Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (7): 1350-1362.doi: 10.3864/j.issn.0578-1752.2024.07.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Response of Cultivated-Layer Water-Holding and Drought Resistance Performance and Productivity to Erosion Degree in Purple Soil Sloping Farmland

NI ShuHui(), SHI DongMei(), PAN LiDong, YE Qing, WU JunHao   

  1. College of Resources and Environment, Southwest University, Chongqing 400715
  • Received:2023-05-23 Accepted:2023-09-22 Online:2024-04-01 Published:2024-04-09
  • Contact: SHI DongMei

Abstract:

【Objective】 The aim of this study was to analyze the water-holding performance and yield response characteristics of purple soil slope farmland under erosion conditions, so as to provide the theoretical basis for regulating seasonal drought and moisture use efficiency of sloping farmland, and improve yield of sloping farmland under erosion conditions.【Method】 Soil erosion simulation method was adopted, with the non-eroded plot as the control group (S-0), and based on erosion degrees of 5 cm (S-5), 10 cm (S-10), 15 cm (S-15), 20 cm (S-20) and 3 management measures (no fertilizer (CK), fertilizer (F), biochar + fertilizer (BF)). The variation of water retention and drought resistance of slope soil layer and the variation of corn yield and response to erosion degree were compared and analyzed.【Result】(1) The core soil layer soil water-holding performance was stronger. At the same level of soil moisture suction, the reduction amplitude of soil volume moisture content in the tillage layer (13.9%-18.2%) was greater than that in the core soil layer (9.8%); with interannual changes, the volumetric moisture content of the cultivated soil increased maximum at S-5 (14.2%), while the core soil layer showed the maximum at S-15 (33.2%). (2) The total storage capacity, active storage capacity, maximum effective storage capacity, and effective moisture content of sloping farmland soil showed a parabolic variation pattern with increasing erosion. With interannual changes, the maximum increase in maximum effective storage capacity (44.7%) at various erosion levels was at a relatively strong erosion level (S-15), while the maximum increase in effective moisture content, maximum water storage capacity, and maximum single acceptance rainfall was at weak erosion levels (S-0 to S-10). (3) The corn yield of slope cultivated land decreased with the increase of erosion, which was positively correlated with the maximum effective storage capacity and field water capacity; with interannual changes, the yield reduction effect of sloping farmland decreased under different degrees of erosion, and the yield change showed a certain lag with the deterioration of erosion, that is, there was no significant reduction in yield in the year of erosion. (4) The maximum effective storage capacity of sloping farmland soil under erosion conditions was significantly affected by the clay content, capillary porosity, and organic matter content (P<0.01); The field water capacity was significantly correlated with soil depth, organic matter, silt, and porosity (P<0.01).【Conclusion】The strength of the soil water-holding and drought performance was mainly affected by the merits of the soil structure. The soil structure of slope farmland under erosion conditions could be improved by combining deep tillage and biochar+fertilizer management measures, which could effectively regulate the water-holding and drought resistance of erosive cultivated-layer of sloping farmland and improve crop yield of sloping farmland under erosion conditions.

Key words: purple soil, sloping farmland, water-holding characteristic, drought resistance, soil erosion, soil reservoir capacity, corn

Table 1

Remaining thickness of original soil layer under different erosion degree"

编号
No.
模拟侵蚀深度
Simulated erosion depth (cm)
模拟侵蚀年限Simulated erosion age (a) 耕作层厚度
Top layer thickness (cm)
原始土层Primary soil layer (cm)
0-20 20-25 25-30 30-35 35-40
S-0 0 0 20 20 - - - -
S-5 5 20 20 15.55 4.45 - - -
S-10 10 40 20 12.09 3.46 4.45 - -
S-15 15 60 20 9.40 2.69 3.46 4.45 -
S-20 20 80 20 5.50 3.90 2.69 3.46 4.45

Fig. 1

Variation characteristics of soil moisture characteristic curve in the erosive cultivated-layer (2018-2019) The negative abscissa (2018) only distinguishes between interannual changes and does not represent the magnitude of soil water suction in the figure"

Fig. 2

Inter-annual features of soil reservoirs in the erosive cultivated-layer of sloping farmland Different uppercase letters indicate significant differences in the same erosion degree of different vertical layers (P<0.05); Different small letters indicate significant differences in erosion degree of the same vertical layer (P<0.05)"

Fig. 3

Variation characteristics of moisture storage capacity of erosive cultivated-layer Different uppercase letters indicate significant differences in the degree of erosion in 2018 (P<0.05); Different small letters indicate significant differences in the degree of erosion in 2019 (P<0.05)"

Fig. 4

Variation characteristics of maize yield and field water capacity in erosive topsoil Different uppercase and lowercase letters indicate significant differences in corn yield or field water capacity between different erosion degrees in 2018 and 2019, respectively (P<0.05)"

Fig. 5

Correlation between factors affecting the storage performance of erosive cultivated-layer MEC: Maximum effective capacity; FC: Field capacity; h: Soil layer; NMC: Natural moisture content; SCP: Soil capillary porosity; SOM: Soil organic matter"

Fig. 6

Characteristics of soil water-holding capacity in sloping farmland under different measures Different uppercase letters indicate significant differences in field management measures for the same soil layer depth (P<0.05); Different small letters indicate significant differences in soil depth under the same field management measure (P<0.05)"

[1]
LI B R, ZHANG X Y, MORITA S, SEKIYA N, ARAKI H, GU H J, HAN J, LU Y, LIU X W. Are crop deep roots always beneficial for combating drought: a review of root structure and function, regulation and phenotyping. Agricultural Water Management, 2022, 271: 107781.

doi: 10.1016/j.agwat.2022.107781
[2]
王健. 陕北黄土高原土壤水库动态特征的评价与模拟[D]. 杨凌: 西北农林科技大学, 2008.
WANG J. Evaluation and simulation of soil reservoir dynamic property in Loess Plateau in northern Shaanxi Province[D]. Yangling: Northwest A & F University, 2008. (in Chinese)
[3]
宋鸽, 史东梅, 曾小英, 蒋光毅, 江娜, 叶青. 紫色土坡耕地耕层质量障碍特征. 中国农业科学, 2020, 53(7): 1397-1410. doi:10.3864/j.issn.0578-1752.2020.07.009.
SONG G, SHI D M, ZENG X Y, JIANG G Y, JIANG N, YE Q. Quality barrier characteristics of cultivated layer for sloping farmland in purple hilly region. Scientia Agricultura Sinica, 2020, 53(7): 1397-1410. doi: 10.3864/j.issn.0578-1752.2020.07.009. (in Chinese)
[4]
韩晓增, 邹文秀, 陆欣春, 段景海. 旱作土壤耕层及其肥力培育途径. 土壤与作物, 2015, 4(4): 145-150.
HAN X Z, ZOU W X, LU X C, DUAN J H. The soil cultivated layer in dryland and technical patterns in cultivating soil fertility. Soil and Crop, 2015, 4(4): 145-150. (in Chinese)
[5]
陈恩凤. 耕翻深度与耕层的层次发育. 中国农业科学, 1961(12): 1-6.
CHEN E F. Ploughing depth and hierarchical development of plough layer. Scientia Agricultura Sinica, 1961(12): 1-6. (in Chinese)
[6]
史东梅. 基于RUSLE模型的紫色丘陵区坡耕地水土保持研究. 水土保持学报, 2010, 24(3): 39-44, 251.
SHI D M. Soil and water conservation on cultivated slope land in purple hilly area based on RUSLE model. Journal of Soil and Water Conservation, 2010, 24(3): 39-44, 251. (in Chinese)
[7]
张鹏飞, 贾小旭, 赵春雷, 邵明安. 初始容重对土壤水分特征曲线的影响. 干旱区研究, 2022, 39(4): 1174-1180.
ZHANG P F, JIA X X, ZHAO C L, SHAO M A. Effects of initial bulk density on soil water characteristic curve. Arid Zone Research, 2022, 39(4): 1174-1180. (in Chinese)
[8]
李卓, 吴普特, 冯浩, 赵西宁, 黄俊, 庄文化. 容重对土壤水分蓄持能力影响模拟试验研究. 土壤学报, 2010, 47(4): 611-620.
LI Z, WU P T, FENG H, ZHAO X N, HUANG J, ZHUANG W H. Simulated experiment on effects of soil bulk density on soil water holding capacity. Acta Pedologica Sinica, 2010, 47(4): 611-620. (in Chinese)
[9]
洪成, 尹殿胜, 陈俊英, 柴红阳. 容重对黏壤土土壤水分特征曲线的影响. 节水灌溉, 2018(10): 5-8.
HONG C, YIN D S, CHEN J Y, CHAI H Y. Impact of bulk density on soil water characteristic curve of clay loam. Water Saving Irrigation, 2018(10): 5-8. (in Chinese)
[10]
FRANK T, ZIMMERMANN I, HORN R. Lime application in marshlands of Northern Germany-Influence of liming on the physicochemical and hydraulic properties of clayey soils. Soil and Tillage Research, 2020, 204: 104730.

doi: 10.1016/j.still.2020.104730
[11]
白伟, 孙占祥, 郑家明, 郝卫平, 刘勤, 刘洋, 冯良山, 蔡倩. 虚实并存耕层提高春玉米产量和水分利用效率. 农业工程学报, 2014, 30(21): 81-90.
BAI W, SUN Z X, ZHENG J M, HAO W P, LIU Q, LIU Y, FENG L S, CAI Q. Furrow loose and ridge compaction plough layer improves spring maize yield and water use efficiency. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(21): 81-90. (in Chinese)
[12]
WANG S L, WANG H, HAFEEZ M B, ZHANG Q, YU Q, WANG R, WANG X L, LI J. No-tillage and subsoiling increased maize yields and soil water storage under varied rainfall distribution: A 9-year site-specific study in a semi-arid environment. Field Crops Research, 2020, 255: 107867.

doi: 10.1016/j.fcr.2020.107867
[13]
赵亚丽, 刘卫玲, 程思贤, 周亚男, 周金龙, 王秀玲, 张谋彪, 王群, 李潮海. 深松(耕)方式对砂姜黑土耕层特性、作物产量和水分利用效率的影响. 中国农业科学, 2018, 51(13): 2489-2503. doi: 10.3864/j.issn.0578-1752.2018.13.005.
ZHAO Y L, LIU W L, CHENG S X, ZHOU Y N, ZHOU J L, WANG X L, ZHANG M B, WANG Q, LI C H. Effects of pattern of deep tillage on topsoil features, yield and water use efficiency in lime concretion black soil. Scientia Agricultura Sinica, 2018, 51(13): 2489-2503. doi: 10.3864/j.issn.0578-1752.2018.13.005. (in Chinese)
[14]
李敖, 张元红, 温鹏飞, 王瑞, 董朝阳, 宁芳, 李军. 耕作、施氮和密度及其互作对旱地春玉米土壤水分及产量形成的影响. 中国农业科学, 2020, 53(10): 1959-1970. doi: 10.3864/j.issn.0578-1752.2020.10.004.
LI A, ZHANG Y H, WEN P F, WANG R, DONG Z Y, NING F, LI J. Effects of tillage, nitrogen application, planting density and their interaction on soil moisture and yield formation of spring maize in dryland. Scientia Agricultura Sinica, 2020, 53(10): 1959-1970. doi: 10.3864/j.issn.0578-1752.2020.10.004. (in Chinese)
[15]
李荣, 侯贤清. 深松条件下不同地表覆盖对马铃薯产量及水分利用效率的影响. 农业工程学报, 2015, 31(20): 115-123.
LI R, HOU X Q. Effects of different ground surface mulch under subsoiling on potato yield and water use efficiency. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(20): 115-123. (in Chinese)
[16]
翟振, 李玉义, 郭建军, 王婧, 董国豪, 郭智慧, 逄焕成. 耕深对土壤物理性质及小麦-玉米产量的影响. 农业工程学报, 2017, 33(11): 115-123.
ZHAI Z, LI Y Y, GUO J J, WANG J, DONG G H, GUO Z H, PANG H C. Effect of tillage depth on soil physical properties and yield of winter wheat-summer maize. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 115-123. (in Chinese)
[17]
黄尚书, 钟义军, 何绍浪, 黄欠如, 成艳红, 张昆, 吴艳, 叶川. 耕作深度对红壤坡耕地季节性干旱期土壤水分变化特征的影响. 土壤通报, 2023, 54(1): 39-45.
HUANG S S, ZHONG Y J, HE S L, HUANG Q R, CHENG Y H, ZHANG K, WU Y, YE C. Effects of tillage depth on characteristics of soil moisture in red soil sloping farmland under seasonal drought. Chinese Journal of Soil Science, 2023, 54(1): 39-45. (in Chinese)

doi: 10.1046/j.1365-2389.2003.00502.x
[18]
王红兰, 唐翔宇, 张维, 刘琛, 关卓, 校亮. 施用生物炭对紫色土坡耕地耕层土壤水力学性质的影响. 农业工程学报, 2015, 31(4): 107-112.
WANG H L, TANG X Y, ZHANG W, LIU C, GUAN Z, XIAO L. Effects of biochar application on tilth soil hydraulic properties of slope cropland of purple soil. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(4): 107-112. (in Chinese)
[19]
VERHEIJEN F G A, ZHURAVEL A, SILVA F C, AMARO A, BEN-HUR M, KEIZER J J. The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma, 2019, 347: 194-202.

doi: 10.1016/j.geoderma.2019.03.044
[20]
魏永霞, 王鹤, 吴昱, 刘慧. 生物炭对不同坡度坡耕地土壤水动力学参数的影响. 农业机械学报, 2019, 50(3): 231-240.
WEI Y X, WANG H, WU Y, LIU H. Effect of biochar on soil hydrodynamic parameters under different slopes. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3): 231-240. (in Chinese)
[21]
ZHAO L, JIN J, DU S H, LIU G C. A quantification of the effects of erosion on the productivity of purple soils. Journal of Mountain Science, 2012, 9(1): 96-104.

doi: 10.1007/s11629-012-2241-9
[22]
IZAURRALDE R C, SOLBERG E D, NYBORG M, MALHI S S. Immediate effects of topsoil removal on crop productivity loss and its restoration with commercial fertilizers. Soil and Tillage Research, 1998, 46(3/4): 251-259.

doi: 10.1016/S0167-1987(98)00091-9
[23]
王志强, 刘宝元, 王旭艳, 高晓飞, 刘刚. 东北黑土区土壤侵蚀对土地生产力影响试验研究. 中国科学(D辑: 地球科学), 2009, 39(10): 1397-1412.
WANG Z Q, LIU B Y, WANG X Y, GAO X F, LIU G. Experimental study on the influence of soil erosion on land productivity in black soil area of Northeast China. Science in China (Series D (Earth Sciences)), 2009, 39(10): 1397-1412. (in Chinese)
[24]
中国科学院南京土壤研究所. 土壤理化分析. 上海: 上海科学技术出版社, 1978.
Institute of Soil Science, Chinese Academy of Sciences. Physical and Chemical Analysis of Soil. Shanghai: Shanghai Scientific & Technical Publishers, 1978. (in Chinese)
[25]
徐富安. 大量程土壤水吸力测量的吸力平板仪: CN2496013Y. 2002-06-19[2023-07-30].
XU A F. Large range, soil water sucking force measuring and plane type instrument: CN2496013Y. 2002-06-19[2023-07-30]. (in Chinese).
[26]
娄义宝. 侵蚀条件下紫色土坡耕地耕层质量变化特征及适宜性研究[D]. 重庆: 西南大学, 2019.
LOU Y B. Study on quality characteristics and suitability of plough layer of purple slope farmland under erosion condition[D]. Chongqing: Southwest University, 2019. (in Chinese)
[27]
郑荣伟, 冯绍元, 郑艳侠. 北京通州区典型农田土壤水分特征曲线测定及影响因素分析. 灌溉排水学报, 2011, 30(3): 77-81.
ZHENG R W, FENG S Y, ZHENG Y X. Discussion on the soil water characteristic curve of the agricultural soil in the new city of Tongzhou. Journal of Irrigation and Drainage, 2011, 30(3): 77-81. (in Chinese)
[28]
梁艳玲, 何丙辉, 王涛. 新修坡改梯对土壤水库库容的影响. 水土保持学报, 2016, 30(3): 324-330.
LIANG Y L, HE B H, WANG T. Influence of newly built terraces on soil reservoir storage capacity. Journal of Soil and Water Conservation, 2016, 30(3): 324-330. (in Chinese)
[29]
叶青. 紫色土坡耕地耕层土壤属性的侵蚀响应及恢复效应[D]. 重庆: 西南大学, 2021.
YE Q. Erosion response and restoration effect of cultivated-layer soil attributes of purple soil slope farmland[D]. Chongqing: Southwest University, 2021. (in Chinese)
[30]
郭凤台. 土壤水库及其调控. 华北水利水电学院学报, 1996, 17(2): 72-80.
GUO F T. Soil reservoir and its regulation. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 1996, 17(2): 72-80. (in Chinese)
[31]
OGUNTUNDE P G, ABIODUN B J, AJAYI A E, VAN DE GIESEN N. Effects of charcoal production on soil physical properties in Ghana. Journal of Plant Nutrition and Soil Science, 2008, 171(4): 591-596.

doi: 10.1002/jpln.v171:4
[32]
翟俊瑞, 谢云, 李晶, 刘刚, 张珊珊, 王静, 蔺宏宏. 不同侵蚀强度黑土的土壤水分特征曲线模拟. 水土保持学报, 2016, 30(4): 116-122.
ZHAI J R, XIE Y, LI J, LIU G, ZHANG S S, WANG J, LIN H H. Simulation of soil-water characteristic curve for black soils with different erosion intensity. Journal of Soil and Water Conservation, 2016, 30(4): 116-122. (in Chinese)
[33]
中国科学院成都分院土壤研究室. 中国紫色土-上篇. 北京: 科学出版社, 1991.
Department of Soil Research, Chengdu Branch,Chinese Academy of Sciences. Purple Soils in China. Beijing: Science Press, 1991. (in Chinese)
[34]
王忠江, 刘卓, 曹振, 李一博, 张正, 王丽丽. 生物炭对东北黑土持水特性的影响. 农业工程学报, 2019, 35(17): 147-153.
WANG Z J, LIU Z, CAO Z, LI Y B, ZHANG Z, WANG L L. Effect of biochars on water retention properties of northeast region black soils. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 147-153. (in Chinese)
[35]
刘文虎, 魏振康, 肖理, 殷庆元, 王章文, 黄成敏. 土壤紧实度对裸土侵蚀强度影响的实验与分析. 中国水土保持科学, 2019, 17(6): 52-60.
LIU W H, WEI Z K, XIAO L, YIN Q Y, WANG Z W, HUANG C M. Experimental analysis of soil compactness on erosion intensity of bare soil. Science of Soil and Water Conservation, 2019, 17(6): 52-60. (in Chinese)
[36]
史东梅, 蒋光毅, 蒋平, 娄义宝, 丁文斌, 金慧芳. 土壤侵蚀因素对紫色丘陵区坡耕地耕层质量影响. 农业工程学报, 2017, 33(13): 270-279.
SHI D M, JIANG G Y, JIANG P, LOU Y B, DING W B, JIN H F. Effects of soil erosion factors on cultivated-layer quality of slope farmland in purple hilly area. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(13): 270-279. (in Chinese)
[37]
LEBRUN M, MIARD F, NANDILLON R, HATTAB-HAMBLI N, SCIPPA G S, BOURGERIE S, MORABITO D. Eco-restoration of a mine technosol according to biochar particle size and dose application: study of soil physico-chemical properties and phytostabilization capacities of Salix viminalis. Journal of Soils and Sediments, 2018, 18(6): 2188-2202.

doi: 10.1007/s11368-017-1763-8
[38]
LIU Z L, DUGAN B, MASIELLO C A, GONNERMANN H M. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE, 2017, 12(6): e0179079.
[39]
EDEH I G, MAŠEK O. The role of biochar particle size and hydrophobicity in improving soil hydraulic properties. European Journal of Soil Science, 2022, 73(1): EGU21-4117.
[40]
高会议, 郭胜利, 刘文兆, 李淼, 张健. 不同施肥土壤水分特征曲线空间变异. 农业机械学报, 2014, 45(6): 161-165, 176.
GAO H Y, GUO S L, LIU W Z, LI M, ZHANG J. Spatial variability of soil water retention curve under fertilization practices in arid-highland of the Loess Plateau. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 161-165, 176. (in Chinese)
[41]
郑利芳, 吴三鼎, 党廷辉. 不同施肥模式对春玉米产量、水分利用效率及硝态氮残留的影响. 水土保持学报, 2019, 33(4): 221-227.
ZHENG L F, WU S D, DANG T H. Effects of different fertilization modes on spring maize yield, water use efficiency and nitrate nitrogen residue. Journal of Soil and Water Conservation, 2019, 33(4): 221-227. (in Chinese)
[42]
UDOM B E, OMOVBUDE S, ABAM P O. Topsoil removal and cultivation effects on structural and hydraulic properties. CATENA, 2018, 165: 100-105.

doi: 10.1016/j.catena.2018.01.029
[43]
王艳阳, 魏永霞, 孙继鹏, 张雨凤. 不同生物炭施加量的土壤水分入渗及其分布特性. 农业工程学报, 2016, 32(8): 113-119.
WANG Y Y, WEI Y X, SUN J P, ZHANG Y F. Soil water infiltration and distribution characteristics under different biochar addition amount. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(8): 113-119. (in Chinese)
[44]
张慧芋, 孙敏, 高志强, 梁艳妃, 杨清山, 张娟, 李念念. 旱地麦田深松蓄水和覆盖播种土壤水分变化与小麦籽粒蛋白质含量的关系. 中国农业科学, 2018, 51(15): 40-51. doi: 10.3864/j.issn.0578-1752.2018.15.003.
ZHANG H Y, SUN M, GAO Z Q, LIANG Y F, YANG Q S, ZHANG J, LI N N. Relationship between soil water variation, wheat yield and grain protein and its components contents under sub-soiling during the fallow period plus mulched-sowing. Scientia Agricultura Sinica, 2018, 51(15): 40-51. doi: 10.3864/j.issn.0578-1752.2018.15.003 (in Chinese)
[1] MA HongXia, SUN Hua, GUO Ning, LIU ShuSen, ZHANG HaiJian, SHI Jie. Early Molecular Diagnosis of Southern Corn Rust Based on Conventional PCR and Nested PCR Assays [J]. Scientia Agricultura Sinica, 2023, 56(9): 1686-1695.
[2] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[3] LUO ZhengYing, HU Xin, LIU XinLong, WU CaiWen, WU ZhuanDi, LIU JiaYong, ZENG QianChun. Application of Trehalose Enhances Drought Resistance in Sugarcane Seedlings and Promotes Plant Growth [J]. Scientia Agricultura Sinica, 2023, 56(21): 4208-4218.
[4] DANG WenWen, LIU Bing, CHU Dong, LU YanHui. Dominated Species and the Predation Assessment of Natural Enemies on Thrips in Cotton Fields in Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(17): 3347-3357.
[5] LI Yan, TAO KeYu, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, HE GuanHua, SONG YanChun, SHI YunSu, LI Yu, WANG TianYu, ZOU HuaWen, LIU XuYang. Function of Maize ZCN7 in Regulating Drought Resistance at Flowering Stage [J]. Scientia Agricultura Sinica, 2023, 56(16): 3051-3061.
[6] XUE YaPeng, DING YiBing, WANG YuZhuo, WANG XiaoDan, CAO XiaoNing, SANTRA Dipak K, CHEN Ling, QIAO ZhiJun, WANG RuiYun. Construction of DNA Molecular Identity Card of Core Germplasm of Broomcorn Millet in China Based on Fluorescence SSR [J]. Scientia Agricultura Sinica, 2023, 56(12): 2249-2261.
[7] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[8] FENG XuanJun, PAN LiTeng, XIONG Hao, WANG QingJun, LI JingWei, ZHANG XueMei, HU ErLiang, LIN HaiJian, ZHENG HongJian, LU YanLi. Investigation on Important Target Traits and Breeding Potential of 120 Sweet and Waxy Maize Inbred Lines in the South of China [J]. Scientia Agricultura Sinica, 2022, 55(5): 856-873.
[9] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[10] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[11] SONG Ge,SHI DongMei,JIANG GuangYi,JIANG Na,YE Qing,ZHANG JianLe. Effects of Different Fertilization Methods on Restoration of Eroded and Degraded Cultivated-Layer in Slope Farmland [J]. Scientia Agricultura Sinica, 2021, 54(8): 1702-1714.
[12] WANG JinFei,YANG GuoYi,FAN ZiHan,LIU Qi,ZHANG PengCheng,REN YouShe,YANG ChunHe,ZHANG ChunXiang. Effects of Whole Plant Corn Silage Ratio in Diet on Growth Performance, Rumen Fermentation, Nutrient Digestibility and Serological Parameters of Dorper×Hu Crossbred Female Lambs [J]. Scientia Agricultura Sinica, 2021, 54(4): 831-844.
[13] REN JiaXin,LIU Jing,CHEN XuanJing,ZHANG YueQiang,ZHANG Yong,WANG Jie,SHI XiaoJun. Variation of Available Phosphorus in Purple Soil and Its Effects on Crop Yield of Rice-Wheat Rotation Under Long-Term Fertilizations [J]. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610.
[14] WANG JunJie,TIAN Xiang,QIN HuiBin,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,QIAO ZhiJun. Regulation Effects of Photoperiod on Growth and Leaf Endogenous Hormones in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2021, 54(2): 286-295.
[15] LI Na,SUN ZhanXiang,ZHANG YanQing,LIU EnKe,LI FengMing,LI ChunQian,LI Fei. Contribution of Carbon Sources in Sedimentary Soils Combining Carbon and Nitrogen Isotope with Stable Isotope Model [J]. Scientia Agricultura Sinica, 2021, 54(14): 3057-3064.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!