Chemistry, 2018, 247: 23-28.

doi: S0308-8146(17)31953-2 pmid: 29277224
[14]
ZHANG P Y, ZHOU Z Q. Postharvest ethephon degreening improves fruit color, flavor quality and increases antioxidant capacity in ‘Eureka’ lemon (Citrus limon (L.) Burm. f.). Scientia Horticulturae, 2019, 248: 70-80.
[15]
ZHAO C J, SCHIEBER A, GÄNZLE M G. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations-A review. Food Research International, 2016, 89: 39-47.
[16]
林媚, 张伟清, 王天玉, 柯甫志, 冯先桔, 姚周麟, 徐程楠. 15个杂交柑橘品种的果实游离氨基酸组成及其对风味品质的影响. 果树学报, 2022, 39(3): 352-365.
LIN M, ZHANG W Q, WANG T Y, KE F Z, FENG X J, YAO Z L, XU C N. Study on the composition of free amino acid and the effects on fruit flavor quality in 15 hybrid citrus varieties. Journal of Fruit Science, 2022, 39(3): 352-365. (in Chinese)
[17]
ROOWI S, CROZIER A. Flavonoids in tropical citrus species. Journal of Agricultural and Food Chemistry, 2011, 59(22): 12217-12225.

doi: 10.1021/jf203022f pmid: 21978223
[18]
LI S J, WANG Z, DING F, SUN D, MA Z C, CHENG Y J, XU J. Content changes of bitter compounds in ‘Guoqing No.1’ Satsuma mandarin (Citrus unshiu Marc.) during fruit development of consecutive 3 seasons. Food Chemistry, 2014, 145: 963-969.
[19]
QIU S S, WANG J. Application of sensory evaluation, HS-SPME GC-MS, E-nose, and E-tongue for quality detection in Citrus fruits. Journal of Food Science, 2015, 80(10): S2296-S2304.
[20]
SÁENZ-NAVAJAS M P, ALEGRE Y, DE-LA-FUENTE A, FERREIRA V, GARCÍA D, EIZAGUIRRE S, RAZQUIN I, HERNÁNDEZ-ORTE P. Rapid sensory-directed methodology for the selection of high-quality aroma wines. Journal of the Science of Food and Agriculture, 2016, 96(12): 4250-4262.
[21]
SONG M T, XU H R, XIN G, LIU C J, SUN X R, ZHI Y H, LI B, SHEN Y X. Comprehensive evaluation of Actinidia arguta fruit based on the nutrition and taste: 67 germplasm native to Northeast China. Food Science and Human Wellness, 2022, 11(2): 393-404.
[22]
CHEN J J, ZHANG H Y, PANG Y B, CHENG Y J, DENG X X, XU J. Comparative study of flavonoid production in lycopene-accumulated and blonde-flesh sweet oranges (Citrus sinensis) during fruit development. Food Chemistry, 2015, 184: 238-246.

doi: 10.1016/j.foodchem.2015.03.087 pmid: 25872450
[23]
刘园, 向思敏, 王江波, 吴翠云, 唐章虎, 龚涵, 张雪, 徐娟. 库尔勒香梨挥发性物质及初生代谢物的GC-MS分析. 华中农业大学学报, 2020, 39(1): 44-52.
LIU Y, XIANG S M, WANG J B, WU C Y, TANG Z H, GONG H, ZHANG X, XU J. GC-MS analyses of volatiles and primary metabolites in Korla Pear fruit. Journal of Huazhong Agricultural University, 2020, 39(1): 44-52. (in Chinese)
[24]
KALEEM M M, NAWAZ M A, DING X C, WEN S Y, SHIREEN F, CHENG J T, BIE Z L. Comparative analysis of pumpkin rootstocks mediated impact on melon sensory fruit quality through integration of non-targeted metabolomics and sensory evaluation. Plant Physiology and Biochemistry, 2022, 192: 320-330.

doi: 10.1016/j.plaphy.2022.10.010 pmid: 36302334
[25]
LIU Y B, QIAO Z N, ZHAO Z J, WANG X, SUN X Y, HAN S N, PAN C M. Comprehensive evaluation of Luzhou-flavor liquor quality based on fuzzy mathematics and principal component analysis. Food Science & Nutrition, 2022, 10(6): 1780-1788.
[26]
DEBJANI C, DAS S, DAS H. Aggregation of sensory data using fuzzy logic for sensory quality evaluation of food. Journal of Food Science and Technology, 2013, 50(6): 1088-1096.

doi: 10.1007/s13197-011-0433-x pmid: 24426020
[27]
SINIJA V R, MISHRA H N. Fuzzy analysis of sensory data for quality evaluation and ranking of instant green tea powder and granules. Food and Bioprocess Technology, 2011, 4(3): 408-416.
[28]
TAHSIRI Z, NIAKOUSARI M, KHOSHNOUDI-NIA S, HOSSEINI S M H. Sensory evaluation of selected formulated milk barberry drinks using the fuzzy approach. Food Science & Nutrition, 2017, 5(3): 739-749.
[29]
SHENG L, SHEN D D, LUO Y, SUN X H, WANG J Q, LUO T, ZENG Y L, XU J, DENG X X, CHENG Y J. Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit. Food Chemistry, 2017, 216: 138-145.
[30]
YUN J, CUI C J, ZHANG S H, ZHU J J, PENG C Y, CAI H M, YANG X G, HOU R Y. Use of headspace GC/MS combined with chemometric analysis to identify the geographic origins of black tea. Food Chemistry, 2021, 360: 130033.
[31]
JUKIĆ ŠPIKA M, DUMIČIĆ G, BRKIĆ BUBOLA K, SOLDO B, BAN S G, VULETIN SELAK G, LJUBENKOV I, MANDUŠIĆ M, ŽANIĆ K. Modification of the sensory profile and volatile aroma compounds of tomato fruits by the scion × rootstock interactive effect. Frontiers in Plant Science, 2020, 11: 616431.
[32]
莫健生, 唐志评, 贺申魁, 傅翠娜, 梅正敏, 区善汉, 肖远辉, 雷新南, 王明召, 牛英, 梁瑞郑, 徐玉君. 广西桂林沃柑不同采摘期果实品质比较. 中国南方果树, 2022, 51(4): 11-13.
MO J S, TANG Z P, HE S K, FU C N, MEI Z M, OU S H, XIAO Y H, LEI X N, WANG M Z, NIU Y, LIANG R Z, XU Y J. Comparison of fruit quality of orah harvested at different time. South China Fruits, 2022, 51(4): 11-13. (in Chinese)
[33]
YANG Z Y, CAO X Y, ZHENG X W, WANG T Q, WANG J N, FENG F, YE C H. Biochemical, transcriptome and metabolome analysis of the pulp of Citrus sinensis (L.) Osbeck ‘Hong Jiang’ and its two variants reveal pathways regulating pulp taste, mastication, and color. Electronic Journal of Biotechnology, 2022, 60: 70-85.
[34]
张伟清, 林媚, 王天玉, 孙立方, 冯先橘, 姚周麟, 徐程楠, 王玥. 基于PCA分析和聚类分析的柑橘果实品质综合评价. 果树学报, 2023, 40(5): 902-918.
ZHANG W Q, LIN M, WANG T Y, SUN L F, FENG X J, YAO Z L, XU C N, WANG Y. Comprehensive evaluation of citrus fruit quality based on principal component and cluster analysis. Journal of Fruit Science, 2023, 40(5): 902-918. (in Chinese)
[35]
MAO Y Z, TIAN S Y, QIN Y M, CHEN S W. Sensory sweetness and sourness interactive response of sucrose-citric acid mixture based on synergy and antagonism. NPJ Science of Food, 2022, 6: 33.

doi: 10.1038/s41538-022-00148-0 pmid: 35853883
[36]
QIN C L, CHEN C M, YUAN Q C, JIANG N, LIU M X, DUAN Y, WAN H, LI R, ZHUANG L J, WANG P. Biohybrid tongue for evaluation of taste interaction between sweetness and sourness. Analytical Chemistry, 2022, 94(19): 6976-6985.

doi: 10.1021/acs.analchem.1c05384 pmid: 35503097
[37]
刘韬, 乔宁, 饶敏, 桂家祥, 杨文侠. 基于色谱质谱联用技术分析纽荷尔脐橙果汁及其果酒的香气成分和苦味物质. 食品工业科技, 2018, 39(4): 244-249.
LIU T, QIAO N, RAO M, GUI J X, YANG W X. Analysis of aroma components and bitter substances in Newhall navel orange juice and wine by chromatography-mass spectrometry. Science and Technology of Food Industry, 2018, 39(4): 244-249. (in Chinese)
[38]
DE WIJK R A, POLET I A, ENGELEN L, VAN DOORN R M, PRINZ J F. Amount of ingested custard dessert as affected by its color, odor, and texture. Physiology & Behavior, 2004, 82(2/3): 397-403.
[39]
曾宪录, 林文健, 吴广霞, 陈志彬, 李必爱, 黎渊明, 林秀琼. 沙田柚感官品质的定量描述分析研究. 广东农业科学, 2019, 46(6): 23-29.
ZENG X L, LIN W J, WU G X, CHEN Z B, LI B A, LI Y M, LIN X Q. Quantitative descriptive analysis of sensory quality of Citrus grandis. Guangdong Agricultural Sciences, 2019, 46(6): 23-29. (in Chinese)
[1] YANG YaHeng, JIA PeiLong, NIE LanChun, ZHAO WenSheng, ZHAO JiaTeng, WANG JinXiang, LIU Jie. Evaluation of Fruit Texture Quality in Melon [J]. Scientia Agricultura Sinica, 2024, 57(8): 1560-1574.
[2] ZHU DaWei, ZHENG Xin, YU Jing, MOU RenXiang, CHEN MingXue, SHAO YaFang, ZHANG LinPing. Differences in Physicochemical Characteristics and Eating Quality Between High Taste Northern Japonica Rice and Southern Semi- Glutinous Japonica Rice Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(3): 469-483.
[3] XIE Qian, JIANG Lai, DING MingYue, LIU LingLing, CHEN QingXi. Metabolomic Analysis of Canarium album Fresh Food Quality Differences Based on Sensory Evaluation [J]. Scientia Agricultura Sinica, 2024, 57(2): 363-378.
[4] QI XiaoYu, KONG XiaoPing, ZHOU HongWei, YAN XiangPing. Crucial Factors Impacting Carrot Flavor Analysis Based on Broad Target Metabolomics [J]. Scientia Agricultura Sinica, 2024, 57(16): 3250-3263.
[5] FAN Peng, YANG TianLe, ZHU ShaoLong, WANG ZhiJie, ZHANG MingYue, WEI HaiYan, LIU GuoDong. Preliminary Study on Appearance Quality Evaluation of Semi-Waxy Rice in Yangtze River Delta Region [J]. Scientia Agricultura Sinica, 2024, 57(16): 3105-3115.
[6] LIU Chang, CUI ZiXu, ZUO Zhou, YUN HongMei, NIU Jin, YANG Yang, GUO XiaoHong, LI BuGao, GAO PengFei, ZHAO Yan, CAO GuoQing. Effects of Dietary Fiber Level on Intestinal Barrier Function, Colonic Microbiota and Metabolites in Pigs [J]. Scientia Agricultura Sinica, 2023, 56(22): 4532-4551.
[7] FU Shan, LIANG Ye, XU JiuLiang, RUAN YunZe, LUO Jian, LI TingYu. Comprehensive Evaluation of Fruit Texture and Taste Quality of Pineapple Based on Multiple Methods [J]. Scientia Agricultura Sinica, 2023, 56(15): 3006-3019.
[8] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[9] LI Gang, BAI Yang, JIA ZiYing, MA ZhengYang, ZHANG XiangChi, LI ChunYan, LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[10] Yue GE,DeQuan ZHANG,ShaoBo LI,Li CHEN,XiaoChun ZHENG,Ce LIANG,TongJing YAN,JinHuo LI,ZhenYu WANG. Eating Quality Evaluation of Lamb in Different Postmortem Phases Based on Consumers’ Sensory Preferences [J]. Scientia Agricultura Sinica, 2022, 55(18): 3640-3651.
[11] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[12] Hui LU,YuJie YUAN,SiQi ZHANG,Hong CHEN,Duo CHEN,XiaoYuan ZHONG,Bo LI,Fei DENG,Yong CHEN,GuiYong LI,WanJun REN. Evaluation of Rice Eating Quality and Optimization of Varieties of Southwest Indica Hybrid Rice Based on Three Taste Evaluation Methods [J]. Scientia Agricultura Sinica, 2021, 54(6): 1243-1257.
[13] AiHua WANG,HongYe MA,RongFei LI,ShiPin YANG,Rong QIAO,PeiLin ZHONG. Metabolic Analysis of Aroma Components in Two Interspecific Hybrids from the Cross of F.ananassa Duch. and Fragaria nilgerrensis Schlecht. [J]. Scientia Agricultura Sinica, 2021, 54(5): 1043-1054.
[14] YUAN PingLi,HE Nan,ZHAO ShengJie,LU XuQiang,ZHU HongJu,DIAO WeiNan,GONG ChengSheng,MUHAMMAD Jawad Umer,LIU WenGe. Metabolomics Comparative Study on Fruits of Edible Seed Watermelon, Egusi and Common Watermelon [J]. Scientia Agricultura Sinica, 2021, 54(19): 4179-4195.
[15] SUN YongBo,WANG Ya,SA RENNA,ZHANG HongFu. Effects of Chronic Ammonia Stress on Serum Metabolites of Broilers Based on GC-MS [J]. Scientia Agricultura Sinica, 2020, 53(8): 1688-1698.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!