Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (16): 3110-3223.doi: 10.3864/j.issn.0578-1752.2023.16.006

• PLANT PROTECTION • Previous Articles     Next Articles

Mechanism of StLAC2 and StLAC6 Differentially Affecting Setosphaeria turcica Based on Non-Targeted Metabonomics Analysis

ZOU JinPeng1,2(), YUE HaoFeng2, LI HaiXiao1,2, LIU Zheng3, LIU Ning1,2(), CAO ZhiYan1,2(), DONG JinGao1,2   

  1. 1 College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei
    2 Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, Hebei
    3 Academy of Educational Sciences of Baoding, Baoding 071066, Hebei
  • Received:2023-05-11 Accepted:2023-06-06 Online:2023-08-16 Published:2023-08-18

Abstract:

【Background】As a polyphenol oxidase, laccase plays an important role in fungal growth, development and secondary metabolism. A plurality of laccase genes are encoded in the genome of Setosphaeria turcica, among which StLAC2 and StLAC6 have differential effects on the growth, development, and pathogenicity of S. turcica.【Objective】To clarify the differential mechanisms of StLAC2 and StLAC6 on S. turcica and explore new targets for developing new fungicides and disease control strategies by mining differential metabolites.【Method】StLAC6 was connected with pHZ100-GFP plasmid by seamless cloning, and the complementary expression vector of StLAC6 was constructed. Using PEG-mediated protoplast transformation method, the constructed vector was transferred into the protoplast of StLAC6 gene knockout mutant, and the positive transformants were identified by PCR, RT-qPCR and GFP fluorescence verification, and the StLAC6 revertant strain was successfully constructed. The effects of knocking out and reverting StLAC2 and StLAC6 on melanin synthesis and oxidation resistance in and out of S. turcica were analyzed. Taking wild-type (WT), StLAC2 and StLAC6 gene knockout mutants as experimental materials, the differential metabolites were analyzed by non-targeted metabonomics, and the mechanism of the differential action of StLAC2 and StLAC6 was analyzed by KEGG.【Result】StLAC2 and StLAC6 have differential effects on melanin synthesis in mycelium and secreted into culture medium, and StLAC2 also affects antioxidant activity of S. turcica. Metabolomic analysis found that compared with the WT strain of S. turcica, there were more differential metabolites in the mycelium or secreted into the culture medium after knocking out StLAC2, and KEGG analysis showed that the differential metabolites were mainly lipids, especially phospholipids. Meanwhile, the absence of the StLAC2 caused down-regulation of various flavonoids and polyphenols. The contents of intermediates of the 1, 8-dihydroxynaphthalene melanin biosynthesis pathway, scytalone and vermelone, significantly increased in ΔStLAC2 and decreased in ΔStLAC6.【Conclusion】The StLAC2 participates in melanin polymerization, the StLAC6 negatively regulates melanin biosynthesis in S. turcica, and the differential effects of StLAC2 and StLAC6 affect lipid metabolism and intermediates of the melanin biosynthesis pathway in S. turcica. The absence of StLAC2 caused down-regulation of various flavonoids and polyphenols, leading to decreased antioxidant activity.

Key words: Setosphaeria turcica, laccase, metabonomics, differential metabolite, melanin

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
StLAC6-F CCACCGCGGTGGCGGCCGCTCTAGAATGGTCTTTTCCATCTCAAG
StLAC6-R CGCCCTTGCTCACCCTATCGAATTCCCGACGCAGTCCAGAGTCGC
GFP-F GCGGCCGCCATGAGTAAAGGAGAAGAACT
GFP-R GAATTCTGTATAGTTCATCCATGCCA
RT-StLAC6-F TTACCGACGCAGTCCAGAGTCGC
RT-StLAC6-R ATGGTCTTTTCCATCTCAAGGGTAG
β-tubulin-F GCGTTTCCCTGGTCAGCTTA
β-tubulin-R GGGAAGGGCACCATGTTG

Fig. 1

PCR, RT-qPCR, and fluorescence verification of the transformant"

Fig. 2

Colony morphology of different strains"

Fig. 3

The melanin content of WT, ΔStLAC2 and ΔStLAC6"

Fig. 4

Determination of antioxidant activity of WT and mutant strains"

Fig. 5

Sample principal component analysis"

Fig. 6

Volcanic diagram of differential metabolites of each strain"

Fig. 7

Venn diagram of metabolite group"

Fig. 8

KEGG pathway enrichment of the differential metabolites"

Fig. 9

KEGG compound classification of differential metabolites affected by StLAC2 and StLAC6"

Table 2

Main lipid differential metabolites"

分类
Classification
化合物
Compound
ΔStLAC2 vs WT ΔStLAC6 vs WT
FC P value FC P value
二酰甘油
Diacylglycerol
CDP-DG (16:0/18:1(11Z)) 0.9652 1.59E-05 1.6565 6.37E-05
CDP-DG (16:0/18:2(9Z,12Z)) 0.9751 3.32E-05 1.8412 8.23E-05
CDP-DG (18:1(11Z)/18:1(11Z)) 0.8606 4.48E-03 1.9461 4.49E-02
鞘磷脂
Sphingolipid
C17 sphingosine-1-phosphocholine 1.5874 1.64E-05 1.0236 8.45E-02
Sphingosine 1-phosphate 1.5328 3.53E-06 0.9084 9.29E-06
磷脂酰胆碱
Phosphatidyl cholines
(PC and LysoPC)
PC (17:1/0:0) 2.6534 0.000814 1.0452 4.66E-03
PC (18:0/0:0) 1.9638 3.42E-03 1.0620 0.000339
PC (16:1(9Z)/20:4(8Z,11Z,14Z,17Z)) 1.1043 5.33E-06 0.2862 8.27E-05
PC (14:0/22:5(7Z,10Z,13Z,16Z,19Z)) 0.9632 1.52E-05 0.3511 2.23E-05
磷脂酰甘油
Phosphatidyl glycerol (PG)
PG (16:0/0:0)[U] 2.4214 4.96E-05 1.1026 1.45E-03
PG (18:0/0:0)[U] 1.5639 3.61E-02 1.0628 0.000153
PG (18:1(9Z)/0:0) 1.8132 0.000566 1.1901 1.45E-03

Fig. 10

Box diagram of flavonoids metabolites"

Fig. 11

Box diagram of intermediate metabolites of melanin synthesis"

[1]
WILLIAMSON P R. Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: Identification as a laccase. Journal of Bacteriology, 1994, 176(3): 656-664.

doi: 10.1128/jb.176.3.656-664.1994
[2]
ABERA W, SHIMELIS H, DERERA J, WORKU M, LAING M. Northern leaf blight response of elite maize inbred lines adapted to the mid-altitude sub-humid tropics. Cereal Research Communications, 2016, 44(1): 141-152.

doi: 10.1556/0806.43.2015.037
[3]
DONG J G, FAN Y S, GUI X M, AN X L, MA J F, DONG Z P. Geographic distribution and genetic analysis of physiological races of Setosphaeria turcica in northern China. American Journal of Agricultural and Biological Sciences, 2008, 3(1): 389-398.

doi: 10.3844/ajabssp.2008.389.398
[4]
TANG L, GAO Z G, YAO Y, LIU X. Identification and genetic diversity of formae speciales of Setosphaeria turcica in China. Plant Disease, 2015, 99(4): 482-487.

doi: 10.1094/PDIS-06-14-0570-RE
[5]
NAVARRO B L, HANEKAMP H, KOOPMANN B, VON TIEDEMANN A. Diversity of expression types of Ht genes conferring resistance in maize to Exserohilum turcicum. Frontiers in Plant Science, 2020, 11: 607850.

doi: 10.3389/fpls.2020.607850
[6]
NIEUWOUDT A, HUMAN M P, CRAVEN M, CRAMPTON B G. Genetic differentiation in populations of Exserohilum turcicum from maize and sorghum in South Africa. Plant Pathology, 2018, 67(7): 1483-1491.

doi: 10.1111/ppa.2018.67.issue-7
[7]
杨耿斌. 黑龙江省北部玉米大斑病菌小种鉴定与育种材料抗大斑病特性分析[D]. 北京: 中国农业科学院, 2014.
YANG G B. Resistance analysis of breeding lines to northern corn leaf blight and identification of Exserohilum turcicum races in northern of Heilongjiang Province[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese)
[8]
PEREZ-CUESTA U, APARICIO-FERNANDEZ L, GURUCEAGA X, MARTIN-SOUTO L, ABAD-DIAZ-DE-CERIO A, ANTORAN A, BULDAIN I, HERNANDO F L, RAMIREZ-GARCIA A, REMENTERIA A. Melanin and pyomelanin in Aspergillus fumigatus: From its genetics to host interaction. International Microbiology, 2020, 23(1): 55-63.

doi: 10.1007/s10123-019-00078-0
[9]
LIN S Y, OKUDA S, IKEDA K, OKUNO T, TAKANO Y. LAC2 encoding a secreted laccase is involved in appressorial melanization and conidial pigmentation in Colletotrichum orbiculare. Molecular Plant-Microbe Interactions, 2012, 25(12): 1552-1561.

doi: 10.1094/MPMI-05-12-0131-R
[10]
Z Y, KANG X, XIANG Z H, HE N J. Laccase gene Sh-lac is involved in the growth and melanin biosynthesis of Scleromitrula shiraiana. Phytopathology, 2017, 107(3): 353-361.

doi: 10.1094/PHYTO-04-16-0180-R
[11]
EISENMAN H C, CASADEVALL A. Synthesis and assembly of fungal melanin. Applied Microbiology and Biotechnology, 2012, 93(3): 931-940.

doi: 10.1007/s00253-011-3777-2 pmid: 22173481
[12]
JIN W S, LI J H, FENG H C, YOU S, ZHANG L Y, NORVIENYEKU J, HU K H, SUN S J, WANG Z H. Importance of a laccase gene (Lcc1) in the development of Ganoderma tsugae. International Journal of Molecular Sciences, 2018, 19(2): 471.

doi: 10.3390/ijms19020471
[13]
SBAGHI M, JEANDET P, BESSIS R, LEROUX P. Degradation of stilbene-type phytoalexins in relation to the pathogenicity of Botrytis cinerea to grapevines. Plant Pathology, 1996, 45(1): 139-144.

doi: 10.1046/j.1365-3059.1996.d01-101.x
[14]
RUBERT J, RIGHETTI L, STRANSKA-ZACHARIASOVA M, DZUMAN Z, CHRPOVA J, DALL’ASTA C, HAJSLOVA J. Untargeted metabolomics based on ultra-high-performance liquid chromatography-high-resolution mass spectrometry merged with chemometrics: A new predictable tool for an early detection of mycotoxins. Food Chemistry, 2017, 224(1): 423-431.

doi: 10.1016/j.foodchem.2016.11.132
[15]
TALBOT N J, EBBOLE D J, HAMER J E. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. The Plant Cell, 1993, 5(11): 1575-1590.
[16]
刘宁. 玉米大斑病菌漆酶基因家族鉴定及关键基因的功能解析[D]. 保定: 河北农业大学, 2019.
LIU N. Identification and functional analysis of laccase genes family in Setosphaeria turcica[D]. Baoding: Hebei Agricultural University, 2019. (in Chinese)
[17]
XIE M D, CHEN W Q, LAI X C, DAI H B, SUN H, ZHOU X Y, CHEN T B. Metabolic responses and their correlations with phytochelatins in Amaranthus hypochondriacus under cadmium stress. Environmental Pollution, 2019, 252: 1791-1800.

doi: 10.1016/j.envpol.2019.06.103
[18]
CAI X N, DAVIS E J, BALLIF J, LIANG M X, BUSHMAN E, HAROLDSEN V, TORABINEJAD J, WU Y J. Mutant identification and characterization of the laccase gene family in Arabidopsis. Journal of Experimental Botany, 2006, 57(11): 2563-2569.

doi: 10.1093/jxb/erl022
[19]
CANERO D C, RONCERO M I. Functional analyses of laccase genes from Fusarium oxysporum. Phytopathology, 2008, 98(5): 509-518.

doi: 10.1094/PHYTO-98-5-0509
[20]
LIU N, CAO Z Y, CAO K K, MA S X, GONG X D, JIA H, DAI D Q, DONG J G. Identification of laccase-like multicopper oxidases from the pathogenic fungus Setosphaeria turcica and their expression pattern during growth and infection. European Journal of Plant Pathology, 2019, 153(4): 1149-1163.

doi: 10.1007/s10658-018-01632-8
[21]
吴楠, 李青为, 曹志艳, 张娇, 郝志敏, 董金皋. 玉米大斑病菌的胞外黑色素种类及影响其产量的因素. 中国农业科学, 2013, 46(5): 927-933. doi: 10.3864/j.issn.0578-1752.2013.05.007.

doi: 10.3864/j.issn.0578-1752.2013.05.007
WU N, LI Q W, CAO Z Y, ZHANG J, HAO Z M, DONG J G. Determination and characterization of extracellular melanin from Setosphaeria turcica and influencing factors of its production. Scientia Agricultura Sinica, 2013, 46(5): 927-933. doi: 10.3864/j.issn.0578-1752.2013.05.007. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2013.05.007
[22]
曹志艳, 贾慧, 朱显明, 董金皋. DHN黑色素与玉米大斑病菌附着胞膨压形成的关系. 中国农业科学, 2011, 44(5): 925-932. doi: 10.3864/j.issn.0578-1752.2011.05.008.

doi: 10.3864/j.issn.0578-1752.2011.05.008
CAO Z Y, JIA H, ZHU X M, DONG J G. Relationship between DHN melanin and formation of appressorium turgor pressure of Setosphaeria turcica. Scientia Agricultura Sinica, 2011, 44(5): 925-932. doi: 10.3864/j.issn.0578-1752.2011.05.008. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2011.05.008
[23]
THOMPSON J E, FAHNESTOCK S, FARRALL L, LIAO D I, VALENT B, JORDAN D B. The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea. The Journal of Biological Chemistry, 2000, 275(45): 34867-34872.

doi: 10.1074/jbc.M006659200
[24]
DULAL N, ROGERS A M, PROKO R, BIEGER B D, LIYANAGE R, KRISHNAMURTHI V R, WANG Y, EGAN M J. Turgor-dependent and coronin-mediated F-actin dynamics drive septin disc-to-ring remodeling in the blast fungus Magnaporthe oryzae. Journal of Cell Science, 2021, 134(5): jcs251298.
[25]
贾慧, 郭丽婕, 曹志艳, 郑云梅. 玉米大斑病菌黑色素合成调控基因StMR1回复载体的构建. 江苏农业科学, 2015, 43(8): 24-27.
JIA H, GUO L J, CAO Z Y, ZHENG Y M. Construction of StMR1 restorer vector of melanin synthesis regulatory gene of Setosphaeria turcica. Jiangsu Agricultural Sciences, 2015, 43(8): 24-27. (in Chinese)
[26]
SHEA J M, DEL POETA M. Lipid signaling in pathogenic fungi. Current Opinion in Microbiology, 2006, 9(4): 352-358.

pmid: 16798065
[27]
赵珊, 仲伶俐, 秦琳, 黄世群, 李曦, 郑幸果, 雷欣宇, 雷绍荣, 郭灵安, 冯俊彦. 不同干燥方式对甘薯叶功能成分及抗氧化活性的影响. 中国农业科学, 2021, 54(21): 4650-4663. doi: 10.3864/j.issn.0578-1752.2021.21.014.

doi: 10.3864/j.issn.0578-1752.2021.21.014
ZHAO S, ZHONG L L, QIN L, HUANG S Q, LI X, ZHENG X G, LEI X Y, LEI S R, GUO L A, FENG J Y. Effects of different drying methods on functional components and antioxidant activity in sweet potato leaves. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663. doi: 10.3864/j.issn.0578-1752.2021.21.014. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.21.014
[28]
MA S X, CAO K K, LIU N, MENG C, CAO Z Y, DAI D Q, JIA H, ZANG J P, LI Z Y, HAO Z M, GU S Q, DONG J G. The StLAC2 gene is required for cell wall integrity, DHN-melanin synthesis and the pathogenicity of Setosphaeria turcica. Fungal Biology, 2017, 121(6/7): 589-601.

doi: 10.1016/j.funbio.2017.04.003
[29]
SCHARWEY M, TATSUTA T, LANGER T. Mitochondrial lipid transport at a glance. Journal of Cell Science, 2013, 126(23): 5317-5323.
[30]
HIDALGO-VICO S, CASAS J, GARCÍA C, LILLO M P, ALONSO-MONGE R, ROMÁN E, PLA J. Overexpression of the white opaque switching master regulator Wor1 alters lipid metabolism and mitochondrial function in Candida albicans. Journal of Fungi, 2022, 8(10): 1028.

doi: 10.3390/jof8101028
[31]
高欣. 磷脂类系列化合物对UGT酶抑制及其机制的研究[D]. 北京: 中国人民解放军军事医学科学院, 2015.
GAO X. The study of phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs) components inhibition to UDP- glucuronosyltransferases (UGTs) isoforms[D]. Beijing: Academy of Military Medical Sciences, 2015. (in Chinese)
[32]
CHEN Y, LI B, CEN K, LU Y, ZHANG S, WANG C. Diverse effect of phosphatidylcholine biosynthetic genes on phospholipid homeostasis, cell autophagy and fungal developments in Metarhizium robertsii. Environmental Microbiology, 2018, 20(1): 293-304.

doi: 10.1111/emi.2018.20.issue-1
[1] HAO YuBin,LI HaiXiao,ZHANG Sai,LIU Ning,LIU YingZi,CAO ZhiYan,DONG JinGao. Identification and Functional Analysis of StSCD Family in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2022, 55(16): 3134-3143.
[2] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[3] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[4] SUN YongBo,WANG Ya,SA RENNA,ZHANG HongFu. Effects of Chronic Ammonia Stress on Serum Metabolites of Broilers Based on GC-MS [J]. Scientia Agricultura Sinica, 2020, 53(8): 1688-1698.
[5] ZHAO WenHua,WANG GuiYing,XUN Wen,YU YuanRui,GE ChangRong,LIAO GuoZhou. Selection of Water-Soluble Compounds by Characteristic Flavor in Chahua Chicken Muscles Based on Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(8): 1627-1642.
[6] WANG ZiYu,ZHANG YinYin,LI YueYuan,LI Ling,YOU LingLing,LI XiaoYan,JIN Zhao,YAN ShiJie. Relationship Between LAC Gene Expression and Core Browning of Yali Pear [J]. Scientia Agricultura Sinica, 2020, 53(24): 5073-5080.
[7] LONG Feng,WANG Qing,ZHU Hang,WANG JianXia,SHEN Shen,LIU Ning,HAO ZhiMin,DONG JinGao. Identification and Expression Pattern Analysis of Septin Gene Family of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2020, 53(24): 5017-5026.
[8] LI Jie,JIA XuChao,ZHANG RuiFen,LIU Lei,CHI JianWei,HUANG Fei,DONG LiHong,ZHANG MingWei. Isolation, Structural Characterization and Antioxidant Activity of Black Sesame Melanin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2477-2492.
[9] LI ShuaiLan,SHEN Xiao,ZOU ZhengRong. Effect of Petroleum Ether Extract from Solidago canadensis on Liver of Pomacea canaliculata [J]. Scientia Agricultura Sinica, 2019, 52(15): 2624-2635.
[10] ZHAO BingLing, LI YaNan, CHEN TianZhi, LIU Ying, CHANG LuCheng, FAN RuiWen, XUE LinLi, WANG HaiDong, DONG ChangSheng. GPNMB Affects Melanin Synthesis in the Melanocytes via MITF to Regulate the Downstream Pigmental Genes [J]. Scientia Agricultura Sinica, 2017, 50(7): 1334-1342.
[11] FAN ZiLing, XU ChuChu, SHU Shi, XIAO XinHuan, WANG Gang, BAI YunLong, ZHANG Jiang, ZHAO Chang, XIA Cheng. Plasma Metabolic Profiling of Postpartum Dairy Cows with Inactive Ovaries Based on GC/MS Technique [J]. Scientia Agricultura Sinica, 2017, 50(15): 3042-3051.
[12] LI Ya-juan, WANG Dong-sheng, ZHANG Shi-dong, YAN Zuo-ting, YANG Zhi-qiang, DU Yu-lan, DONG Shu-wei, HE Bao-xiang. Plasma Metabolic Profiling Analysis of Dairy Cows with Laminitis Based on GC-MS [J]. Scientia Agricultura Sinica, 2016, 49(21): 4255-4264.
[13] NIE Rui-qiang, YANG Yu-jing, XIE Jian-shan, FAN Rui-wen, XU Dong-mei, YU Xiu-ju, DUAN Zhi-cheng, DONG Chang-sheng. Influences of Pax6 PAI Subdomain on MITF, TYR, TYRP1 and TYRP2 in Melanocytes [J]. Scientia Agricultura Sinica, 2016, 49(17): 3433-3442.
[14] NIE Rui-qiang, YANG Yu-jing, XIE Jian-shan, FAN Rui-wen, GAO Wen-jun, DONG Chang-sheng. The Influences of Over-Expressing Pax610Neu on MITF and TYR in Melanocytes [J]. Scientia Agricultura Sinica, 2016, 49(11): 2214-2221.
[15] ZHENG Nen-zhu, XIN Qing-wu, ZHU Zhi-ming, MIAO Zhong-wei, Li Li, Liu Feng-hui, HUANG Qin-lou. cDNA Cloning and Expression of MITF Gene and Its Effect on Melanin Deposition in Silky Fowl [J]. Scientia Agricultura Sinica, 2015, 48(18): 3711-3718.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!