Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (22): 4532-4551.doi: 10.3864/j.issn.0578-1752.2023.22.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Effects of Dietary Fiber Level on Intestinal Barrier Function, Colonic Microbiota and Metabolites in Pigs

LIU Chang1(), CUI ZiXu1, ZUO Zhou1, YUN HongMei2, NIU Jin1, YANG Yang1, GUO XiaoHong1, LI BuGao1, GAO PengFei1, ZHAO Yan1,*(), CAO GuoQing1()   

  1. 1 College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi
    2 Shanxi Animal Husbandry Technology Extension Service Center, Taiyuan 030001, Shanxi
  • Received:2023-02-12 Accepted:2023-04-13 Online:2023-11-16 Published:2023-11-17

Abstract:

【Objective】 Adding fiber raw materials is one of the effective methods to reduce the feed costs. The aim of this study was to investigate the effects of different fiber level diets on the intestinal health of Mashen (MS) pig and Duroc × Landrace × Large (DLY) pig, so as to provide the basis for the rational use of fiber. 【Method】 In this study, 80 MS pigs and 80 DLY pigs with an initial body weight of (20 ± 0.5) kg were used as test objects (half of the sows and half of the boars). MS and DLY pigs were divided into four groups each assigned to different diets, with five replicates per treatment and four pigs per replicate. When 0%, 9.35%, 18.64% and 28.03% soybean hulls were added to the corn soybean meal basal diet, the NDF content was 9% (9N), 13.5% (13.5N), 18% (18N) and 22.5% (22.5N), respectively. The test lasted for 30 days. 【Result】 For MS pigs, the content of IL-10 in ileum of 18N group and TNF-α in cecum of 13.5N and 22.5N groups was significantly decreased (P<0.05). The number of goblet cells in jejunum, ileum and caecum was increased with the increase of fiber level. In colon, the number of goblet cells and the expression level of MUC2 were significantly increased in 13.5N and 18N groups (P<0.05). The expressions of Claudin-2, Occludin, E-cadherin, ZO-1, and ZO-2 of 18N and 22.5N groups were increased significantly (P<0.05). The abundance of Escherichia-Shigella in 13.5N, 18N and 22.5N groups were decreased significantly (P<0.05), while the abundance of Lactobacillus in 13.5N group, Prevoteaceae_NK3B31_group in 18N group and Methanobrevibacter in 22.5N group were increased significantly (P<0.05). Palmitic acid, stearic acid, lauric acid and capric acid in 13.5N, 18N and 22.5N groups were significantly increased (P<0.05), while lithocholic acid and cholic acid were significantly decreased (P<0.05). Differential metabolites were mainly concentrated in the pathways related to lipid metabolism and carbohydrate digestion and absorption. For DLY pigs, the TNF-α content in cecum of 13.5N group was significantly increased (P<0.05). The number of goblet cells in each intestinal segment of 13.5N, 18N and 22.5N groups was significantly higher than those of 9N group (P<0.05). The expression level of colonic MUC2 was increased significantly in 13.5N and 18N groups (P<0.05) and decreased significantly in 22.5N group (P<0.05). The expression levels of Claudin-2, Occludin, E-cadherin and ZO-1 in 18N and 22.5N groups were decreased significantly (P<0.05). The abundance of Methanobrevibacter in 13.5N group, Streptococcus in 18N group and Lachnospira in 22.5N group was significantly increased (P<0.05). L-tyrosine, L-glutamic acid, L-pyroglutamic acid, phenylalanine and other derivatives in 13.5N, 18N group were significantly increased (P<0.05), while significantly decreased (P<0.05) in 22.5N group. Differential metabolites were mainly concentrated in amino acid metabolism pathway. In MS pigs and DLY pigs, there was a strong correlation between microflora and intestinal barrier related genes, as well as tryptophan and bile acid metabolites. 【Conclusion】 Improving the dietary fiber level could strengthen the intestinal barrier function of pigs, increase the abundance of beneficial bacteria, reduce the abundance of harmful bacteria, regulate the metabolism of lipid and amino acids in the colon, affect the metabolism of short-chain fatty acids, tryptophan and bile acids through the microbial pathway, and promote intestinal health.

Key words: dietary fiber level, intestinal barrier, microbiota, metabolites, pig

Table 1

Composition and nutrient levels of experimental diets (DM basis,%)"

原料
Ingredient
组别 Group 营养水平
Nutrient levels
组别 Group
9N 13.5N 18N 22.5N 9N 13.5N 18N 22.5N
玉米 Corn 75.09 67.19 59.30 52.75 干物质 DM (%) 87.12 87.44 87.77 88.08
大豆皮 Soybean hull 9.35 18.64 28.03 净能 NE (MJ·kg-1) 10.61 10.02 9.44 8.85
豆粕 Soybean meal 20.43 19.19 17.97 15.24 消化能 DE (MJ·kg-1) 14.40 13.85 13.31 12.75
赖氨酸 L-Lys·HCl 0.29 0.23 0.17 0.15 粗蛋白质 CP (%) 15.50 15.50 15.50 15.00
蛋氨酸 L-Met 0.11 0.09 0.08 0.07 粗纤维 CF (%) 2.00 5.00 8.00 11.00
苏氨酸 L-Thr 0.13 0.10 0.08 0.07 中性洗涤纤维 NDF (%) 9.00 13.50 18.00 22.50
色氨酸 L-Trp 0.02 0.01 0.00 0.00 酸性洗涤纤维 ADF (%) 5.30 8.10 11.67 14.79
石粉
Limestone
0.85 0.71 0.58 0.44 标准回肠可消化赖氨酸
SID Lys (%)
0.90 0.85 0.80 0.75
磷酸氢钙
CaHPO4
0.83 0.88 0.92 0.99 标准回肠可消化赖氨酸/净能 SID Lys/NE (%) 0.085 0.085 0.085 0.085
氯化钠 NaCl 0.25 0.25 0.26 0.26 钙 Ca (%) 0.58 0.58 0.58 0.58
预混料 Premix 1) 2.00 2.00 2.00 2.00 磷 P (%) 0.46 0.46 0.46 0.46
合计 Total 100.00 100.00 100.00 100.00

Table 2

Primer sequence of genes"

基因 Gene 引物序列 Primer sequence (5′→3′) 登录号 Accession No. 产物长度 Products size (bp)
MUC2 F: CTGTGCGACTACAACTTCGC
R: AGATGGTGTCGTCCTTGACC
XM_021082584.1 139
Claudin-2 F: ACTGCAAGGAAATCGCTCCA
R: TCTTGGCTTTGGGTGGTTGA
NM_001161638.1 98
Occludin F: CCTCCTCCCCTTTCGGACTA
R: TCACTTTCCCGTTGGACGAG
NM_001163647.2 70
E-cadherin F: GTGGTTCCGAAGCTGCTAGT
R: CCCCACTCGTTCAGGTAGTC
NM_001163060.1 85
ZO-1 F: GAGAAAGGTGAAACCCTGCTG
R: GTCAGGAGTCATGGACGCAC
XM_047432990.1 111
ZO-2 F: ATTCGGACCCATAGCAGACATAG
R: GCGTCTCTTGGTTCTGTTTTAGC
NM_001206404.1 90
18S F: ATAAACGATGCCGACTGGCGAT
R: CAATCTGTCAATCCTGTCCGTGT
NR_046261.1 219

Table 3

Effect of dietary fiber level on immune factors in the intestinal mucosa of pigs"

项目
Item
MS DLY SEM P-value
9N 13.5N 18N 22.5N 9N 13.5N 18N 22.5N Diet Breed Diet×Breed
回肠 Ileum
白介素10 IL-10(pg·mL-1 181.86a 158.02ab 148.60b 157.57ab 168.05ab 151.94b 173.40ab 160.70ab 3.539 0.095 0.699 0.110
肿瘤坏死因子α TNF-α(pg·mL-1 185.56 180.72 164.58 164.20 175.47 176.17 170.86 171.61 4.648 0.416 0.972 0.745
分泌型免疫球蛋白A sIgA(µg·mL-1 41.51 37.17 36.19 41.19 42.93 34.09 32.41 35.53 1.585 0.139 0.251 0.726
盲肠Cecum
白介素10 IL-10(pg·mL-1 160.26 153.09 150.62 154.66 152.17 148.81 165.62 164.28 2.857 0.502 0.470 0.215
肿瘤坏死因子α TNF-α(pg·mL-1 171.95bc 147.62d 169.50bc 150.44d 184.57b 162.93cd 168.10bc 203.01a 2.558 0.007 0.001 0.004
分泌型免疫球蛋白A sIgA(µg·mL-1 41.72 35.61 39.53 42.39 39.53 37.21 36.43 38.42 1.586 0.521 0.417 0.826
结肠Colon
白介素10 IL-10(pg·mL-1 158.92 163.16 152.42 146.80 153.32 155.33 163.35 151.74 3.148 0.446 0.894 0.446
肿瘤坏死因子α TNF-α(pg·mL-1 171.94 153.25 153.98 158.20 181.41 167.39 163.51 167.38 4.684 0.279 0.149 0.992
分泌型免疫球蛋白A sIgA(µg·mL-1 36.08 38.86 43.60 42.40 37.75 35.65 36.87 37.42 1.220 0.436 0.091 0.404

Table 4

Effects of dietary fiber levels on the number of goblet cells in pig intestine"

项目
Item
MS DLY SEM P-value
9N 13.5N 18N 22.5N 9N 13.5N 18N 22.5N Diet Breed Diet×Breed
十二指肠Duodenum 23.20a 24.87a 25.07a 25.40a 18.13b 22.40a 22.47a 22.80a 0.397 0.002 <0.001 0.502
空肠Jejunum 20.73b 25.47a 25.40a 24.33a 16.80c 20.67b 20.53b 20.07b 0.393 <0.001 <0.001 0.939
回肠Ileum 20.40c 24.33b 25.00b 31.93a 13.93e 16.13d 20.60c 21.13c 0.534 <0.001 <0.001 <0.001
盲肠Cecum 28.07de 33.20c 35.80b 39.13a 22.73f 26.60e 28.80de 30.13d 0.529 <0.001 <0.001 0.154
结肠Colon 58.47d 70.07a 72.47a 61.00cd 49.27f 53.20e 66.33b 62.80bc 0.818 <0.001 <0.001 <0.001

Fig. 1

Effect of dietary fiber level on the expression of colonic mucin gene and tight junction protein gene Different small letters mean significant difference between different fiber level groups (P<0.05). The same as below"

Fig. 2

Effect of dietary fiber level on the expression of tight junction protein in colon"

Table 5

The top 20 genera in the abundance of different fiber level groups of MS pigs"

属名Genus MS_9N MS_13.5N MS_18N MS_22.5N P-value
乳酸杆菌属 Lactobacillus 10.05b 23.15a 8.42b 4.87c <0.001
甲烷短杆菌属 Methanobrevibacter 1.78b 4.53b 0.78b 29.21a <0.001
普雷沃氏菌科_NK3B31属 Prevotellaceae_NK3B31_group 3.24b 3.73b 18.53a 1.68b <0.001
瘤胃菌科UCG-005属 Ruminococcaceae_UCG-005 3.29b 9.28a 0.87c 4.01b <0.001
土孢杆菌属 Terrisporobacter 4.44ab 1.83c 2.84bc 6.25a 0.014
大肠埃希菌-志贺氏菌属 Escherichia-Shigella 10.45a 0.18c 0.19c 1.86b <0.001
梭状芽孢杆菌科_sensu_stricto_1属Clostridium_sensu_stricto_1 6.23a 1.09b 1.40b 1.93b <0.001
真杆菌属 Eubacterium_coprostanoligenes_group 5.03a 2.42b 1.34c 1.27c <0.001
理研氏菌科_RC9属 Rikenellaceae_RC9_gut_group 0.83c 3.42a 2.15b 2.90a <0.001
瘤胃球菌_1属 Ruminococcus_1 1.50bc 4.24a 0.89c 2.32b <0.001
毛螺菌属 Lachnospira 0.42c 1.39b 4.91a 0.84bc <0.001
克里斯滕森菌科_R-7属 Christensenellaceae_R-7_group 2.62a 1.86ab 0.95c 1.58bc 0.009
粪杆菌属 Faecalibacterium 0.15b 0.58b 5.76a 0.17b 0.001
考拉杆菌属 Phascolarctobacterium 1.65b 0.78c 2.03a 1.56b <0.001
瘤胃菌科UCG-014属 Ruminococcaceae_UCG-014 0.29c 2.10a 2.01a 1.50b <0.001
链球菌属 Streptococcus 1.26b 1.05b 2.82a 0.37b 0.033
密螺旋体_2属 Treponema_2 2.04a 1.57ab 0.36c 1.43b <0.001
罕见小球菌属 Subdoligranulum 1.01b 0.87b 2.96a 0.21c <0.001
Agathobacter 2.21a 0.55c 1.80b 0.14d <0.001
毛螺菌科_XPB1014属 Lachnospiraceae_XPB1014_group 0.35c 2.58a 0.11c 1.30b <0.001

Table 6

The top 20 genera in the abundance of different fiber level groups of DLY pigs"

属名Genus DLY_9N DLY_13.5N DLY_18N DLY_22.5N P-value
乳酸杆菌属 Lactobacillus 40.04a 21.08bc 19.11c 26.55b 0.001
甲烷杆菌属 Methanobrevibacter 6.85ab 10.43a 2.62b 4.05b 0.041
链球菌属 Streptococcus 2.86c 4.83b 8.37a 3.68bc <0.001
瘤胃菌科UCG-005属 Ruminococcaceae_UCG-005 6.47a 3.09b 2.74b 4.87a 0.002
密螺旋体_2属 Treponema_2 0.41b 7.00a 4.77ab 0.77b 0.060
巨型球菌 Megasphaera 3.06a 0.08b 2.89a 5.59a 0.013
毛螺菌属 Lachnospira 0.96b 0.90b 1.12b 7.68a <0.001
瘤胃菌科UCG-014属 Ruminococcaceae_UCG-014 1.25b 1.21b 4.61a 2.45ab 0.117
梭状芽孢杆菌科_sensu_stricto_1属 Clostridium_sensu_stricto_1 3.35 3.49 2.06 0.56 0.168
拟普雷沃菌属 Alloprevotella 0.78b 0.10b 5.76a 1.83ab 0.075
克里斯滕森菌科_R-7属 Christensenellaceae_R-7_group 0.77b 5.73a 1.17b 0.60b <0.001
土孢杆菌属 Terrisporobacter 1.83 2.70 2.26 1.22 0.346
毛螺菌科_XPB1014属 Lachnospiraceae_XPB1014_group 1.00b 5.37a 0.86b 0.70b <0.001
理研氏菌科_RC9属 Rikenellaceae_RC9_gut_group 0.78b 1.90a 1.88a 1.71a 0.001
真杆菌属 Eubacterium_coprostanoligenes_group 1.10b 1.63a 1.91a 1.18b <0.001
瘤胃球菌_1属 Ruminococcus_1 0.49 0.83 1.48 1.57 0.140
瘤胃菌科UCG-002属 Ruminococcaceae_UCG-002 1.22ab 1.79a 0.88bc 0.46c 0.008
艾克曼菌属 Akkermansia 3.69a 0.27b 0.12b 0.21b 0.022
罕见小球菌属 Subdoligranulum 0.81b 0.50b 1.69a 1.22ab 0.029
粪杆菌属 Faecalibacterium 0.77bc 0.10c 1.74a 1.48ab 0.004

Fig. 3

Correlation analysis between the abundance of colonic microbiota and the expression of intestinal barrier related genes"

Fig. 4

The partial least squares discriminant analysis (PLS-DA) between groups with different fiber levels"

Table 7

Differential metabolites and fold change in different comparison groups of MS pigs"


Class
差异代谢物
Differential metabolite
差异倍数 Fold change
13.5N/9N 18N/9N 22.5N/9N
脂肪酰类
Fatty acyls
棕榈酸 Palmitic acid 2.90 1.48 1.12
硬脂酸Stearic acid 3.09 1.18 1.06
花生四烯酸 Arachidonic acid 2.32 3.80 0.77
油酸 Oleic acid 1.76 1.59 0.34
月桂酸 Lauric acid 7.35 16.22 2.21
癸酸 Decanoic acid 6.75 24.33 1.09
肾上腺素酸 Adrenic acid 1.24 1.68 0.28
二十二碳五烯酸 Docosapentaenoic acid 1.55 3.42 0.69
11Z-二十碳烯酸 11Z-Eicosenoic acid 1.03 3.35 0.51
二十二碳六烯酸 Docosahexaenoic acid 1.03 3.35 0.51
20-羟基二十碳四烯酸 20-HETE 1.24 3.13 0.64
脂质和类脂分子
Lipids and lipid-like molecules
石胆酸 Lithocholic Acid 0.60 0.36 0.75
类固醇和类固醇衍生物
Steroids and steroid derivatives

熊去氧胆酸 Glycoursodeoxycholic acid 0.27 0.17 18.46
胆酸 Cholic acid 0.66 0.77 0.33
脱氧胆酸 Deoxycholic acid 0.38 0.61 1.60
甘胆酸 Glycocholic acid 0.56 0.41 9.30
胆钙化醇 Cholecalciferol 0.64 0.29 0.42
骨化三醇 Calcitriol 1.03 2.72 0.68
吲哚和衍生物
Indoles and derivatives
色胺 Tryptamine 1.29 0.09 1.31
5-羟基吲哚-3-乙酸5-Hydroxyindole-3-acetic acid 4.06 0.69 1.31
褪黑素 Melatonin 1.27 1.05 5.36
吲哚-3-乙酸 Indole-3-acetic acid 0.05 0.18 0.58
羧酸及其衍生物
Carboxylic acids and derivatives
烟酸 Nicotinic acid 0.94 1.18 0.47
N-乙酰-L-谷氨酸 N-Acetyl-L-glutamic acid 5.75 1.04 0.39
L-酪氨酸 L-Tyrosine 1.49 1.65 1.38
L-苯丙氨酸 L-Phenylalanine 2.94 2.40 1.16
L-谷氨酸 L-Glutamic acid 2.72 2.41 0.78
N6-乙酰-L-赖氨酸 N6-Acetyl-L-lysine 5.17 2.37 0.65
L-焦谷氨酸 L-Pyroglutamic acid 2.36 1.62 0.95
5-氧代脯氨酸 5-oxoproline 3.97 1.70 1.01

Table 8

Differential metabolites and fold change in different comparison groups of DLY pigs"


Class
差异代谢物
Differential metabolite
差异倍数 Fold change
13.5N/9N 18N/9N 22.5N/9N
脂质和类脂分子
Lipids and lipid-like molecules
石胆酸 Lithocholic Acid 3.26 1.44 2.38
类固醇和类固醇衍生物
Steroids and steroid derivatives
胆钙化醇 Cholecalciferol 2.46 3.33 0.49
脱氧胆酸 Deoxycholic acid 0.67 0.67 1.24
胆酸 Cholic acid 0.70 0.61 0.73
胆素酮 Cholest-4-en-3-one 2.44 3.24 1.77
羧酸及其衍生物
Carboxylic acids and derivatives
5-氨基戊酸 5-Aminovaleric acid 1.77 4.59 4.72
烟酸 Nicotinic acid 0.85 1.45 1.11
L-酪氨酸 L-Tyrosine 2.28 2.00 0.93
L-谷氨酸 L-Glutamic acid 1.30 2.78 0.73
L-焦谷氨酸 L-Pyroglutamic acid 1.09 2.49 0.60
苯丙氨酸 L-Phenylalanine 1.26 1.36 0.47
5-氧代脯氨酸 5-oxoproline 1.05 1.76 0.29
L-赖氨酸 L-lysine 1.11 1.05 0.35
L-哌啶酸 L-Pipecolic acid 1.11 1.06 0.35
尿囊酸 Allantoic acid 0.94 2.00 1.33
N-乙酰-L-谷氨酸 N-Acetyl-L-glutamic acid 1.24 1.92 0.75
脂肪酰类 Fatty acyls L-棕榈酰肉碱 L-Palmitoylcarnitine 1.36 2.28 0.34
油酸 Oleic acid 0.66 1.20 1.37
月桂酸 Lauric acid 3.88 2.70 0.81
9-氧代常微醚 9-Oxo-ODE 1.03 1.43 1.66
二十二碳六烯酸 Docosahexaenoic acid 0.87 3.30 2.72
前列腺素H2 Prostaglandin H2 1.78 2.28 1.11
20-羟基二十碳四烯酸 20-HETE 1.73 2.56 1.39
芥酸 Erucic acid 3.27 0.85 1.07
吲哚和衍生物
Indoles and derivatives
色胺 Tryptamine 0.72 0.48 0.74
5-羟基吲哚-3-乙酸5-Hydroxyindole-3-acetic acid 0.10 0.79 1.34
2-(1H-吲哚-3-基)乙酸2-(1H-indol-3-yl)acetic acid 2.87 9.99 1.45
3-(2-羟乙基)吲哚 3-(2-Hydroxyethyl)indole 0.51 0.23 0.15

Fig. 5

Differential KEGG enrichment pathway analysis of different fiber level groups"

Table 9

Differential metabolites enriched in the pathways of immune system and immune disease in MS and DLY pigs"

二级分类通路
KEGG_B_class
代谢通路
Pathways
差异代谢物(MS)
Differential metabolites
差异代谢物(DLY)
Differential metabolites
免疫系统
Immune system
血小板活化 Platelet activation 环化GMP Cyclic GMP
花生四烯酸 Arachidonic acid
环化GMP Cyclic GMP
前列腺素H2 Prostaglandin H2
FcγR介导的吞噬作用 Fc gamma R-mediated phagocytosis 花生四烯酸 Arachidonic acid -
FcεRI信号通路 Fc epsilon RI signaling pathway 花生四烯酸 Arachidonic acid -

Fig. 6

Abundance values of key metabolites affecting immune function at different fiber levels"

Fig. 7

Correlation analysis of colonic microbiota and metabolites"

[1]
BAI Y, ZHOU X J, ZHAO J B, WANG Z Y, YE H, PI Y, CHE D, HAN D D, ZHANG S, WANG J J. Sources of dietary fiber affect the SCFA production and absorption in the hindgut of growing pigs. Frontiers in Nutrition, 2022(8):719935.
[2]
YANG P, ZHAO J B. Variations on gut health and energy metabolism in pigs and humans by intake of different dietary fibers. Food Science & Nutrition, 2021, 9(8): 4639-4654.
[3]
曲强. 猪饲料中大豆皮营养价值探析. 中国畜禽种业, 2018, 14(12): 38-39.
QU Q. Analysis on nutritional value of soybean skin in pig feed. The Chinese Livestock and Poultry Breeding, 2018, 14(12): 38-39. (in Chinese)
[4]
JHA R, FOUHSE J M, TIWARI U P, LI L G, WILLING B P. Dietary fiber and intestinal health of monogastric animals. Frontiers in Veterinary Science, 2019, 6: 48.

doi: 10.3389/fvets.2019.00048 pmid: 30886850
[5]
LI H, YIN J, TAN B, CHEN J S, ZHANG H H, LI Z Q, MA X K. Physiological function and application of dietary fiber in pig nutrition: a review. Animal Nutrition (Zhongguo Xu Mu Shou Yi Xue Hui), 2021, 7(2): 259-267.
[6]
郭飞, 李爱军, 杨明华, 潘洪彬, 赵红业, 魏红江, 赵素梅. 日粮纤维调节猪生产性能及肠道健康的研究进展. 饲料研究, 2021, 44(22): 117-122.
GUO F, LI A J, YANG M H, PAN H B, ZHAO H Y, WEI H J, ZHAO S M. Research progress of dietary fiber for regulating production performance and intestinal health of pigs. Feed Research, 2021, 44(22): 117-122. (in Chinese)
[7]
PENG J, TANG Y M, HUANG Y H. Gut health: the results of microbial and mucosal immune interactions in pigs. Animal Nutrition (Zhongguo Xu Mu Shou Yi Xue Hui), 2021, 7(2): 282-294.
[8]
SLIFER Z M, BLIKSLAGER A T. The integral role of tight junction proteins in the repair of injured intestinal epithelium. International Journal of Molecular Sciences, 2020, 21(3): 972.

doi: 10.3390/ijms21030972
[9]
LUO Y H, LIU Y, LI H, ZHAO Y, WRIGHT A D G, CAI J Y, TIAN G, MAO X B. Differential effect of dietary fibers in intestinal health of growing pigs: outcomes in the gut microbiota and immune-related indexes. Frontiers in Microbiology, 2022, 13: 843045.

doi: 10.3389/fmicb.2022.843045
[10]
SU W F, JIANG Z P, WANG C, ZHANG Y, GONG T, WANG F Q, JIN M L, WANG Y Z, LU Z Q. Co-fermented defatted rice bran alters gut microbiota and improves growth performance, antioxidant capacity, immune status and intestinal permeability of finishing pigs. Animal Nutrition, 2022, 11: 413-424.

doi: 10.1016/j.aninu.2022.07.008 pmid: 36382202
[11]
TIAN M L, LI D T, MA C, FENG Y, HU X S, CHEN F. Barley leaf insoluble dietary fiber alleviated dextran sulfate sodium-induced mice colitis by modulating gut microbiota. Nutrients, 2021, 13(3): 846.

doi: 10.3390/nu13030846
[12]
EL KAOUTARI A, ARMOUGOM F, GORDON J I, RAOULT D, HENRISSAT B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology, 2013, 11(7): 497-504.

doi: 10.1038/nrmicro3050 pmid: 23748339
[13]
WU G F, TANG X J, FAN C, WANG L, SHEN W J, REN S E, ZHANG L Z, ZHANG Y M. Gastrointestinal tract and dietary fiber driven alterations of gut microbiota and metabolites in durco × bamei crossbred pigs. Frontiers in Nutrition, 2021, 8: 806646.

doi: 10.3389/fnut.2021.806646
[14]
VERSPREET J, DAMEN B, BROEKAERT W F, VERBEKE K, DELCOUR J A, COURTIN C M. A critical look at prebiotics within the dietary fiber concept. Annual Review of Food Science and Technology, 2016, 7: 167-190.

doi: 10.1146/annurev-food-081315-032749 pmid: 26735801
[15]
WU W, XIE J, ZHANG H. Dietary fibers influence the intestinal SCFAs and plasma metabolites profiling in growing pigs. Food & Function, 2016, 7(11): 4644-4654.
[16]
TANES C, BITTINGER K, GAO Y, FRIEDMAN E S, NESSEL L, PALADHI U R, CHAU L, PANFEN E, FISCHBACH M A, BRAUN J, XAVIER R J, CLISH C B, LI H Z, BUSHMAN F D, LEWIS J D, WU G D. Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. Cell Host & Microbe, 2021, 29(3): 394-407.e5.
[17]
JIN J S, YU C P, SUN G H, LIN Y F, CHIANG H, CHAO T K, TSAI W C, SHEU L F. Increasing expression of fascin in renal cell carcinoma associated with clinicopathological parameters of aggressiveness. Histology and Histopathology, 2006, 21(12): 1287-1293.

doi: 10.14670/HH-21.1287 pmid: 16977579
[18]
李彦军, 牛骁麟, 张千, 王国秀, 李发弟, 李飞, 李冲, 庞鑫, 贾莉, 樊海苗. 代乳粉水平对羔羊血液指标和肠道屏障功能的影响. 中国农业科学, 2020, 53(2): 409-417.

doi: 10.3864/j.issn.0578-1752.2020.02.015
LI Y J, NIU X L, ZHANG Q, WANG G X, LI F D, LI F, LI C, PANG X, JIA L, FAN H M. Effects of milk replacer feeding level on hematology index and gut barrier function in lambs. Scientia Agricultura Sinica, 2020, 53(2): 409-417. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.02.015
[19]
YANG Y, JIANG X M, CAI X L, ZHANG L J, LI W T, CHE L Q, FANG Z F, FENG B, LIN Y, XU S Y, LI J, ZHAO X L, WU D, ZHUO Y. Deprivation of dietary fiber enhances susceptibility of piglets to lung immune stress. Frontiers in Nutrition, 2022, 9: 827509.

doi: 10.3389/fnut.2022.827509
[20]
BEUKEMA M, FAAS M M, DE VOS P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: impact via gut microbiota and direct effects on immune cells. Experimental & Molecular Medicine, 2020, 52(9): 1364-1376.
[21]
ZHANG K, TU Y L, GAO L P, MENG M J, BAI Y F. Replacement of grains with soybean hulls ameliorates SARA-induced impairment of the colonic epithelium barrier function of goats. BMC Veterinary Research, 2018, 14(1): 376.

doi: 10.1186/s12917-018-1705-8 pmid: 30509252
[22]
ZHANG R Y, YE H M, LIU J H, MAO S Y. High-grain diets altered rumen fermentation and epithelial bacterial community and resulted in rumen epithelial injuries of goats. Applied Microbiology and Biotechnology, 2017, 101(18): 6981-6992.

doi: 10.1007/s00253-017-8427-x pmid: 28762001
[23]
ZHANG R Y, JIN W, FENG P F, LIU J H, MAO S Y. High-grain diet feeding altered the composition and functions of the rumen bacterial community and caused the damage to the laminar tissues of goats. Animal: an International Journal of Animal Bioscience, 2018, 12(12): 2511-2520.

doi: 10.1017/S175173111800040X
[24]
YE H M, LIU J H, FENG P F, ZHU W Y, MAO S Y. Grain-rich diets altered the colonic fermentation and mucosa-associated bacterial communities and induced mucosal injuries in goats. Scientific Reports, 2016, 6(1): 1-13.

doi: 10.1038/s41598-016-0001-8
[25]
LI Q Y, GABLER N K, LOVING C L, GOULD S A, PATIENCE J F. A dietary carbohydrase blend improved intestinal barrier function and growth rate in weaned pigs fed higher fiber diets. Journal of Animal Science, 2018, 96(12): 5233-5243.

doi: 10.1093/jas/sky383 pmid: 30299467
[26]
KUMAR J, RANI K, DATT C. Molecular link between dietary fibre, gut microbiota and health. Molecular Biology Reports, 2020, 47(8): 6229-6237.

doi: 10.1007/s11033-020-05611-3 pmid: 32623619
[27]
邓富丽, 申丹, 钟儒清, 张顺芬, 李滔, 孙曙东, 陈亮, 张宏福. 体外法优化玉米: 杂粕型饲粮的非淀粉多糖酶谱及其对育肥猪肠道微生物的影响. 中国农业科学, 2022, 55(16): 3242-3255.

doi: 10.3864/j.issn.0578-1752.2022.16.014
DENG F L, SHEN D, ZHONG R Q, ZHANG S F, LI T, SUN S D, CHEN L, ZHANG H F. Non-starch polysaccharide enzymes cocktail of corn-miscellaneous meal-based diet optimization by in vitro method and its effects on intestinal microbiome in finishing pigs. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255. (in Chinese)
[28]
GAO Q T, SUN G M, DUAN J J, LUO C Z, YANGJI C D, ZHONG R Q, CHEN L, ZHU Y B, WANGDUI B S, ZHANG H F. Alterations in gut microbiota improve SCFA production and fiber utilization in Tibetan pigs fed alfalfa diet. Frontiers in Microbiology, 2022, 13: 969524.

doi: 10.3389/fmicb.2022.969524
[29]
TAO S Y, BAI Y, ZHOU X J, ZHAO J B, YANG H J, ZHANG S, WANG J J. In vitro fermentation characteristics for different ratios of soluble to insoluble dietary fiber by fresh fecal microbiota from growing pigs. ACS Omega, 2019, 4(12): 15158-15167.

doi: 10.1021/acsomega.9b01849
[30]
LUO Y H, CHEN H, YU B, HE J, ZHENG P, MAO X B, TIAN G, YU J, HUANG Z Q, LUO J Q, CHEN D W. Dietary pea fiber increases diversity of colonic methanogens of pigs with a shift from Methanobrevibacter to Methanomassiliicoccus-like genus and change in numbers of three hydrogenotrophs. BMC Microbiology, 2017, 17(1): 17.

doi: 10.1186/s12866-016-0919-9
[31]
SHANG Q H, LIU S J, LIU H S, MAHFUZ S, PIAO X S. Impact of sugar beet pulp and wheat bran on serum biochemical profile, inflammatory responses and gut microbiota in sows during late gestation and lactation. Journal of Animal Science and Biotechnology, 2021, 12(1): 54.

doi: 10.1186/s40104-021-00573-3 pmid: 33879267
[32]
LIU Y, YU X J, ZHAO J X, ZHANG H, ZHAI Q X, CHEN W. The role of MUC2 mucin in intestinal homeostasis and the impact of dietary components on MUC2 expression. International Journal of Biological Macromolecules, 2020, 164: 884-891.

doi: 10.1016/j.ijbiomac.2020.07.191
[33]
HE B K, NOHARA K, AJAMI N J, MICHALEK R D, TIAN X J, WONG M, LOSEE-OLSON S H, PETROSINO J F, YOO S H, SHIMOMURA K, CHEN Z. Transmissible microbial and metabolomic remodeling by soluble dietary fiber improves metabolic homeostasis. Scientific Reports, 2015, 5(1): 1-12.
[34]
ZHANG F, ZHENG W J, XUE Y Q, YAO W. Suhuai suckling piglet hindgut microbiome-metabolome responses to different dietary copper levels. Applied Microbiology and Biotechnology, 2019, 103(2): 853-868.

doi: 10.1007/s00253-018-9533-0 pmid: 30535578
[35]
DING L, REN S, SONG Y X, ZANG C G, LIU Y C, GUO H, YANG W Q, GUAN H, LIU J C. Modulation of gut microbiota and fecal metabolites by corn silk among high-fat diet-induced hypercholesterolemia mice. Frontiers in Nutrition, 2022, 9: 935612.

doi: 10.3389/fnut.2022.935612
[36]
XU H, PAN L B, YU H, HAN P, FU J, ZHANG Z W, HU J C, YANG X Y, KERANMU A, ZHANG H J, BU M M, JIANG J D, WANG Y. Gut microbiota-derived metabolites in inflammatory diseases based on targeted metabolomics. Frontiers in Pharmacology, 2022, 13: 919181.

doi: 10.3389/fphar.2022.919181
[37]
章凡, 王哲, 胡琨, 向倩, 崔一民. 血小板在炎症中的作用: 促血栓形成与免疫功能. 中国临床药理学杂志, 2022, 38(17): 2089-2093.
ZHANG F, WANG Z, HU K, XIANG Q, CUI Y M. The role of platelets in inflammation: Thrombogenesis and immune function. The Chinese Journal of Clinical Pharmacology, 2022, 38(17): 2089-2093. (in Chinese)
[38]
JUNKER F, GORDON J, QURESHI O. Fc gamma receptors and their role in antigen uptake, presentation, and T cell activation. Frontiers in Immunology, 2020, 11: 1393.

doi: 10.3389/fimmu.2020.01393 pmid: 32719679
[39]
GHOSH S, WHITLEY C S, HARIBABU B, JALA V R. Regulation of intestinal barrier function by microbial metabolites. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11(5): 1463-1482.

doi: 10.1016/j.jcmgh.2021.02.007 pmid: 33610769
[40]
王宗伟, 付建中, 李洪涛, 李艳青. 丁酸梭菌对肠道屏障的影响机制及其在畜禽养殖中应用的研究进展. 动物营养学报, 2022, 34(6): 3519-3528.

doi: 10.3969/j.issn.1006-267x.2022.06.014
WANG Z W, FU J Z, LI H T, LI Y Q. Research progress on mechanism of Clostridium butyricum affecting intestinal barrier and its application in livestock and poultry breeding. Chinese Journal of Animal Nutrition, 2022, 34(6): 3519-3528. (in Chinese)
[41]
王荣蛟, 莫苏, 袁再美, 和世春, 和少英, 郭太情, 刘萍, 毛华明. 肠道微生物的色氨酸代谢物对宿主肠道健康影响的研究进展. 中国畜牧杂志, 2022, 58(3): 7-12.
WANG R J, MO S, YUAN Z M, HE S C, HE S Y, GUO T Q, LIU P, MAO H M. Research progress on the effects of tryptophan metabolites from intestinal microorganisms on host health. Chinese Journal of Animal Science, 2022, 58(3): 7-12. (in Chinese)
[42]
DODD D, SPITZER M H, VAN TREUREN W, MERRILL B D, HRYCKOWIAN A J, HIGGINBOTTOM S K, LE A, COWAN T M, NOLAN G P, FISCHBACH M A, SONNENBURG J L. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature, 2017, 551(7682): 648-652.

doi: 10.1038/nature24661
[43]
HUBBARD T D, MURRAY I A, PERDEW G H. Indole and tryptophan metabolism: endogenous and dietary routes to ah receptor activation. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 2015, 43(10): 1522-1535.

doi: 10.1124/dmd.115.064246
[44]
SCOTT S A, FU J J, CHANG P V. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(32): 19376-19387.
[45]
WANG X, YONG C C, OH S. Metabolites of Latilactobacillus curvatus BYB3 and indole activate aryl hydrocarbon receptor to attenuate lipopolysaccharide-induced intestinal barrier dysfunction. Food Science of Animal Resources, 2022, 42(6): 1046-1060.

doi: 10.5851/kosfa.2022.e51
[46]
JIA W, XIE G X, JIA W P. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nature Reviews Gastroenterology & Hepatology, 2018, 15(2): 111-128.
[47]
ZENG H W, UMAR S, RUST B, LAZAROVA D, BORDONARO M. Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer. International Journal of Molecular Sciences, 2019, 20(5): 1214.

doi: 10.3390/ijms20051214
[1] CUI DengShuai, XIONG SanYa, ZHENG Hao, LI LongYun, YU NaiBiao, HUANG ZhiYong, XIAO ShiJun, GUO YuanMei. Comparing Methods for Correcting Days to 100 kg of Sows in Licha Black Pig and Its Intercross with Berkshire [J]. Scientia Agricultura Sinica, 2023, 56(6): 1177-1188.
[2] AN Yong, QIN ShiZhen, SHI ZhaoGuo, GONG LiYuan, ZHANG Shuai, JI Feng. Influences of Phosphorus Level in Diet of Parent Pigeons on Biochemical Index, Untargeted Metabolomics Profile of Serum, and Gene Expression of Phosphate Transporters in Squabs [J]. Scientia Agricultura Sinica, 2023, 56(23): 4772-4788.
[3] FAN ZiYao, LI Kui, LI JiaYang, HUANG SanWen. The Conception of Eco-Circular Agriculture of "Rice-Potato-Pig" [J]. Scientia Agricultura Sinica, 2023, 56(20): 4067-4071.
[4] WANG Dong, CHEN WanZhao, LI HongBo, QIN Lei, XU QiQi, LIU ZePeng, XIA LiNing. Analysis of Drug Resistance and Epidemic Characteristics of optrA/lsa(E) in Enterococcus faecalis from Pig Farms in Aksu Area of Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(16): 3213-3225.
[5] WANG XiaoHong, XING MingJie, GU XianHong, HAO Yue. Screening of Anti-Apoptotic Protein GRP94 Interaction Proteins in Porcine Hepatic Stellate Cells by Immunoprecipitation Combined with LC-MS/MS [J]. Scientia Agricultura Sinica, 2023, 56(15): 3020-3031.
[6] HAN Jing, WANG XiaoQi, DUAN ZiYuan. Effects of Caragana korshinskii Kom. on Serum Indexes, Rumen and Colon Microbiota of Tan Sheep [J]. Scientia Agricultura Sinica, 2023, 56(14): 2812-2827.
[7] YIN YanZhen, HOU LiMing, LIU Hang, TAO Wei, SHI ChuanZong, LIU KaiYue, ZHANG Ping, NIU PeiPei, LI Qiang, LI PingHua, HUANG RuiHua. Identifying Quantitative Trait Loci Associated with Teat Number of Pig by Genomic Analysis [J]. Scientia Agricultura Sinica, 2023, 56(10): 1994-2006.
[8] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[9] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[10] KONG FanLin,LI Yuan,FU Tong,DIAO QiYu,TU Yan. Effects of 2-Hydroxy-4-(Methylthio)-Butanoic Acid on Rumen Fermentation and Microbiota in Holstein Female Calves [J]. Scientia Agricultura Sinica, 2022, 55(4): 796-806.
[11] LI Gang, BAI Yang, JIA ZiYing, MA ZhengYang, ZHANG XiangChi, LI ChunYan, LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[12] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[13] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[14] WANG XueJie,XING Shuang,ZHAO ShaoMeng,ZHOU Ying,LI XiuMei,LIU QingXiu,MA DanDan,ZHANG MinHong,FENG JingHai. Effects of Heat Stress on Ileal Microbiota of Broilers [J]. Scientia Agricultura Sinica, 2022, 55(17): 3450-3460.
[15] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!