Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (14): 2847-2861.doi: 10.3864/j.issn.0578-1752.2024.14.012

• HORTICULTURE • Previous Articles     Next Articles

Effects of Different Rootstocks on Growth and Fruit Quality of Young Ruixianghong Apple Trees with Multi-Stem Shape

ZENG YanXin1(), GONG HaoNan1, YOU ChunXiang1, LU JingSheng3, GAO WenSheng2,3(), WANG XiaoFei1()   

  1. 1 College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong Apple Technology Innovation Center, Tai-an 271018, Shandong
    2 Shandong Agricultural Technology Extension Center, Jinan 250013
    3 Shandong Kuiqiu Industrial Co. LTD, Heze 274600, Shandong
  • Received:2023-12-06 Accepted:2024-04-07 Online:2024-07-24 Published:2024-07-24
  • Contact: GAO WenSheng, WANG XiaoFei

Abstract:

【Objective】 This study aimed to explore the effects of different rootstocks on the growth and fruit quality of Ruixianghong apple tree with multi-stem shape, which could provide a theoretical basis for the production of Ruixianghong apple with suitable rootstock and multi-stem shape. 【Method】 The three years old of Ruixianghong/Qingzhen 1, Ruixianghong/Malus prunifolia var. ringo, and Ruixianghong/M9T337 with multi-stem shape were used as test materials. The tree height, branch composition, annual branches growth, photosynthetic characteristics, mineral element content and fruit quality of different rootstock-scion combinations were detected and analyzed from April 2023 to March 2024. 【Result】 The results demonstrated that the tree height, graft compatibility, branch numbers, annual branch growth and photosynthetic characteristics of Ruixianghong/Malus prunifolia var. ringo were significantly higher than that of Ruixianghong/Qingzhen 1 and Ruixianghong/M9T337, with a relatively vigorous growth of vegetative organs. The growth potential of Ruixianghong/Qingzhen 1 was slightly lower than that of Ruixianghong/Malus prunifolia var. ringo, while higher than Ruixianghong/M9T337, which could better maintain the fruit shape, with the higher fruit hardness and storage quality, but the fruit yield declined, and the organic acid content increased. Ruixianghong/M9T337 had higher proportion of short branches, which balanced the vegetative growth of each part of the canopy, leading to higher yield and better fruit quality. There were apparent differences of the mineral element content in the new shoot leaves of three kinds of rootstock-scion combinations during spring and autumn shoot growing periods. The content of N, Mg, Fe, B in leaves of Ruixianghong/Malus prunifolia var. ringo and Ruixianghong/Qingzhen 1 were significantly higher than that of Ruixianghong/M9T337, and the Mn and Zn content in leaves of Ruixianghong/Malus prunifolia var. ringo and Ruixianghong/ Qingzhen 1 leaves were significantly higher than that of Ruixianghong/M9T337 during spring shoot growing period, while the content of P, K, Mo, and Cu in Ruixianghong/M9T337 leaves were higher than the other two rootstock-scion combinations, while Mn and Zn contens in leaves of Ruixianghong/M9T337 were also higher than the other two rootstock-scion combinations. 【Conclusion】 In summary, Ruixianghong/M9T337 combination with multi-stem shape had the best dwarfing effect, with higher yield and better fruit quality, but the tree potential was lower, with a reduced stress tolerance. The Ruixianghong/Malus prunifolia var. ringo combination had higher graft compatibility, growing potential, with a better tree density, stress tolerance and fruit quality in combined with the multi-stem shape.

Key words: apple, rootstock scion combinations, multi-stem shape, shoot growth, fruit quality

Fig. 1

The combination of three rootstocks combined with multi-stem shape shaping tree growth phenotype"

Table 1

Effects of different rootstocks on structural parameters of multi-stem shape"

年份
Year
砧木
Rootstock
树高
Tree height
(m)
砧木粗度
Rootstock diameter (mm)
接穗粗度
Scion thickness (mm)
穗砧粗度比
Ratio of main stem to scion thickness
主枝数
Number of boughs (No.)
2023 瑞香红/青砧1号 Ruixianghong/Qingzhen1 2.71±0.11b 48.97±2.84ab 42.50±1.19b 0.87±0.05b 8.25±0.75b
瑞香红/圆叶海棠
Ruixianghong/Malus prunifolia var. ringo
3.06±0.14a 51.97±1.38a 50.04±1.39a 0.96±0.03a 9.08±0.67a
瑞香红/M9T337 Ruixianghong/M9T337 2.16±0.08c 46.19±2.83b 33.26±1.94c 0.72±0.06c 6.75±0.62c
2024 瑞香红/青砧1号 Ruixianghong/Qingzhen1 3.42±0.06a 66.13±9.38a 62.30±7.16b 0.95±0.06a 9.33±1.21ab
瑞香红/圆叶海棠
Ruixianghong/Malus prunifolia var. ringo
3.52±0.07a 75.62±8.78a 72.58±8.31a 0.96±0.09a 9.83±1.17a
瑞香红/M9T337 Ruixianghong/M9T337 3.08±0.12b 67.38±8.38a 43.37±3.62c 0.65±0.06b 8.17±0.75b

Table 2

Effects of different rootstocks on the branch amount and branch types in multi-stem shape"

年份
Year
砧木
Rootstock
长枝
Long branches
(%)
中枝
Medium branches
(%)
短枝
Short branches
(%)
总枝量
Total number of branches (No.)
2023 瑞香红/青砧1号 Ruixianghong/Qingzhen 1 15.69±6.00a 49.38±2.97a 34.93±5.39b 82.00±8.19 b
瑞香红/圆叶海棠
Ruixianghong/ Malus prunifolia var. ringo
15.00±2.58a 31.42±3.86b 53.58±3.81a 122.33±4.93 a
瑞香红/M9T337 Ruixianghong/M9T337 10.45±3.35a 34.53±1.12b 55.03±2.42a 45.33±3.51 c
2024 瑞香红/青砧1号 Ruixianghong/Qingzhen 1 21.82±3.52ab 33.84±3.38a 44.34±5.51b 205.33±24.32b
瑞香红/圆叶海棠
Ruixianghong/ Malus prunifolia var. ringo
25.14±5.30a 30.05±3.32a 44.81±4.05b 244.33±22.45a
瑞香红/M9T337 Ruixianghong/M9T337 17.40±2.83b 28.71±5.80a 54.93±5.82a 183.50±13.49b

Fig. 2

Effects of different rootstocks on the growth length of annual branches of multi-stem shape A: Proximal upper part; B: Distal upper part; C: Proximal lower part; D: Distal lower part. Different lowercase letters indicate significant differences (P<0.05). The same as below"

Fig. 3

Effects of different rootstocks on the growth roughness of annual branches of multi-stem shape A: Proximal upper part; B: Distal upper part; C: Proximal lower part; D: Distal lower part"

Fig. 4

Effects of different rootstocks on the leaves of annual branches of multi-stem shape"

Fig. 5

Effects of different rootstocks on photosynthetic characteristics of new shoots of multi-stem shape"

Fig. 6

Effects of different rootstocks on the large elements of new shoots of multi-stem shape"

Fig. 7

Effects of different rootstocks on the trace elements of new shoots of multi-stem shape"

Fig. 8

Effects of different rootstocks on the appearance quality of apple multi-stem shape"

Fig. 9

Effects of different rootstocks on the intrinsic quality of apple multi-stem shape"

[1]
陈学森, 韩明玉, 苏桂林, 刘凤之, 过国南, 姜远茂, 毛志泉, 彭福田, 束怀瑞. 当今世界苹果产业发展趋势及我国苹果产业优质高效发展意见. 果树学报, 2010, 27(4): 598-604.
CHEN X S, HAN M Y, SU G L, LIU F Z, GUO G N, JIANG Y M, MAO Z Q, PENG F T, SHU H R. Discussion on today’s world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China. Journal of Fruit Science, 2010, 27(4): 598-604. (in Chinese)
[2]
HUANG Y J, SUN L Y, WANG J L, CHEN Y H, HE J L, LYU D G. Rootstock-scion interaction affects Malus transcriptome profiles in response to cadmium. Scientific Data, 2023, 10: 312.
[3]
杜学梅, 杨廷桢, 高敬东, 王骞, 蔡华成, 李春燕. 苹果砧木对嫁接品种影响的研究进展. 西北农业学报, 2020, 29(4): 487-495.
DU X M, YANG T Z, GAO J D, WANG Q, CAI H C, LI C Y. Advances of effect of apple rootstocks on grafted varieties. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(4): 487-495. (in Chinese)
[4]
姜夕雷. 不同砧木对“烟富3” 苹果接穗发育影响的分子机理研究[D]. 烟台: 烟台大学, 2019.
JIANG X L. Molecular mechanism of different rootstocks on the development of scion of “Yanfu 3” apple[D]. Yantai: Yantai University, 2019. (in Chinese)
[5]
徐晓莹, 王冬梅. 苹果矮砧M9-T337配套栽培模式及效果评价. 特种经济动植物, 2021, 24(7): 58-61.
XU X Y, WANG D M. Supporting cultivation mode and effect evaluation of apple dwarf rootstock M9-T337. Special Economic Animals and Plants, 2021, 24(7): 58-61. (in Chinese)
[6]
葛红娟, 万述伟, 黄粤, 马荣群, 王桂莲, 王珍青, 孙吉禄, 沙广利, 张世忠. 介质对圆叶海棠扦插硬枝新梢生长与新生根发育的影响. 山东农业科学, 2018, 50(4): 29-32.
GE H J, WAN S W, HUANG Y, MA R Q, WANG G L, WANG Z Q, SUN J L, SHA G L, ZHANG S Z. Effects of mediums on new shoot growth and root development for hardwood cuttings from Malus prunifolia. Shandong Agricultural Sciences, 2018, 50(4): 29-32. (in Chinese)
[7]
王甲威, 张道辉, 魏海蓉, 刘庆忠. 苹果矮化砧木的硬枝扦插繁殖试验. 落叶果树, 2012, 44(4): 4-6.
WANG J W, ZHANG D H, WEI H R, LIU Q Z. Experiment on hardwood cutting propagation of apple dwarf rootstock. Deciduous Fruits, 2012, 44(4): 4-6. (in Chinese)
[8]
张志晓, 王燕, 江文, 田雪, 孙蕊, 骆建霞. 不同砧木绿宝苹果幼树对盐碱土的适应性. 江苏农业科学, 2017, 45(23): 153-156.
ZHANG Z X, WANG Y, JIANG W, TIAN X, SUN R, LUO J X. Adaptability of different rootstocks Bramley apple saplings to saline-alkali soi. Jiangsu Agricultural Sciences, 2017, 45(23): 153-156. (in Chinese)
[9]
徐世彦, 康小亚. 日本圆叶海棠的组培快繁技术. 落叶果树, 2008, 40(2): 56-57.
XU S Y, KANG X Y. Tissue culture and rapid propagation of Japanese Malus prunifolia var. ringo. Deciduous Fruits, 2008, 40(2): 56-57. (in Chinese)
[10]
李志霞. 圆叶海棠组培快繁技术研究. 西北园艺(综合), 2020(1): 56-58.
LI Z X. Study on tissue culture and rapid propagation technology of Malus prunifolia var. ringo. Northwest Horticulture, 2020(1): 56-58. (in Chinese)
[11]
韩国粉, 李红伟. 介绍几种苹果砧木. 西北园艺(果树), 2018(8): 30-33.
HAN G F, LI H W. Several kinds of apple rootstocks are introduced. Northwest Horticulture, 2018(8): 30-33. (in Chinese)
[12]
吴婉莉. 苹果无融合矮化自根砧青砧1号、青砧2号在咸阳地区引种试验. 陕西农业科学, 2021, 67(7): 57-61, 84.
WU W L. Introduction experiment of apple amixis dwarf self-rooted rootstock ‘qingzhan 1’ and ‘qingzhan 2’ in Xianyang. Shaanxi Journal of Agricultural Sciences, 2021, 67(7): 57-61, 84. (in Chinese)
[13]
户永丽, 张丙孝, 陈先锋. 高纺锤形苹果自根砧M9-T337在河南商丘的嫁接表现. 北方果树, 2023(3): 9-12.
HU Y L, ZHANG B X, CHEN X F. Grafting performance of high-spindle apple self-rootstock M9-T337 in Shangqiu, Henan Province. Northern Fruits, 2023(3): 9-12. (in Chinese)
[14]
郝婕, 李学营, 王金鑫, 黄晶淼, 冯建忠, 索相敏. 不同矮化砧木对 ‘天红2号’ 苹果树体生长及产量品质的影响. 河北农业大学学报, 2022, 45(02): 8-13.
HAO J, LI X Y, WANG J X, HUANG J M, FENG J Z, SUO X M. Effects of different dwarfing rootstocks on growth characteristic and fruit yield and quality of ‘Tianhong 2’ apple trees. Journal of Hebei Agricultural University, 2022, 45(02): 8-13. (in Chinese)
[15]
ZHOU Y M, TIAN X, YAO J J, ZHANG Z F, WANG Y, ZHANG X Z, LI W, WU T, HAN Z H, XU X F, QIU C P. Morphological and photosynthetic responses differ among eight apple scion-rootstock combinations. Scientia Horticulturae, 2020, 261: 108981.
[16]
GJAMOVSKI V, KIPRIJANOVSKI M. Influence of nine dwarfing apple rootstocks on vigour and productivity of apple cultivar ‘Granny Smith’. Scientia Horticulturae, 2011, 129(4): 742-746.
[17]
梁海忠, 范崇辉, 王琰, 曲俊贤, 韩明玉. 苹果高纺锤形树体枝量、果实产量与品质的研究. 西北农林科技大学学报(自然科学版), 2010, 38(7): 123-128.
LIANG H Z, FAN C H, WANG Y, QU J X, HAN M Y. Research on shoot number, fruit yield and quality of high-spindle apple trees. Journal of Northwest A & F University (Natural Science Edition), 2010, 38(7): 123-128. (in Chinese)
[18]
赵德英, 闫帅, 徐锴, 周江涛, 程存刚, 张少瑜, 张海棠, 侯桂学. 美国苹果生产和栽培技术概述. 北方果树, 2020(5): 1-5.
ZHAO D Y, YAN S, XU K, ZHOU J T, CHENG C G, ZHANG S Y, ZHANG H T, HOU G X. Overview of apple industry and culture techniques in the USA. Northern Fruits, 2020(5): 1-5. (in Chinese)
[19]
马小龙, 马豆豆, 史继东, 韩明玉, 杨伟伟, 张东. 双主干并棒树形对矮化自根砧苹果幼树生长和结果的影响. 园艺学报, 2020, 47(3): 541-550.

doi: 10.16420/j.issn.0513-353x.2019-0193
MA X L, MA D D, SHI J D, HAN M Y, YANG W W, ZHANG D. Effect of Bi-axis bibaum tree shape on growth and bearing of young apple tree on dwarf rootstock. Acta Horticulturae Sinica, 2020, 47(3): 541-550. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2019-0193
[20]
MUSACCHI S, BUCCI D, ANCARANI V, GAGLIARDI F, SERRA S. Investigation of ‘Modi®’ habitus in relation to training systems. IX International Symposium on Integrating Canopy, Rootstock and Environmental Physiology in Orchard Systems, 2012: 121-128.
[21]
意大利苹果颠覆性树形: 多中心干形. 落叶果树, 2019, 51(3): 48.
Italian apple subversive tree shape-Guyot shape. Deciduous Fruits, 2019, 51(3): 48. (in Chinese)
[22]
PALMER J W, JACKSON J E. Seasonal light interception and canopy development in hedgerow and bed system apple orchards. The Journal of Applied Ecology, 1977, 14(2): 539.
[23]
TUSTIN D S, BREEN K C, VAN HOOIJDONK B M. Light utilisation, leaf canopy properties and fruiting responses of narrow-row, planar cordon apple orchard planting systems-A study of the productivity of apple. Scientia Horticulturae, 2022, 294: 110778.
[24]
曾艳鑫, 宗凯, 宫昊楠, 王小非, 杜远鹏, 高文胜. 多中心干树形对苹果光能利用的影响. 北方园艺, 2024(6): 33-43.
ZENG Y X, ZONG K, GONG H N, WANG X F, DU Y P, GAO W S. Effects of multi-center stem canopy on light energy utilization of apple. Northern Horticulture, 2024(6): 33-43. (in Chinese)
[25]
宫昊楠, 宗凯, 杜远鹏, 高文胜, 王小非. 多中心干树形对苹果碳氮营养分配和利用的影响. 中国果树, 2023(1): 22-26, 37.
GONG H N, ZONG K, DU Y P, GAO W S, WANG X F. Effects of multi-center stem canopy shape on carbon and nitrogen nutrient allocation and utilization in apple. China Fruits, 2023(1): 22-26, 37. (in Chinese)
[26]
赵德英. 如何利用枝条垂直生长优势培养苹果平面树形. 果树实用技术与信息, 2023(7): 31-32.
ZHAO D Y. How to make use of vertical growth advantages of branches to cultivate flat tree shape of apple. GUOSHU SHIYONG JISHU YU XINXI, 2023(7): 31-32. (in Chinese)
[27]
袁仲玉, 樊良栋, 韦德闯, 张琦卓, 赵政阳, 钱加乐. 不同砧穗组合对‘瑞雪’苹果树体生长、产量和品质的影响. 北方园艺, 2021(20): 53-58.
YUAN Z Y, FAN L D, WEI D C, ZHANG Q Z, ZHAO Z Y, QIAN J L. Effects of dwarfing rootstocks on tree growth, yield and fruit quality of ‘Ruixue’ apple. Northern Horticulture, 2021(20): 53-58. (in Chinese)
[28]
刘利恒. 苹果矮化砧木预选方法研究进展. 现代农业科技, 2021(10): 49-50, 54.
LIU L H. Research progress on preselection methods of apple dwarfing rootstock. Modern Agricultural Science and Technology, 2021(10): 49-50, 54. (in Chinese)
[29]
宫昊楠. 多中心干树形对苹果树体生长与碳氮营养分配的影响[D]. 泰安: 山东农业大学, 2023.
GONG H N. Effects of multi center stem shape on growth and distribution of carbon and nitrogen nutrients in apple trees[D]. Taian: Shandong Agricultural University, 2023. (in Chinese)
[30]
白岗栓, 杜社妮, 王建平. 陕北山地苹果树形改造研究. 中国农业大学学报, 2021, 26(12): 54-66.
BAI G S, DU S N, WANG J P. Study on the canopy transformation of mountain apple in northern Shaanxi. Journal of China Agricultural University, 2021, 26(12): 54-66. (in Chinese)
[31]
王贵平, 王金政, 师忠轩, 薛晓敏, 路超, 聂佩显. M系苹果矮化砧木与砧穗组合研究. 江西农业学报, 2011, 23(9): 44-46.
WANG G P, WANG J Z, SHI Z X, XUE X M, LU C, NIE P X. Study on dwarfing rootstocks from M-line apple and their combinations with scion. Acta Agriculturae Jiangxi, 2011, 23(9): 44-46. (in Chinese)
[32]
LEZZER P, TUSTIN S, CORELLI-GRAPPADELLI L, SERRA S, ANTHONY B, DORIGONI A, MUSACCHI S. Influences of propagation method, rootstock, number of axes, and cultivation site on ‘fuji’ scions grown as single or multi-leader trees in the nursery. Agronomy, 2022, 12(1): 224.
[33]
袁继存, 程存刚, 赵德英, 刘尚涛, 厉恩茂. 不同中间砧木对寒富苹果生长、产量和果实品质的影响. 应用生态学报, 2021, 32(9): 3145-3151.

doi: 10.13287/j.1001-9332.202109.009
YUAN J C, CHENG C G, ZHAO D Y, LIU S T, LI E M. Effects of different interstocks on the growth, yield, and fruit quality of Hanfu apple. Chinese Journal of Applied Ecology, 2021, 32(9): 3145-3151. (in Chinese)
[34]
刘国胜, 马玉芳, 段玉春. 几种砧木对苹果新梢及叶特性的影响. 果树学报, 2002, 19(6): 373-376.
LIU G S, MA Y F, DUAN Y C. Effect of apple rootstock on the shoot and leaf characters of apple trees. Journal of Fruit Science, 2002, 19(6): 373-376. (in Chinese)
[35]
DORIGONI A L, LEZZER P, DALLABETTA N, SERRA S, MUSACCHI S. Bi-axis: An alternative to slender spindle for apple orchards. InIX International Symposium on Integrating Canopy, Rootstock and Environmental Physiology in Orchard Systems 903, 2008: 581-588.
[36]
史继东. 苹果古优特(Guyot)栽培法(下). 西北园艺(果树), 2024(2): 1-4.
SHI J D. Apple Guyot Cultivation (Part 2). Northwest Horticulture, 2024(2): 1-4. (in Chinese)
[37]
赵德英. 如何培养苹果双干平面树形. 果树实用技术与信息, 2023(9): 29.
ZHAO D Y. How to cultivate apple double stem plane tree. GUOSHU SHIYONG JISHU YU XINXI, 2023(9): 29. (in Chinese)
[38]
王晓宏. 山地乔砧苹果矮化密植建园模式和管理技术. 果树实用技术与信息, 2021(2): 4-5.
WANG X H. The model and management technique of mountain apple vigorous rootstock dwarfing dense planting garden. GUOSHU SHIYONG JISHU YU XINXI, 2021(2): 4-5. (in Chinese)
[39]
ZHANG X Y, YANG W W, TAHIR M M, CHEN X L, SAUDREAU M, ZHANG D, COSTES E. Contributions of leaf distribution and leaf functions to photosynthesis and water-use efficiency from leaf to canopy in apple: A comparison of interstocks and cultivars. Frontiers in Plant Science, 2023, 14: 1117051.
[40]
郑鑫, 李首正, 王燕, 张志晓, 江文, 曾丽蓉, 骆建霞. 绿宝苹果与不同砧木嫁接亲和性初探. 河南农业科学, 2016, 45(11): 96-99.
ZHENG X, LI S Z, WANG Y, ZHANG Z X, JIANG W, ZENG L R, LUO J X. Preliminary exploration on graft compatibility between bramley apple and different rootstocks. Journal of Henan Agricultural Sciences, 2016, 45(11): 96-99. (in Chinese)
[41]
赵德英, 袁继存, 徐锴, 程存刚, 闫帅. 不同砧穗组合对嘎啦苹果树体形态及养分分配的影响. 上海农业学报, 2017, 33(1): 99-106.
ZHAO D Y, YUAN J C, XU K, CHENG C G, YAN S. Effects of different stock-scion combinations on morphology and distribution characteristics of mineral nutrient in Gala apple tree. Acta Agriculturae Shanghai, 2017, 33(1): 99-106. (in Chinese)
[42]
张秀芝, 郭江云, 王永章, 刘成连, 原永兵. 不同砧木对富士苹果矿质元素含量和品质指标的影响. 植物营养与肥料学报, 2014, 20(2): 414-420.
ZHANG X Z, GUO J Y, WANG Y Z, LIU C L, YUAN Y B. Effects of different rootstocks on mineral contents and fruit qualities of Fuji apple. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 414-420. (in Chinese)
[43]
张绍铃. 矮化中间砧红星苹果树各器官营养元素含量变化研究. 华北农学报, 1990, 5(2): 71-77.

doi: 10.3321/j.issn:1000-7091.1990.02.013
ZHANG S L. A study on the changes of the nutrient element contents in the dwarfing interstem red starking apple tree. Acta Agriculturae Boreali—Sinica, 1990, 5(2): 71-77. (in Chinese)
[44]
VALVERDI N A, CHENG L L, KALCSITS L. Apple scion and rootstock contribute to nutrient uptake and partitioning under different belowground environments. Agronomy, 2019, 9(8): 415.
[45]
何平, 李林光, 王海波, 常源升. 5个矮化中间砧对‘沂水红’富士苹果生长、结果和叶片矿质元素积累的影响. 中国农业科学, 2018, 51(4): 750-757. doi: 10.3864/j.issn.0578-1752.2018.04.014.
HE P, LI L G, WANG H B, CHANG Y S. Effects of five dwarfing interstocks on shoot growth, fruiting and accumulation of mineral elements in leaves of Yishui red Fuji apple. Scientia Agricultura Sinica, 2018, 51(4): 750-757. doi: 10.3864/j.issn.0578-1752.2018.04.014. (in Chinese)
[46]
李智锋, 孙鲁龙, 刘振中, 张康宁, 王乐幸, 樊良栋, 高华. 不同矮化中间砧对‘长富2号’果实品质和矿质元素的影响. 陇东学院学报, 2023, 34(5): 93-99.
LI Z F, SUN L L, LIU Z Z, ZHANG K N, WANG L X, FAN L D, GAO H. Effects of different dwarfing rootstocks on fruit quality and mineral elements of Changfu 2. Journal of Longdong University, 2023, 34(05):93-99. (in Chinese)
[47]
解贝贝, 戴洪义, 沙广利, 王芝云, 张玉刚, 祝军. 4种砧木对富士苹果果实大小和品质的影响. 山东农业科学, 2013, 45(11): 33-36.
XIE B B, DAI H Y, SHA G L, WANG Z Y, ZHANG Y G, ZHU J. Effects of four kinds of rootstocks on fruit size and quality of fuji apple. Shandong Agricultural Sciences, 2013, 45(11): 33-36. (in Chinese)
[48]
李春燕, 杨廷桢, 高敬东, 王骞, 蔡华成, 杜学梅, 王淑婷. 砧木对苹果接穗品种果实品质影响的研究进展. 山西农业科学, 2020, 48(1): 114-116.
LI C Y, YANG T Z, GAO J D, WANG Q, CAI H C, DU X M, WANG S T. Research progress on effect of rootstock on fruit quality of scion variety in apple. Journal of Shanxi Agricultural Sciences, 2020, 48(1): 114-116. (in Chinese)
[49]
袁继存, 赵德英, 徐锴, 闫帅, 程存刚. 不同砧穗组合对长富2号苹果果实品质的影响初报. 中国南方果树, 2018, 47(6): 107-109, 114.
YUAN J C, ZHAO D Y, XU K, YAN S, CHENG C G. Effect of different rootstock and scion combinations on fruit quality of Changfu 2 apple. South China Fruits, 2018, 47(6): 107-109, 114. (in Chinese)
[50]
王来平, 薛晓敏, 董放, 聂佩显, 王金政. 不同砧穗组合对富士苹果生产与果实品质的影响. 果树学报, 2022, 39(9): 1607-1618.
WANG L P, XUE X M, DONG F, NIE P X, WANG J Z. Effects of different rootstock-scion combinations on tree development, photosynthetic production, yield and quality of Fuji apple. Journal of Fruit Science, 2022, 39(9): 1607-1618. (in Chinese)
[1] ZHANG Yi, LIU Ying, CHENG CunGang, LI YanQing, LI Zhuang. Effects of Combined Application Proportion of Cow Manure and Chemical Fertilizer on Soil Organic Carbon Pool and Enzyme Activity in Apple Orchard [J]. Scientia Agricultura Sinica, 2024, 57(20): 4107-4118.
[2] ZHOU HanMi, MA LinShuang, SUN QiLi, CHEN JiaGeng, LI JiChen, SU YuMin, CHEN Cheng, WU Qi. Optimization of Integrated Water and Nitrogen Regulation System in Apple Based on Multi-Objective Comprehensive Evaluation [J]. Scientia Agricultura Sinica, 2024, 57(18): 3654-3670.
[3] GAO ChengAn, WAN HongJian, YE QingJing, CHENG Yuan, LIU ChenXu, HE Yong. Identification and Comparative Analysis of Processed/Fresh-Eating Chili Pepper Fruits at Different Maturation Stages by Metabolomics [J]. Scientia Agricultura Sinica, 2024, 57(12): 2424-2438.
[4] ZHANG HaiQing, ZHANG HengTao, GAO QiMing, YAO JiaLong, WANG YaRong, LIU ZhenZhen, MENG XiangPeng, ZHOU Zhe, YAN ZhenLi. Transcriptome Analysis for Screening Key Genes Related to Regulating Branching Ability in Apple [J]. Scientia Agricultura Sinica, 2024, 57(10): 1995-2009.
[5] SUN Zheng, LAI ZhongXiao, ZHAO XiaoMin, JIANG ZhiLi, CHEN GuangYou, MA ZhiQing. Application Evaluation of the Whole-Process Biological Management Scheme for Apple Pests in the Weibei Dry Highland [J]. Scientia Agricultura Sinica, 2023, 56(6): 1102-1112.
[6] ZHENG WenYan, CHANG YuanSheng, HE Ping, HE XiaoWen, WANG Sen, GAO WenSheng, LI LinGuang, WANG HaiBo. Development and Validation of KASP Markers Based on a Whole- Genome Resequencing Approach in a Hybrid Population of Luli × Red No. 1 [J]. Scientia Agricultura Sinica, 2023, 56(5): 935-950.
[7] WANG ZiDun, WANG Hui, FENG YuChen, ZHANG XueLiang, YAN LeiYu, LIU XiaoJie, ZHAO ZhengYang. Effects of Different Color Fruit Bags on Quality of Ruixue Apple Fruits [J]. Scientia Agricultura Sinica, 2023, 56(4): 729-740.
[8] LI XingXing, ZHOU GuoFu, LUO GuanYu, CHEN SiRong, ZHANG JinLong, CHEN GuoHua, ZHANG XiaoMing. Selection Preference and Adaptability of Bactrocera dorsalis to Different Varieties of Malus pumila [J]. Scientia Agricultura Sinica, 2023, 56(17): 3358-3371.
[9] LI MinJi, LI XingLiang, ZHANG Qiang, ZHOU Jia, YANG YuZhang, ZHOU BeiBei, ZHANG JunKe, WEI QinPing. Effects of Different Distances from Original Planting Row on Tree Growth and Fruit Yield of Young Trees of G935 Dwarf Rootstock Miyato Fuji Under Continuous Cropping [J]. Scientia Agricultura Sinica, 2023, 56(17): 3412-3419.
[10] FU Shan, LIANG Ye, XU JiuLiang, RUAN YunZe, LUO Jian, LI TingYu. Comprehensive Evaluation of Fruit Texture and Taste Quality of Pineapple Based on Multiple Methods [J]. Scientia Agricultura Sinica, 2023, 56(15): 3006-3019.
[11] SHI Ying, CHEN SiYi, ZENG YiKe, TANG Jun, LI DiPing, LI GuoJing, HUANG XianBiao, LI ChunLong, XIE ZongZhou, LIU JiHong. Mechanism Underlying the Improved Quality of Bagged Fruits in Ponkan [J]. Scientia Agricultura Sinica, 2023, 56(14): 2776-2786.
[12] LI JiaQi, XUN Mi, SHI JunYuan, SONG JianFei, SHI YuJia, ZHANG WeiWei, YANG HongQiang. Response Characteristics of Rhizosphere and Root Endosphere Bacteria and Rhizosphere Enzyme Activities to Soil Compaction Stress in Young Apple Tree [J]. Scientia Agricultura Sinica, 2023, 56(13): 2563-2573.
[13] CHEN ZhiMin, CHEN XiaoLin, TAN ZhenHua, CHEN ZhaoXing, SHEN DanDan, MA YanYan, ZHENG YongQiang, YI ShiLai, LÜ Qiang, XIE RangJin. Comprehensive Fruit Quality Evaluation and Suitable Areas Selection of Newhall Navel Orange in China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1949-1965.
[14] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[15] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!