Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (12): 2265-2281.doi: 10.3864/j.issn.0578-1752.2024.12.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of Maize Phenylalanine Ammonia-Lyase (PAL) Family Genes and Functional Study of ZmPAL5

CAO LiRu1(), YE FeiYu1(), KU LiXia2, MA ChenChen1, PANG YunYun1, LIANG XiaoHan1, ZHANG Xin1(), LU XiaoMin1()   

  1. 1 Grain Crop Research Institute, Henan Academy of Agricultural Sciences/The Shennong Laboratory, Zhengzhou 450002
    2 College of Agronomy, Henan Agricultural University, Zhengzhou 450046
  • Received:2023-11-15 Accepted:2024-01-12 Online:2024-06-16 Published:2024-06-25
  • Contact: ZHANG Xin, LU XiaoMin

Abstract:

【Objective】 Mining the key drought-resistant genes of maize, revealing its drought-resistant molecular mechanism, and providing genetic resources and theoretical guidance for the cultivation of new drought-resistant maize varieties.【Method】Transcriptome data combined with weighted gene co-expression network (WGCNA) and screening methods for physiological and biochemical indicators of drought resistance were used to identify ZmPAL genes associated with drought resistance and rewatering. Genome-wide analysis of the genes encoding PAL was performed using bioinformatics methods. Quantitative real-time fluorescence PCR (qRT-PCR) was used to detect the expression of ZmPAL genes under drought treatment conditions, as well as the expression characteristics of ZmPAL5 among different inbred lines and the expression patterns in different tissues. Finally, genetic transformation was used to analyze the drought resistance function of ZmPAL5 in maize, and the deletion-type Arabidopsis mutant was analyzed for drought resistance with the help of CRISPR/Cas9 technology for the PAL5 homologous gene.【Result】Nineteen maize ZmPAL genes were identified, six of which were clustered on chromosome 5 and encoded proteins that were mostly hydrophilic acidic proteins and relatively evolutionarily conserved in the PAL family of genes. The promoter region of ZmPAL genes contained a large number of cis-acting elements associated with hormonal and abiotic stress responses. Six core genes were identified, four of which were significantly up-regulated for expression after drought treatment. In particular, ZmPAL5 showed an 8.57-fold increase in expression after drought stress. The expression level of ZmPAL5 was found to be significantly higher in the drought-resistant inbred line Zheng 8713 than in the drought-sensitive inbred line B73 under both drought stress and rewatering treatments. Meanwhile, ZmPAL5, a constitutively expressed gene, showed a high level of expression in young stems. Overexpressed ZmPAL5 maize grew well under drought stress, and its relative water content, lignin, chlorophyll, soluble protein, proline content, and activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase were 1.52, 1.49, 1.47, 1.43, 1.44, 1.41, 1.53, 1.41, and 1.35 times, but the malondialdehyde content was 0.65 times that of the wild type. The PAL5-deficient Arabidopsis mutant was sensitive to drought. Under drought stress, its physiological and biochemical indexes showed the opposite trend to those of overexpression of ZmPAL5 maize. 【Conclusion】 Six core genes (ZmPAL3, ZmPAL5, ZmPAL6, ZmPAL8, ZmPAL11, and ZmPAL13) were screened in response to drought stress, in which the expression of ZmPAL5 was positively correlated with drought resistance. ZmPAL5 positively regulated the drought resistance and resilience of the plant by influencing the content of osmotically regulated substances and antioxidant enzyme activities.

Key words: maize, phenylalanine ammonia-lyase, ZmPAL5, drought resistance, physiology and biochemistry

Table 1

qRT-PCR primers for gene"

引物名称Primer name 引物序列Primer sequence (5′-3′) 用途Purpose
ZmPAL3-F TCGGATTCACTGGCTTGCTG 检测基因在干旱胁迫下的表达量
Detection of gene expression under drought stress
ZmPAL3-R GAGGATTGGACCGAAGTGGTA
ZmPAL5-F ATGAACGGCACCGACAGCTA
ZmPAL5-R CAGGGTGTTGATGCGGACGA
ZmPAL6-F AGTGCTAGTGCTGCTACCCT
ZmPAL6-R TGTGATGATGCTGATGCGGT
ZmPAL8-F TCACCGTGTTCTTGACGGAG
ZmPAL8-R TCCTCAAGCTCATGTCGTCC
ZmPAL11-F TGGCCCTCGTGCAAAGTATC
ZmPAL11-R TTGGTTTCCCATCTGGCGAT
ZmPAL13-F ACGCGCCAGCATTGAGGAA
ZmPAL13-R TGATGAACGGCACCGACAG
18S-F CCTGCGGCTTAATTGACTC 内参基因Reference gene
18S-R GTTAGCAGGCTGAGGTCTGG
ZmPAL5-WMV013-BamHI-F AGGTCGACTCTAGAGGATCCATGGAGTGCGAGAACGGACA 构建玉米ZmPAL5过表达载体
Construction of maize ZmPAL5 overexpression vector
ZmPAL5-WMV013-SmaI-R TCTTTGTAGTCCATCCCGGGGCCTCCACCCCCGCCACCGCAGATGGGCAGGGGCTCAC
AT3G10340-PKI1.1R-F ATTGGACAGTTATGGAGTTACCAC 构建拟南芥CRISPR/Cas9敲除载体及菌落验证
Construction of an Arabidopsis CRISPR/Cas9 knockout vector and colony validation
AT3G10340-PKI1.1R-R AAACGTGGTAACTCCATAACTGTC
U6.26-F TGTCCCAGGATTAGAATGATTAGGC

Fig. 1

Correlation analysis and aggregate analysis of different modules and physiological and biochemical indexes in the process of drought and rewatering A: Hierarchical clustering tree of corepresentation modules, different colors represent different modules. ABA: Abscisic acid; Sp: Soluble protein; Pro: Proline; POD: Peroxidase; SOD: Superoxide dismutase; CAT: Catalase; MDA: Malondialdehyde; GSH: Glutathione; AsA: Ascorbic acid. B: Correlation analysis of ZmPAL gene in different modules"

Table 2

Analysis of physicochemical properties and prediction of subcellular localization of ZmPAL protein in maize"

基因名称
Gene name
基因ID
Gene ID
物理位置
Location
(bp)
长度
Length (aa)
分子量
Molecular weight (kDa)
等电点
pI
亲水性系数
Grand average of hydropathicity
亚细胞定位预测
Prediction of subcellular localization
ZmPAL1 Zm00001d029015 Chr.1:54941440-54943661 398 43.19 6.52 -0.033 细胞质,叶绿体
Cytoplasmic, Chloroplast
ZmPAL2 Zm00001d029648 Chr.1:81308232-81312047 848 95.13 5.82 -0.293 叶绿体Chloroplast
ZmPAL3 Zm00001d031071 Chr.1:175969709-175971563 386 43.31 9.05 -0.214 叶绿体,线粒体
Chloroplast, Mitochondrial
ZmPAL4 Zm00001d033286 Chr.1:257622515-257624760 698 75.66 5.85 -0.04 质膜Plasma membrane
ZmPAL5 Zm00001d003015 Chr.2:29467931-29470598 715 76.78 5.63 -0.079 叶绿体,质膜,内质网
Chloroplast, Plasma membrane, Endoplasmic reticulum
ZmPAL6 Zm00001d003016 Chr.2:29538173-29541434 884 96.71 5.99 -0.195 质膜,叶绿体,线粒体
Plasma membrane, Chloroplast, Mitochondrial
ZmPAL7 Zm00001d048874 Chr.4:6825874-6829872 778 87.89 5.30 -0.296 细胞质Cytoplasmic
ZmPAL8 Zm00001d051161 Chr.4:146706971-146710589 557 60.43 6.02 -0.055 叶绿体Chloroplast
ZmPAL9 Zm00001d051163 Chr.4:146793740-146798809 718 77.43 6.12 -0.121 叶绿体,内质网
Chloroplast, Endoplasmic reticulum
ZmPAL10 Zm00001d051166 Chr.4:146846109-146848259 775 84.54 5.37 -0.163 叶绿体,质膜,细胞核
Chloroplast, Plasma membrane, Nuclear
ZmPAL11 Zm00001d013534 Chr.5:13763873-13782041 187 20.48 7.64 -0.441 叶绿体,线粒体
Chloroplast, Mitochondrial
ZmPAL12 Zm00001d017274 Chr.5:191418711-191422345 703 75.46 5.96 -0.069 叶绿体,质膜,内质网
Chloroplast, Plasma membrane, Endoplasmic reticulum
ZmPAL13 Zm00001d017275 Chr.5:191467430-191471500 719 77.4 6.20 -0.100 叶绿体,内质网
Chloroplast, Endoplasmic reticulum
ZmPAL14 Zm00001d017276 Chr.5:191474696-191476810 704 75.84 5.89 -0.066 叶绿体,内质网,细胞核
Chloroplast, Endoplasmic reticulum, Nuclear
ZmPAL15 Zm00001d017279 Chr.5:191539072-191541219 715 76.93 5.89 -0.083 叶绿体,质膜,细胞核
Chloroplast, Plasma membrane, Nuclear
ZmPAL16 Zm00001d017617 Chr.5:201803815-201807716 87 9.29 5.25 -0.266 叶绿体Chloroplast
ZmPAL17 Zm00001d021368 Chr.7:150079651-150084317 321 36.34 9.51 -0.302 叶绿体Chloroplast
ZmPAL18 Zm00001d023655 Chr.10:13756073-13759615 366 40.32 9.02 0.296 叶绿体,质膜,液泡
Chloroplast, Plasma membrane, Vacuolar
ZmPAL19 Zm00001d024512 Chr.10:75069687-75075183 727 81.54 5.32 -0.227 细胞核Nuclear

Fig. 2

Bioinformatics analysis of PALs of different species A: Phylogenetic classification; B: Gene structure, domains and conserved motifs; C: cis-acting element. Zm: Zea mays L.; At: Arabidopsis thaliana; Sb: Sorghum bicolor L.; Os: Oryza sativa L."

Fig. 3

ZmPAL gene coexpression network (A), heat map (B) and expression of ZmPAL gene under drought (C) T0Y, T5dY, TR3dY and T0G, T5dG, TR3dG: Y represents leaf, G represents root, and T0, T5d, TR3d represents pre-drought, 5 d after drought and 3 d after rewatering, respectively"

Fig. 4

Analysis of phenotypes and expression of ZmPAL5 in different inbred lines under drought treatment A: Phenotype after drought treatment; B: Expression analysis of ZmPAL5 under different time drought treatments; C: Expression analysis of ZmPAL5 in different tissues. *P<0.05, **P<0.01. The same as below"

Fig. 5

Seedling phenotypes and index identification of ZmPAL5 transgenic maize under drought stress A: Seedling phenotypes of wild-type and ZmPAL5 transgenic maize under drought stress; B: Expression levels of the obtained positive transgenic strains; C: Survival rate of both plants under drought stress; D: The lignin content of both plants under drought stress; E: The relative water content of both plants under drought stress; F: Chlorophyll content of both plants under drought stress; G: Malondialdehyde content of both plants under drought stress; H-I: Osmoregulators (Pro and Sp) content of both plants under drought stress; J-M: The antioxidant enzymes (SOD, POD, CAT, and APX) activities of both plants under drought stress. T0, T7d, TR3d represents pre-drought, 7 d after drought and 3 d after rewatering, respectively. The same as below"

Fig. 6

Mutation sequence, Seedling phenotypes and index identification of PAL5 transgenic Arabidopsis thaliana under drought stress A: Results of CDS sequence comparison between maize ZmPAL5 gene and Arabidopsis homologous genes and target sequences; B: Gene structure, mutation sites and sequences of Arabidopsis genes; C: Seedling phenotypes of wild-type and transgenic Arabidopsis pal5 under drought stress; D: The lignin content of both plants under drought stress; E: The relative water content of both plants under drought stress; F: Chlorophyll content of both plants under drought stress; G: Malondialdehyde content of both plants under drought stress; H-I: Osmoregulators (Pro and Sp) content of both plants under drought stress; J-M: The antioxidant enzymes (SOD, POD, CAT, and APX) activities of both plants under drought stress"

[1]
FAROOQI M Q U, NAWAZ G, WANI S H, CHOUDHARY J R, RANA M, SAH R P, AFZAL M, ZAHRA Z, GANIE S A, RAZZAQ A, REYES V P, MAHMOUD E A, ELANSARY H O, EL-ABEDIN T K Z, SIDDIQUE K H M. Recent developments in multi-omics and breeding strategies for abiotic stress tolerance in maize (Zea mays L.). Frontiers in Plant Science, 2022, 13: 965878.
[2]
KHAN S U, ZHENG Y X, CHACHAR Z, ZHANG X H, ZHOU G Y, ZONG N, LENG P F, ZHAO J. Dissection of maize drought tolerance at the flowering stage using genome-wide association studies. Genes, 2022, 13(4): 564.
[3]
KUMAR K, GAMBHIR G, DASS A, TRIPATHI A K, SINGH A, JHA A K, YADAVA P, CHOUDHARY M, RAKSHIT S. Genetically modified crops: Current status and future prospects. Planta, 2020, 251(4): 91.

doi: 10.1007/s00425-020-03372-8 pmid: 32236850
[4]
BAGAL U R, LEEBENS-MACK J H, LORENZ W W, DEAN J F D. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm-specific lineage. BMC Genomics, 2012, 13(Suppl. 3): S1.
[5]
BESSEAU S, HOFFMANN L, GEOFFROY P, LAPIERRE C, POLLET B, LEGRAND M. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. The Plant Cell, 2007, 19(1): 148-162.
[6]
PANT S, HUANG Y H. Genome-wide studies of PAL genes in sorghum and their responses to aphid infestation. Scientific Reports, 2022, 12(1): 22537.

doi: 10.1038/s41598-022-25214-1 pmid: 36581623
[7]
HUANG J L, GU M, LAI Z B, FAN B F, SHI K, ZHOU Y H, YU J Q, CHEN Z X. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology, 2010, 153(4): 1526-1538.
[8]
HE J, LIU Y Q, YUAN D Y, DUAN M J, LIU Y L, SHEN Z J, YANG C Y, QIU Z Y, LIU D M, WEN P Z, HUANG J, FAN D J, XIAO S Z, XIN Y Y, CHEN X N, JIANG L, WANG H Y, YUAN L P, WAN J M. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(1): 271-277.
[9]
ZHAN C, LI Y T, LI H, WANG M R, GONG S J, MA D F, LI Y. Phylogenomic analysis of phenylalanine ammonia-lyase (PAL) multigene family and their differential expression analysis in wheat (Triticum aestivum L.) suggested their roles during different stress responses. Frontiers in Plant Science, 2022, 13: 982457.
[10]
CHEN Y P, LI F J, TIAN L, HUANG M C, DENG R F, LI X L, CHEN W, WU P Z, LI M R, JIANG H W, WU G J. The phenylalanine ammonia lyase gene LjPAL1 is involved in plant defense responses to pathogens and plays diverse roles in Lotus japonicus-Rhizobium symbioses. Molecular Plant-Microbe Interactions, 2017, 30(9): 739-753.
[11]
李进步, 方丽平, 张亚楠, 杨卫娟, 郭庆, 李雷, 毕彩丽, 杨荣志. 棉花抗蚜性与苯丙氨酸解氨酶活性的关系. 昆虫知识, 2008, 45(3): 422-425.
LI J B, FANG L P, ZHANG Y N, YANG W J, GUO Q, LI L, BI C L, YANG R Z. The relationship between the resistance of cotton against cotton aphid Aphis gossypii and the activity of phenylalanine ammonia-lyase. Chinese Bulletin of Entomology, 2008, 45(3):422-425. (in Chinese)
[12]
DONG C J, LI L, CAO N, SHANG Q M, ZHANG Z G. Roles of phenylalanine ammonia-lyase in low temperature tolerance in cucumber seedlings. The Journal of Applied Ecology, 2015, 26(7): 2041-2049.
[13]
WU D G, ZHAN Q W, YU H B, HUANG B H, CHENG X X, LI W Y, HUANG S C, WANG C J, DU J L. Genome-wide identification and analysis of maize PAL gene family and its expression profile in response to high-temperature stress. Pakistan Journal of Botany, 2020, 52(5): 1577-1587.
[14]
ASTANEH R K, BOLANDNAZAR S, NAHANDI F Z, OUSTAN S. Effect of selenium application on phenylalanine ammonia-lyase (PAL) activity, phenol leakage and total phenolic content in garlic (Allium sativum L.) under NaCl stress. Information Processing in Agriculture, 2018, 5(3): 339-344.
[15]
王改利, 魏忠, 贺少轩, 周雪洁, 梁宗锁. 土壤干旱胁迫对酸枣叶片黄酮类代谢及某些生长和生理指标的影响. 植物资源与环境学报, 2011, 20(3): 1-8.
WANG G L, WEI Z, HE S X, ZHOU X J, LIANG Z S. Effects of drought stress in soil on flavonoids metabolism in leaf and some growth and physiological indexes of Ziziphus jujuba var. spinosa. Journal of Plant Resources and Environment, 2011, 20(3):1-8. (in Chinese)
[16]
邓路长, 崔丽娜, 杨麟, 陈洁, 何文铸, 李晓, 唐海涛, 张彪, 康继伟, 杨俊品, 谭君. 玉米苯丙氨酸解氨酶家族基因的鉴定与纹枯病的抗病分析. 分子植物育种, 2019, 17(3): 891-897.
DENG L C, CUI L N, YANG L, CHEN J, HE W Z, LI X, TANG H T, ZHANG B, KANG J W, YANG J P, TAN J. Identification of gene family of phenylalanine ammonia-lyase and analysis of resistance to maize sheath blight in corn. Molecular Plant Breeding, 2019, 17(3): 891-897. (in Chinese)
[17]
CAO L R, MA C C, YE F Y, PANG Y Y, WANG G R, FAHIM A M, LU X M. Genome-wide identification of NF-Y gene family in maize (Zea mays L.) and the positive role of ZmNF-YC12 in drought resistance and recovery ability. Frontiers in Plant Science, 2023, 14: 1159955.
[18]
WANG C T, RU J N, LIU Y W, LI M, ZHAO D, YANG J F, FU J D, XU Z S. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants. International Journal of Molecular Sciences, 2018, 19(10): 3046.
[19]
WALKER J M. The Proteomics Protocols Handbook. Totowa, NJ: Humana Press, 2005.
[20]
HORTON P, PARK K J, OBAYASHI T, FUJITA N, HARADA H, ADAMS-COLLIER C J, NAKAI K. WoLF PSORT: Protein localization predictor. Nucleic Acids Research, 2007, 35(Suppl. 2): W585.
[21]
KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.

doi: 10.1093/molbev/msy096 pmid: 29722887
[22]
BAILEY T L, BODEN M, BUSKE F A, FRITH M, GRANT C E, CLEMENTI L, REN J Y, LI W W, NOBLE W S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 2009, 37(Web Server issue): W202-W208.
[23]
CHEN C J, XIA R, CHEN H, HE Y H. TBtools, a toolkit for biologists inte gr ating various biologi cal data handling tools with a user -friendly interface. Molecular Plant, 2019.
[24]
LESCOT M, DÉHAIS P, THIJS G, MARCHAL K, MOREAU Y, VAN PEER Y, ROUZÉ P, ROMBAUTS S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30(1): 325-327.
[25]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.

doi: 10.1006/meth.2001.1262 pmid: 11846609
[26]
李靖, 程舟, 杨晓伶, 李珊, 顾敏, 万树文, 张文驹, 陈家宽. 紫外分光光度法测定微量人参木质素的含量. 中药材, 2006, 29(3): 239-241.
LI J, CHENG Z, YANG X L, LI S, GU M, WAN S W, ZHANG W J, CHEN J K. Determination of lignin content in tiny Panax ginseng by UV spectrophotometry. Journal of Chinese Medicinal Materials, 2006, 29(3): 239-241. (in Chinese)
[27]
CHEN T Z, LI W J, HU X H, GUO J R, LIU A M, ZHANG B L. A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant and Cell Physiology, 2015, 56(5): 917-929.

doi: 10.1093/pcp/pcv019 pmid: 25657343
[28]
LAKRA N, NUTAN K K, DAS P, ANWAR K, SINGLA-PAREEK S L, PAREEK A. A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery. Journal of Plant Physiology, 2015, 176: 36-46.

doi: 10.1016/j.jplph.2014.11.005 pmid: 25543954
[29]
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
LI H S. Experimental Principles and Techniques of Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. (in Chinese)
[30]
李绍军, 龚月桦, 王俊儒, 梁宗锁. 关于茚三酮法测定脯氨酸含量中脯氨酸与茚三酮反应之探讨. 植物生理学通讯, 2005, 41(3): 365-368.
LI S J, GONG Y H, WANG J R, LIANG Z S. Discussion on determination of proline and ninhydrin reactionin proline content by ninhydrin method. Plant Physiology Communications, 2005, 41(3): 365-368. (in Chinese)
[31]
焦洁. 考马斯亮蓝G-250染色法测定苜蓿中可溶性蛋白含量. 农业工程技术, 2016, 36(17): 33-34.
JIAO J. Determination of soluble protein in alfalfa by coomassie bright blue G-250 staining. Agricultural Engineering Technology, 2016, 36(17): 33-34. (in Chinese)
[32]
段丽菊, 甘耀坤, 李岩, 杨旭. 两种红细胞超氧化物歧化酶测活方法的比较. 湖北预防医学杂志, 2004, 15(1): 16-19.
DUAN L J, GAN Y K, LI Y, YANG X. Comparison of two methods in determination of superoxide dismutase in erythrocyte. Hubei Journal of Preventive Medicine, 2004, 15(1): 16-19. (in Chinese)
[33]
李忠光, 龚明. 愈创木酚法测定植物过氧化物酶活性的改进. 植物生理学通讯, 2008, 44(2): 323-324.
LI Z G, GONG M. Improvement of guaiacol method for determination of plant peroxidase activity. Plant Physiology Communications, 2008, 44(2): 323-324. (in Chinese)
[34]
KAUR S, GUPTA A K, KAUR N, SANDHU J S, GUPTA S K. Antioxidative enzymes and sucrose synthase contribute to cold stress tolerance in chickpea. Journal of Agronomy and Crop Science, 2009, 195(5): 393-397.
[35]
孟亚轩, 孙颖琦, 赵心月, 王凤霞, 瓮巧云, 刘颖慧. 谷子PAL基因家族全基因组的鉴定和表达分析. 广西植物, 2022, 42(9): 1572-1581.
MENG Y X, SUN Y Q, ZHAO X Y, WANG F X, WENG Q Y, LIU Y H. Genome-wide identification and expression of millet PAL gene family. Guihaia, 2022, 42(9): 1572-1581. (in Chinese)
[36]
郭栋, 杜媚, 周宝元, 刘颖慧, 赵明. 玉米SAUR基因家族的鉴定与生物信息学分析. 植物遗传资源学报, 2019, 20(1): 90-99.

doi: 10.13430/j.cnki.jpgr.20180707001
GUO D, DU M, ZHOU B Y, LIU Y H, ZHAO M. Identification and bioinformatics analysis of maize SAUR gene family. Journal of Plant Genetic Resources, 2019, 20(1): 90-99. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20180707001
[37]
王梓钰, 古丽斯坦·赛米, 刘隋赟昊, 黄耿青, 张经博, 郭彦君. 棉花PAL基因家族的全基因组鉴定及其在逆境胁迫下的表达分析. 山西农业科学, 2023, 51(9): 961-973.
WANG Z Y, GULISITAN S M, LIU S Y H, HUANG G Q, ZHANG J B, GUO Y J. Genome-wide identification of pal gene family in cotton and its expression analysis under stress. Journal of Shanxi Agricultural Sciences, 2023, 51(9): 961-973. (in Chinese)
[38]
WU Z H, GUI S T, WANG S Z, DING Y. Molecular evolution and functional characterisation of an ancient phenylalanine ammonia-lyase gene (NnPAL1) from Nelumbo nucifera: novel insight into the evolution of the PAL family in angiosperms. BMC Evolutionary Biology, 2014, 14(1): 100.
[39]
郭伟, 于立河. 盐碱胁迫对小麦幼苗根系活力和苯丙氨酸解氨酶活性的影响. 作物杂志, 2012(1): 31-34.
GUO W, YU L H. Effects of salinity-alkalinity stress on root activity and phenylalanine ammonia-lyase activity of wheat seedlings. Crops, 2012(1): 31-34. (in Chinese)
[40]
TAO X Y, WU Q, AALIM H, LI L MAO L C, LUO Z S, YING T J. Effects of exogenous abscisic acid on bioactive components and antioxidant capacity of postharvest tomato during ripening. Molecules, 2020, 25(6): 1346.
[41]
ZHU Y Q, LIU Y, ZHOU K M, TIAN C Y, ASLAM M, ZHANG B L, LIU W J, ZOU H W. Overexpression of ZmEREBP60 enhances drought tolerance in maize. Journal of Plant Physiology, 2022, 275: 153763.
[42]
XU W Y, TANG W S, WANG C X, GE L H, SUN J C, QI X, HE Z, ZHOU Y B, CHEN J, XU Z S, MA Y Z, CHEN M. SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway. Frontiers in Plant Science, 2020, 11: 785.

doi: 10.3389/fpls.2020.00785 pmid: 32625221
[43]
ZHANG P Y, YUAN Z, WEI L, QIU X, WANG G R, LIU Z X, FU J X, CAO L R, WANG T C. Overexpression of ZmPP2C55 positively enhances tolerance to drought stress in transgenic maize plants. Plant Science, 2022, 314: 111127.
[44]
EL-ESAWI M A, AL-GHAMDI A A, ALI H M, AHMAD A. Overexpression of AtWRKY30 transcription factor enhances heat and drought stress tolerance in wheat (Triticum aestivum L.). Genes, 2019, 10(2): 163.
[45]
JUNG S E, KIM T H, SHIM J S, BANG S W, BIN YOON H, OH S H, KIM Y S, OH S J, SEO J S, KIM J K. Rice NAC17 transcription factor enhances drought tolerance by modulating lignin accumulationt. Plant science, 2022, 323: 111404.
[46]
HOU N, LI C S, HE J Q, LIU Y, YU S S, MALNOY M, MOBEEN TAHIR M, XU L F, MA F W, GUAN Q M. MdMTA-mediated m6 A modification enhances drought tolerance by promoting mRNA stability and translation efficiency of genes involved in lignin deposition and oxidative stress. The New phytologist, 2022, 234(4): 1294-1314.
[47]
AMOAH J N, SEO Y W. Effect of progressive drought stress on physio-biochemical responses and gene expression patterns in wheat. 3 Biotech, 2021, 11(10): 440.

doi: 10.1007/s13205-021-02991-6 pmid: 34603917
[48]
LI X R, TANG Y, LI H L, LUO W, ZHOU C J, ZHANG L X, LV J Y. A wheat R2R3 MYB gene TaMpc1-D4 negatively regulates drought tolerance in transgenic Arabidopsis and wheat. Plant Science, 2020, 299: 110613.
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[3] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[4] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[5] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[6] NI ShuHui, SHI DongMei, PAN LiDong, YE Qing, WU JunHao. Response of Cultivated-Layer Water-Holding and Drought Resistance Performance and Productivity to Erosion Degree in Purple Soil Sloping Farmland [J]. Scientia Agricultura Sinica, 2024, 57(7): 1350-1362.
[7] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[8] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[9] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
[10] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[11] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[12] CAO WenZhuo, YU ZhenWen, ZHANG YongLi, ZHANG Zhen, SHI Yu, WANG YongJun. The Difference of Grain Starch Accumulation Dynamics and Yield Formation of Spring Maize Under Different Nitrogen Application Rates in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(22): 4431-4443.
[13] DONG KuiJun, ZHANG YiTao, LIU HanWen, ZHANG JiZong, WANG WeiJun, WEN YanChen, LEI QiuLiang, WEN HongDa. Effects of Nitrogen Reduction Application of Summer Maize- Soybean Intercropping on Agronomic Traits and Economic Benefits as well as Its Yield of Subsequent Wheat [J]. Scientia Agricultura Sinica, 2024, 57(22): 4495-4506.
[14] HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao. QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4175-4191.
[15] GUO Ya, REN Hao, WANG HongZhang, ZHANG JiWang, ZHAO Bin, REN BaiZhao, LIU Peng. High Temperature and Drought Combined Stress Inhibited Photosystem Ⅱ Performance and Decreased Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4205-4220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!