Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (17): 3347-3357.doi: 10.3864/j.issn.0578-1752.2023.17.009

• PLANT PROTECTION • Previous Articles     Next Articles

Dominated Species and the Predation Assessment of Natural Enemies on Thrips in Cotton Fields in Xinjiang

DANG WenWen1,2(), LIU Bing2, CHU Dong1, LU YanHui2,3()   

  1. 1College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong
    2State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
    3Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, Xinjiang
  • Received:2023-05-23 Accepted:2023-06-20 Online:2023-09-01 Published:2023-09-08
  • Contact: LU YanHui

Abstract:

【Objective】 Thrips is a major pest in cotton fields in Xinjiang. The objective of this study is to select their dominated predatory natural enemies and assess the predation efficiency on thrips, and to provide scientific insights for the development of biocontrol on thrips in cotton fields. 【Method】 The population dynamics of thrips and their predators in Korla cotton field in southern Xinjiang were systematically investigated by visual inspection within five-point sampling in different blocks from 2021 to 2022. Predators’ samples were collected at different growth stages of cotton fields and detected by molecular detection, DNA of the whole natural enemy was extracted first, and PCR amplification was performed using the specific primers of Thrips tabaci and Frankliniella intonsa to obtain the species information of thrips in various natural enemies, then the quantitative food web of predator-thrips was constructed, and the differences of related food web structure at different growth stages of cotton were compared. In addition, basing on the predator-prey functional response model, the predation function of different predators (including adults and juveniles) on thrips was evaluated in laboratory by setting the prey density of 50, 100, 200, 300 and 400 individuals per Petri dish. 【Result】 The population density of thrips was low at the seedling and budding stages but was high at the flowering-bolling stage. Annual population peaks occurred from late-July to early-August. Basing on the population dynamic, Hippodamia variegata is the dominated predator for thrips that occurred across the seeding, budding, flowering and bolling stages, while Campylomma diversicornis is the dominated predator in the late of flowering-bolling stage. The results of molecular detection showed the detection rate of thrips was high in the gut of H. variegata in the whole growth period of cotton, the detection rate of thrips in the gut of Coccinella undecimpunctata at seeding-budding stage was high, and the detection rate in the gut of C. diversicornis was also high at flowering-bolling stage. The predatory function response in laboratory indicated the predation ability of different predators on F. intonsa increased with the increase of prey density, the predation function of the larvae of H. variegata, the nymph of C. diversicornis and the larvae of Chrysoperla carnea was consisted with the Holling-Ⅱ model, whereas the predation function of the adult, such as H. variegata and C. diversicornis was suited with the Holling-Ⅲ model; when high prey density of 400 individuals thrips per Petri dish was provided, the consumed number of thrips for the adult of H. variegata was significantly higher than the larvae, the adult and nymph of C. diversicornis and the larvae of C. carnea.【Conclusion】H. variegata is the dominant predator for thrips across the whole cotton growth period, and C. diversicornis is the dominant predator in the late of flowering-bolling stage. This study provides a scientific insight for the utilization of predators to suppress thrips in cotton fields in Xinjiang.

Key words: cotton, thrips, Hippodamia variegata, Campylomma diversicornis, predation, food web

Fig. 1

Population dynamics of thrips and predators in cotton fields"

Table 1

The sampling size of predators for DNA analysis and the detected rate of two thrips species in different cotton growth periods"

年度Year 取样时期
Sampling period
不同捕食性天敌样本数量
Sampling numbers of different predators
检出蓟马的天敌数量
Number of predators that detected thrips
蓟马检出率
Detection rate of
thrips (%)
蓟马物种组成比例
Species composition proportion of thrips (%)
捕食者
Predator
样本量
Sampling numbers
烟蓟马
T. tabaci
花蓟马
F. intonsa
烟蓟马
T. tabaci
花蓟马
F. intonsa
烟蓟马
T. tabaci
花蓟马
F. intonsa
2021 苗期-蕾期 Seeding-
budding stage
多异瓢虫 H. variegata 146 110 135 75.3 92.5 44.9 55.1
十一星瓢虫 C. undecimpunctata 2 1 2 50.0 100.0 33.3 66.7
普通草蛉 C. carnea
异须微刺盲蝽 C. diversicornis
黑食蚜盲蝽 D. punctulatus
花铃期 Flowering-
bolling
stage
多异瓢虫 H. variegata 446 183 373 41.0 83.6 32.9 67.1
十一星瓢虫 C. undecimpunctata
普通草蛉 C. carnea
异须微刺盲蝽 C. diversicornis 119 0 57 0 47.9 0 100.0
黑食蚜盲蝽 D. punctulatus
2022 苗期-蕾期 Seeding-
budding stage
多异瓢虫 H. variegata 360 115 97 31.9 26.9 54.2 45.8
十一星瓢虫 C. undecimpunctata 27 21 18 77.8 66.7 53.8 46.2
普通草蛉 C. carnea
异须微刺盲蝽 C. diversicornis
黑食蚜盲蝽 D. punctulatus
花铃期 Flowering-
bolling
stage
多异瓢虫 H. variegata 232 54 120 23.3 51.7 31.0 69.0
十一星瓢虫 C. undecimpunctata
普通草蛉 C. carnea 1 0 1 0 100.0 0 100.0
异须微刺盲蝽 C. diversicornis 51 12 28 23.5 54.9 30.0 70.0
黑食蚜盲蝽 D. punctulatus 2 0 2 0 100.0 0 100.0

Fig. 2

The quantitative food webs of predator and thrips in cotton field Panel A-B, C-D indicated the predator-thrips food web in seeding-budding stage and flowering-bolling stage in 2021 and 2022, respectively. The upper trophic level represents the predators, whereas the down trophic level indicates these two species of thrips. The width of a given gray triangle that linked the upper and down levels reflects the difference of relative proportion of thrips that detected from each predator, whereas the bar length at upper trophic level is related to the sample size of different predators"

Fig. 3

Daily average number of F. intonsa adult consumed by different predators Solid line and dashed line represent the result based on Holling-Ⅱ or Holling-Ⅲ model, respectively, these models are corresponded to larvae (or nymph) and adult of predator. Data point indicated the consumed numbers per day (mean ± SE) under each prey density"

[1]
陈学新, 任顺祥, 张帆, 彩万志, 曾凡荣, 张文庆. 天敌昆虫控害机制与可持续利用. 应用昆虫学报, 2013, 50(1): 9-18.
CHEN X X, REN S X, ZHANG F, CAI W Z, ZENG F R, ZHANG W Q. Mechanism of pest management by natural enemies and their sustainable utilization. Chinese Journal of Applied Entomology, 2013, 50(1): 9-18. (in Chinese)
[2]
杨磊, 邵雨, 李芬, 陈德鑫, 李方友, 吴少英. 缨翅目害虫蓟马生物防治的研究进展. 中国生物防治学报, 2021, 37(3): 393-405.

doi: 10.16409/j.cnki.2095-039x.2021.03.033
YANG L, SHAO Y, LI F, CHEN D X, LI F Y, WU S Y. Advances on biological control of thrips pests. Chinese Journal of Biological Control, 2021, 37(3): 393-405. (in Chinese)

doi: 10.16409/j.cnki.2095-039x.2021.03.033
[3]
黄建华, 陈洪凡, 王丽思, 柳岸峰, 沈华喜. 应用捕食螨防治蓟马研究进展. 中国生物防治学报, 2016, 32(1): 119-124.

doi: 10.16409/j.cnki.2095-039x.2016.01.018
HUANG J H, CHEN H F, WANG L S, LIU A F, SHEN H X. Advances in controlling thrips using predatory mites. Chinese Journal of Biological Control, 2016, 32(1): 119-124. (in Chinese)

doi: 10.16409/j.cnki.2095-039x.2016.01.018
[4]
VAN DRIESCHE R G, LYON S, STANEK E J, XU B, NUNN C. Evaluation of efficacy of Neoseiulus cucumeris for control of western flower thrips in spring bedding crops. Biological Control, 2006, 36(2): 203-215.

doi: 10.1016/j.biocontrol.2005.08.011
[5]
黄建华, 罗任华, 秦文婧, 黄水金, 秦厚国, 付志飞. 巴氏钝绥螨对芦笋上烟蓟马捕食效能研究. 中国生物防治学报, 2012, 28(3): 353-359.
HUANG J H, LUO R H, QIN W J, HUANG S J, QIN H G, FU Z F. Predation efficacy of Amblyseius barkeri on asparagus thrips, Thrips tacaci. Chinese Journal of Biological Control, 2012, 28(3): 353-359. (in Chinese)
[6]
刘梅, 张昌容, 尚小丽, 郭军, 曾广, 石乐娟. 南方小花蝽对非洲菊上西花蓟马控制效果评价. 中国生物防治学报, 2020, 36(6): 992-996.

doi: 10.16409/j.cnki.2095-039x.2020.06.027
LIU M, ZHANG C R, SHANG X L, GUO J, ZENG G, SHI L J. Control of Frankliniella occidentalis on Gerbera jamesonii by Orius similis. Chinese Journal of Biological Control, 2020, 36(6): 992-996. (in Chinese)

doi: 10.16409/j.cnki.2095-039x.2020.06.027
[7]
HERRICK N J, CLOYD R A, CONNER M A, MOTOLAI G. Insidious flower bug, Orius insidiosus (Say) (Hemiptera: Anthocoridae), predation on western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), on Transvaal daisy, Gerbera jamesonii, cut flowers and chrysanthemum, Tanacetum×grandiflorum, plants under laboratory and greenhouse conditions. Biological Control, 2021, 163: 104739.

doi: 10.1016/j.biocontrol.2021.104739
[8]
CHOW A, CHAU A, HEINZ K M. Compatibility of Amblyseius (Typhlodromips) swirskii (Athias-Henriot) (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae) for biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on roses. Biological Control, 2010, 53(2): 188-196.

doi: 10.1016/j.biocontrol.2009.12.008
[9]
ARTHURS S, MCKENZIE C L, CHEN J, DOGRAMACI M, BRENNAN M, HOUBEN K, OSBORNE L. Evaluation of Neoseiulus cucumeris and Amblyseius swirskii (Acari: Phytoseiidae) as biological control agents of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) on pepper. Biological Control, 2009, 49(1): 91-96.

doi: 10.1016/j.biocontrol.2009.01.002
[10]
SHIPP J L, WHITFIELD G H. Functional response of the predatory mite, Amblyseius cucumeris (Acari: Phytoseiidae), on western flower thrips, Frankliniella occidentalis(Thysanoptera: Thripidae). Environmental Entomology, 1991, 20(2): 694-699.

doi: 10.1093/ee/20.2.694
[11]
禹云超, 郅军锐, 曾广, 岳文波, 叶茂. 斯氏钝绥螨对西花蓟马和豆大蓟马若虫的捕食功能反应. 应用昆虫学报, 2019, 56(6): 1317-1323.
YU Y C, ZHI J R, ZENG G, YUE W B, YE M. The functional predatory response of Amblyseius swirskii to Frankliniella occidentalis and Megalurothrips usitatus nymphs. Chinese Journal of Applied Entomology, 2019, 56(6): 1317-1323. (in Chinese)
[12]
王嘉阳, 蓝碧云, 方晨, 胡恒笑, 杨瑞彤, 母凯琴, 苏杰, 陆宴辉, 张建萍. 双尾新小绥螨对花蓟马的捕食控害评价. 中国生物防治学报, 2023, 39(2): 271-279.

doi: 10.16409/j.cnki.2095-039x.2022.01.020
WANG J Y, LAN B Y, FANG C, HU H X, YANG R T, MU K Q, SU J, LU Y H, ZHANG J P. Predation and control of Franklinilla intonsa by Neoseiulus bicaudus. Chinese Journal of Biological Control, 2023, 39(2): 271-279. (in Chinese)
[13]
MAGALHÃES S, VAN RIJN P C J, MONTSERRAT M, PALLINI A, SABELIS M W. Population dynamics of thrips prey and their mite predators in a refuge. Oecologia, 2007, 150(4): 557-568.

pmid: 16964498
[14]
BOSCO L, GIACOMETTO E, TAVELLA L. Colonization and predation of thrips (Thysanoptera: Thripidae) by Orius spp.(Heteroptera: Anthocoridae) in sweet pepper greenhouses in Northwest Italy. Biological Control, 2008, 44(3): 331-340.

doi: 10.1016/j.biocontrol.2007.10.027
[15]
余金咏, 吴伟坚, 梁广文. 不同食物对杂食性中华微刺盲蝽生长发育及繁殖力的影响. 中国生物防治学报, 2015, 31(4): 495-500.
YU J Y, WU W J, LIANG G W. Effects of food on development, survivorship and fertility of the omnivorous mirid bug Campylomma chinensis Schuh. Chinese Journal of Biological Control, 2015, 31(4): 495-500. (in Chinese)
[16]
孙英, 胡昌雄, 吴道慧, 陈国华, 殷红慧, 徐天养, 陈婷, 张晓明. 南方小花蝽和黄蓟马的种群动态及捕食功能反应. 中国生物防治学报, 2021, 37(3): 451-458.

doi: 10.16409/j.cnki.2095-039x.2021.01.021
SUN Y, HU C X, WU D H, CHEN G H, YIN H H, XU T Y, CHEN T, ZHANG X M. Population dynamics of Orius similis and Thrips flavus and predatory function response. Chinese Journal of Biological Control, 2021, 37(3): 451-458. (in Chinese)
[17]
胡昌雄, 李宜儒, 吕布典, 殷红慧, 徐天养, 胡加云, 陈国华, 张晓明. 辣椒田蓟马及主要捕食性天敌昆虫种类与时间生态位. 植物保护, 2022, 48(5): 38-46, 74.
HU C X, LI Y R, B D, YIN H H, XU T Y, HU J Y, CHEN G H, ZHANG X M. Species and temporal niches of thrips and their main predatory insects in Capsicum annuum fields. Plant Protection, 2022, 48(5): 38-46, 74. (in Chinese)
[18]
胡昌雄, 范苇, 张倩, 陈国华, 殷红慧, 徐天养, 杨进波, 杨航, 吴道慧, 张晓明. 基于两性生命表和年龄-阶段捕食率的南方小花蝽对西花蓟马的控制作用. 中国农业科学, 2021, 54(13): 2769-2780. doi: 10.3864/j.issn.0578-1752.2021.13.007.

doi: 10.3864/j.issn.0578-1752.2021.13.007
HU C X, FAN W, ZHANG Q, CHEN G H, YIN H H, XU T Y, YANG J B, YANG H, WU D H, ZHANG X M. Control effect of Orius similis on Frankliniella occidentalis based on the two-sex life table and the age-stage-specific predation rate. Scientia Agricultura Sinica, 2021, 54(13): 2769-2780. doi: 10.3864/j.issn.0578-1752.2021.13.007. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.13.007
[19]
王杰, 张晨, 朱正阳, 刘俊秀, 王甦, 徐庆宣, 邸宁. 东亚小花蝽对温室辣椒及茄子花内西花蓟马的控害作用. 中国生物防治学报, 2023, 39(2): 264-270.

doi: 10.16409/j.cnki.2095-039x.2022.03.018
WANG J, ZHANG C, ZHU Z Y, LIU J X, WANG S, XU Q X, DI N. Control effects of Orius sauteri on Frankliniella occidentalis in pepper and eggplant flowers in greenhouses. Chinese Journal of Biological Control, 2023, 39(2): 264-270. (in Chinese)

doi: 10.16409/j.cnki.2095-039x.2022.03.018
[20]
李善光, 付步礼, 邱海燕, 杨石有, 马晓彤, 周世豪, 唐良德, 张方平, 刘奎. 六斑月瓢虫对黄胸蓟马若虫的室内捕食作用研究. 应用昆虫学报, 2020, 57(5): 1173-1180.
LI S G, FU B L, QIU H Y, YANG S Y, MA X T, ZHOU S H, TANG L D, ZHANG F P, LIU K. The predation of Menochilus sexmaculata (Coleoptera: Coccinellidae) to Thrips hawaiiensis (Thysanoptera: Thripoidae) in the laboratory. Chinese Journal of Applied Entomology, 2020, 57(5): 1173-1180. (in Chinese)
[21]
LUNA-ESPINO H M, JIMÉNEZ-PÉREZ A, CASTREJÓN-GÓMEZ V R. Assessment of Chrysoperla comanche (Banks) and Chrysoperla externa (Hagen) as biological control agents of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on tomato (Solanum lycopersicum) under glasshouse conditions. Insects, 2020, 11(2): 87.

doi: 10.3390/insects11020087
[22]
杨海峰, 王惠珍, 马祁. 棉田烟蓟马的发生与防治. 新疆农业科学, 1985(3): 24-25.
YANG H F, WANG H Z, MA Q. The occurrence and control of Thrips tabaci in cotton field. Xinjiang Agricultural Sciences, 1985(3): 24-25. (in Chinese)
[23]
李国英. 新疆棉花病虫害及其防治. 北京: 中国农业出版社, 2017: 207-211.
LI G Y. Pest Control of Xinjiang Cotton. Beijing: China Agriculture Press, 2017: 207-211. (in Chinese)
[24]
游中华, 路虹, 张宪省, 冯纪年, 石宝才, 宫亚军, 黄大卫. 入侵害虫西花蓟马及其他8种常见蓟马的分子鉴定. 昆虫学报, 2007, 50(7): 720-726.
YOU Z H, LU H, ZHANG X S, FENG J N, SHI B C, GONG Y J, HUANG D W. Molecular identification of the introduced western flower thrips, Frankliniella occidentalis (Pergande) and other eight common thrips species (Thysanoptera: Thripidae). Acta Entomologica Sinica, 2007, 50(7): 720-726. (in Chinese)
[25]
李海强, 王冬梅, 刘建, 潘洪生, 丁瑞丰, 樊国全, 徐遥, 阿克旦·吾外士, 李号宾. 一种基于特异性SS-COI引物的花蓟马PCR快速检测方法[P]: ZL201610609787.0.(2020-04-07)[2023-05-23].
LI H Q, WANG D M, LIU J, PAN H S, DING R F, FAN G Q, XU Y, WUWAISHI·AKEDAN, LI H B. A rapid PCR method for detection of Frankliniella intonsa based on specific SS-COI primers[P]: ZL201610609787.0. (2020-04-07)[2023-05-23]. (in Chinese)
[26]
HOLLING C S. Some characteristics of simple types of predation and parasitism. The Canadian Entomologist, 1959, 91: 385-398.

doi: 10.4039/Ent91385-7
[27]
R development core team. R: A language and environment for statistical computing, Version 4.2.1. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org, 2022.
[28]
PAN H S, LIU B, JAWORSKI C C, YANG L, LIU Y Q, DESNEUX N, THOMINE E, LU Y H. Effects of aphid density and plant taxa on predatory ladybeetle abundance at field and landscape scales. Insects, 2020, 11: 695.

doi: 10.3390/insects11100695
[29]
XUE Z X, PENG T X, LIU B, LIU Y T, ZHANG Z J, WYCKHUYS K A G, WANG P L, LU Y H. Licorice strips enhance predator- mediated biological control in China’s cotton crop. Pest Management Science, 2023, 79(2): 781-791.

doi: 10.1002/ps.v79.2
[30]
LI J H, WU Y K, ZHANG Q, LI H Q, PAN H S, LU W, WANG D M, ZHANG J P, LU Y H. Aphid parasitism and parasitoid diversity in cotton fields in Xinjiang, China. PLoS ONE, 2018, 13(11): e0207034.

doi: 10.1371/journal.pone.0207034
[31]
刘冰, 陆宴辉. 农田节肢动物食物网结构与天敌控害功能. 植物保护学报, 2022, 49(1): 97-109.
LIU B, LU Y H. Arthropod food web structure and the biocontrol services of natural enemies in agro-ecosystems. Journal of Plant Protection, 2022, 49(1): 97-109. (in Chinese)
[32]
杨帆, 刘冰, 陆宴辉. DNA分子检测技术在节肢动物食物网结构解析中的应用. 植物保护学报, 2022, 49(1): 110-117.
YANG F, LIU B, LU Y H. Application of DNA-based molecular detection techniques in arthropod food web structure analyses. Journal of Plant Protection, 2022, 49(1): 110-117. (in Chinese)
[33]
WYCKHUYS K A, LU Y, MORALES H, VAZQUEZ L L, LEGASPI J C, ELIOPOULOS P A, HERNANDEZ L M. Current status and potential of conservation biological control for agriculture in the developing world. Biological Control, 2013, 65(1): 152-167.

doi: 10.1016/j.biocontrol.2012.11.010
[34]
张安盛, 于毅, 李丽莉, 张思聪. 东亚小花蝽(Orius sauteri)成虫对入侵害虫西花蓟马(Frankliniella occidentalis)成虫的捕食作用. 生态学报, 2007, 27(5): 1903-1909.
ZHANG A S, YU Y, LI L L, ZHANG S C. Predation of Orius sauteri adult on adults of western flower thrips (Frankliniella occidentalis), an invasive insect pest. Acta Ecologica Sinica, 2007, 27(5): 1903-1909. (in Chinese)
[35]
邱海燕, 付步礼, 何石兰, 刘奎. 淡翅小花蝽对豆大蓟马的捕食功能反应及猎物偏好性. 中国生物防治学报, 2022, 38(6): 1443-1448.

doi: 10.16409/j.cnki.2095-039x.2022.03.021
QIU H Y, FU B L, HE S L, LIU K. Functional response and predation preference of Orius tantillus to Megalurothrips usitatus. Chinese Journal of Biological Control, 2022, 38(6): 1443-1448. (in Chinese)
[36]
SETTELE J, SETTLE W H. Conservation biological control: Improving the science base. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(33): 8241-8243.
[37]
ALBRECHT M, KLEIJN D, WILLIAMS N M, TSCHUMI M, BLAAUW B R, BOMMARCO R, CAMPBELL A J, DAINESE M, DRUMMOND F A, ENTLING M H, et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: A quantitative synthesis. Ecology Letters, 2020, 23(10): 1488-1498.

doi: 10.1111/ele.13576 pmid: 32808477
[38]
CHEN X, JAWORSKI C C, DAI H, LIANG Y, GUO X, WANG S, ZANG L S, DESNEUX N. Combining banker plants to achieve long-term pest control in multi-pest and multi-natural enemy cropping systems. Journal of Pest Science, 2022, 95(2): 685-697.

doi: 10.1007/s10340-021-01428-6
[39]
UESUGI R, KONISHI-FURIHATA R, TABUCHI K, YOSHIMURA H, SHIMODA T. Predacious natural enemies associated with suppression of onion thrips, Thrips tabaci (Thysanoptera: Thripidae), in intercropped onion-barley agroecosystems. Environmental Entomology, 2023, 52(2): 183-196.

doi: 10.1093/ee/nvad014
[1] KAN JiaQiang, LIU Yu, ZHOU ZhiGuo, CHEN BingLin, ZHAO WenQing, HU Wei, HU ShaoHong, CHEN Yang, WANG YouHua. Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves [J]. Scientia Agricultura Sinica, 2023, 56(9): 1658-1669.
[2] XING YuTong, TENG YongKang, WU TianFan, LIU YuanYuan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Mepiquat Chloride Increases the Cry1Ac Protein Content Through Regulating Carbon and Amino Acid Metabolism of Bt Cotton Under High Temperature and Drought Stress [J]. Scientia Agricultura Sinica, 2023, 56(8): 1471-1483.
[3] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[4] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[5] LIANG ChengZhen, ZANG YouYi, MENG ZhiGang, WANG Yuan, MUBASHIR Abbas, HE HaiYan, ZHOU Qi, WEI YunXiao, ZHANG Rui, GUO SanDui. Identification of Target Traits and Genetic Stability of Transgenic Cotton GGK2 [J]. Scientia Agricultura Sinica, 2023, 56(17): 3251-3260.
[6] WANG WanRu, CAO YueFen, SHENG Kuang, CHEN JinHong, ZHAO TianLun, ZHU ShuiJin. The Creation and Characteristics of Cotton Germplasm Lines Transgenic 1174AALdico-2+CTP Gene with Excellent Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3261-3276.
[7] MA YanBin, LI HuanLi, WEN Jin, ZHOU XianTing, QIN Xin, WANG Xia, WANG XinSheng, LI YanE. Identification of Molecular Characterizations for Transgenic Cotton R1-3 Line of Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3277-3284.
[8] LOU ShanWei, TIAN LiWen, LUO HongHai, DU MingWei, LIN Tao, YANG Tao, ZHANG PengZhong. Analysis on Key Production Techniques of Cotton with Good Quality and High Yield in Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(14): 2673-2685.
[9] ZHAO WeiSong, GUO QingGang, LI SheZeng, LU XiuYun, GOU JianJun, MA Ping. Effect of Broccoli Residues on Enzyme Activity of Cotton Rhizosphere Soil and Relationships Between Enzyme Activity and Carbon Metabolism Characteristics [J]. Scientia Agricultura Sinica, 2023, 56(11): 2092-2105.
[10] SONG Ci, GU FengXu, XING ZhenZhen, ZHANG JunMing, HE WenXue, WANG TianBo, WANG YuLu, CHEN JunYing. Physiological Changes and Integrity of ATP Synthase Subunits mRNA in Naturally Aged Cotton Seeds [J]. Scientia Agricultura Sinica, 2023, 56(10): 1827-1837.
[11] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[12] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[13] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[14] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[15] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!