Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (8): 1547-1559.doi: 10.3864/j.issn.0578-1752.2024.08.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effect of Phosphorus Fertilizer Application Rates on the Loss of Colloidal Phosphorus on Purple Soil Slopes

ZHONG JinPing1(), ZHENG ZiCheng1(), LI TingXuan1, HE XiaoLing2   

  1. 1 College of Resources, Sichuan Agricultural University, Chengdu 611130
    2 College of Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2023-05-31 Accepted:2023-10-06 Online:2024-04-16 Published:2024-04-24
  • Contact: ZHENG ZiCheng

Abstract:

【Objective】The risk of phosphorus loss from farmland is closely related to the amount of phosphorus fertilizer. Given the important role of soil colloids in the process of phosphorus transport and transformation at the soil-water interface, the effect of phosphorus fertilizer application on the loss of phosphorus from colloidal state on purple soil slopes and its relationship with runoff and sand production were explored, in order to provide the scientific basis for the understanding of phosphorus transport mechanism from the soil colloid point of view. 【Method】 Combining artificial simulated rainfall with laboratory analysis, the experiment was conducted to study the characteristics of abortion sediment production and colloid phosphorus loss on purple soil slope under the dosage of phosphorus fertilizer 0 (P0), 20 (P20), 40 (P40) and 100 (P100) mg·kg-1. 【Result】 Surface runoff was less affected by phosphorus fertilizer application, and erosion sand production was more affected by phosphorus fertilizer application. The initial sand production of the slope was significantly reduced by 49.3%-68.7% after phosphorus application, and the cumulative sand production was significantly reduced by 26.5%-30.9% under P100 treatment compared to the other phosphorus treatments. Surface runoff was the main loss pathway of water-dispersible total phosphorus (WTP) and colloidal phosphorus (CP) from purple soil slopes, which accounted for 57.5%-93.9 and 62.3%-94.8% of the total loss, respectively; CP was the main form of WTP loss from surface runoff, which accounted for 72.1%-80.7% of the WTP loss. Phosphorus application significantly increased the risk of phosphorus loss. Compared with P0 treatment, the cumulative loss loads of surface runoff WTP, CP, and DP (dissolved phosphorus) under phosphorus fertilizer application treatments were increased by 2.56-20.97, 2.72-22.21, and 1.17-10.40 times after phosphorus application, respectively, and the cumulative loss loads of eroded sediment WTP, CP, and DP were increased by 0.24-0.92 times, 0.05-1.09 times, 0.47-0.76 times, respectively. 【Conclusion】 The main pathway of colloidal phosphorus loss from purple soil slopes was surface runoff, and the characteristics of concentration change were closely related to the flow production process, while the loss load mainly depended on the phosphorus content of slope soil and the amount of phosphorus fertilizer applied. Total water dispersible phosphorus and colloidal phosphorus showed a highly significant correlation, colloidal phosphorus was the main form of phosphorus loss on purple soil slopes, and CP loss on slopes could be reduced by regulating surface runoff and reducing the amount of phosphorus fertilizer.

Key words: colloidal phosphorus, phosphorus fertilizer, surface runoff, erosion sediment, purple soil

Fig. 1

Diagram of rainfall equipment"

Fig. 2

Characteristics of runoff and sediment yield under different P application treatments Different letters mean significant difference among treatments at 0.05 level. P0, P20, P40, P100 mean phosphorus fertilizer dosage 0, 20, 40, 100 kg·hm-2 respectively. The same as below"

Fig. 3

Characteristics of runoff rate, sediment rate and runoff shear force of purple soil slope with rainfall time under different P application treatments"

Fig. 4

Characteristics of WTP, CP and DP concentration in the surface runoff during rainfall under different P application treatments"

Fig. 5

Characteristics of WTP, CP and DP concentration in the sediment during rainfall under different P application"

Fig. 6

Coefficients of P loss in surface runoff (A) and sediment (B) under different P application treatments"

Fig. 7

The relationship between phosphorus loss load of different forms in runoff (A) and sediment (B) P: P level; T: Time; R: Runoff rate; τ: Runoff shear force; R-CWTP: WTP concentration; R-LWTP: WTP loss load; R-CCP: CP concentration; R-LCP: CP loss load; R-CDP: DP concentration; R-LDP: DP loss load; S: Sediment content; S-CWTP: WTP content; S-LWTP: WTP lost load; S-CCP: CP content; S-LCP: CP loss load; S-CDP: DP content; S-LDP: DP lost load. *P<0.05, **P<0.01"

[1]
ISSAKA S, ASHRAF M A. Impact of soil erosion and degradation on water quality: A review. Geology, Ecology, and Landscapes, 2017, 1(1): 1-11.

doi: 10.1080/24749508.2017.1301053
[2]
KRAGH T, SAND-JENSEN K, PETERSEN K, KRISTENSEN E. Fast phosphorus loss by sediment resuspension in a re-established shallow lake on former agricultural fields. Ecological Engineering, 2017, 108: 2-9.

doi: 10.1016/j.ecoleng.2017.07.026
[3]
BOUWMAN A F, BEUSEN A H W, LASSALETTA L, VAN APELDOORN D F, VAN GRINSVEN H J M, ZHANG J, ITTERSUM VAN M K. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Scientific Reports, 2017, 7: 40366.

doi: 10.1038/srep40366 pmid: 28084415
[4]
TANG X A, LIU H Y, QIN H L, ZHAO J R, WANG H, LI B, LU Y. Organic/inorganic phosphorus partition and transformation in long-term paddy cultivation in the Pearl River Delta, China. Scientific Reports, 2023, 13: 11122.

doi: 10.1038/s41598-023-38369-2 pmid: 37429981
[5]
任嘉欣, 刘京, 陈轩敬, 张跃强, 张勇, 王洁, 石孝均. 长期施肥紫色土有效磷变化及其对稻麦轮作产量的影响. 中国农业科学, 2021, 54(21): 4601-4610. doi: 10.3864/j.issn.0578-1752.2021.21.010.
REN J X, LIU J, CHEN X J, ZHANG Y Q, ZHANG Y, WANG J, SHI X J. Variation of available phosphorus in purple soil and its effects on crop yield of rice-wheat rotation under long-term fertilizations. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610. doi: 10.3864/j.issn.0578-1752.2021.21.010. (in Chinese)
[6]
周亦靖. 稻田红壤发生层胶体赋存特征及其负载磷的流失风险[D]. 南京: 南京信息工程大学, 2022.
ZHOU Y J. Occurrence characteristics of soil colloids and colloidal phosphorus loss risk in pedogenic horizon of red paddy soil[D]. Nanjing: Nanjing University of Information Science & Technology, 2022. (in Chinese)
[7]
DEMAY J, RINGEVAL B, PELLERIN S, NESME T. Half of global agricultural soil phosphorus fertility derived from anthropogenic sources. Nature Geoscience, 2023, 16(1): 69-74.

doi: 10.1038/s41561-022-01092-0
[8]
ZOU T, ZHANG X, DAVIDSON E A. Global trends of cropland phosphorus use and sustainability challenges. Nature, 2022, 611(7934): 81-87.

doi: 10.1038/s41586-022-05220-z
[9]
赵越, 梁新强, 傅朝栋, 朱思睿, 金熠, 叶玉适. 磷肥输入对稻田土壤剖面胶体磷含量的影响. 生态学报, 2015, 35(24): 8251-8257.
ZHAO Y, LIANG X Q, FU C D, ZHU S R, JIN Y, YE Y S. Effects of phosphorus addition on soil colloidal phosphorus content in a paddy soil profile. Acta Ecologica Sinica, 2015, 35(24): 8251-8257. (in Chinese)
[10]
何晓玲, 郑子成, 李廷轩. 玉米种植下紫色坡耕地径流中磷素流失特征研究. 农业环境科学学报, 2012, 31(12): 2441-2450.
HE X L, ZHENG Z C, LI T X. Phosphorus loss via runoff from sloping cropland of purple soil under corn planting. Journal of Agro-Environment Science, 2012, 31(12): 2441-2450. (in Chinese)
[11]
冯小杰, 郑子成, 李廷轩, 范丽. 暴雨条件下紫色土区玉米季坡耕地氮素流失特征. 中国农业科学, 2018, 51(4): 738-749. doi: 10.3864/j.issn.0578-1752.2018.04.013.
FENG X J, ZHENG Z C, LI T X, FAN L. Characteristics of nitrogen loss in sloping cropland of purple soil during maize growth stage under rainstorm. Scientia Agricultura Sinica, 2018, 51(4): 738-749. doi: 10.3864/j.issn.0578-1752.2018.04.013. (in Chinese)
[12]
郑子成, 林代杰, 李廷轩, 何淑勤, 张锡洲, 林超文. 不同耕作措施下成熟期玉米对径流及侵蚀产沙的影响. 水土保持学报, 2012, 26(2): 24-28.
ZHENG Z C, LIN D J, LI T X, HE S Q, ZHANG X Z, LIN C W. Effect of maize in maturity stage on runoff and sediment yield under different tillage practices. Journal of Soil and Water Conservation, 2012, 26(2): 24-28. (in Chinese)
[13]
何晓玲. 川中丘陵区紫色土胶体态磷迁移模拟研究[D]. 雅安: 四川农业大学, 2020.
HE X L. Simulation studies on colloidal phosphorus transport from purple soil in central hilly area of Sichuan, China[D]. Yaan: Sichuan Agricultural University, 2020. (in Chinese)
[14]
闫大伟, 梁新强, 王飞儿, 周俊杰, 周晓颖, 田光明. 稻田田面水与排水径流中胶体磷流失贡献及流失规律. 水土保持学报, 2019, 33(6): 47-53.
YAN D W, LIANG X Q, WANG F E, ZHOU J J, ZHOU X Y, TIAN G M. Contribution of colloidal phosphorus loss in runoff of paddy surface water and drainage. Journal of Soil and Water Conservation, 2019, 33(6): 47-53. (in Chinese)
[15]
刘胜, 梁媛, 王思雨. 土壤胶体迁移行为及其介导污染物迁移模拟与研究进展. 化学通报, 2023, 86(7): 824-832.
LIU S, LIANG Y, WANG S Y. Research progress in soil colloid transport behavior and its mediated pollutant migration. Chemistry, 2023, 86(7): 824-832. (in Chinese)
[16]
杨悦锁, 王园园, 宋晓明, 于彤, 杨新瑶. 土壤和地下水环境中胶体与污染物共迁移研究进展. 化工学报, 2017, 68(1): 23-36.

doi: 10.11949/j.issn.0438-1157.20161328
YANG Y S, WANG Y Y, SONG X M, YU T, YANG X Y. Co-transport of colloids and facilitated contaminants in subsurface environment. CIESC Journal, 2017, 68(1): 23-36. (in Chinese)
[17]
杜晓丽, 刘殿威, 崔申申. 径流入渗时土壤胶体释放对重金属截留的影响. 中国环境科学, 2022, 42(3): 1278-1286.
DU X L, LIU D W, CUI S S. Effect of the released soil colloids on the interception of heavy metals during runoff infiltration. China Environmental Science, 2022, 42(3): 1278-1286. (in Chinese)
[18]
ANDERSSON E, MEKLESH V, GENTILE L, BHATTACHARYA A, STÅLBRAND H, TUNLID A, PERSSON P, OLSSON U. Generation and properties of organic colloids extracted by water from the organic horizon of a boreal forest soil. Geoderma, 2023, 432: 116386.

doi: 10.1016/j.geoderma.2023.116386
[19]
GOTTSELIG N, AMELUNG W, KIRCHNER J W, BOL R, EUGSTER W, GRANGER S J, HERNÁNDEZ-CRESPO C, HERRMANN F, KEIZER J J, KORKIAKOSKI M, LAUDON H, LEHNER I, LÖFGREN S, LOHILA A, MACLEOD C J A, MÖLDER M, MÜLLER C, NASTA P, NISCHWITZ V, PAUL-LIMOGES E, PIERRET M C, PILEGAARD K, ROMANO N, SEBASTIÀ M T, STÄHLI M, VOLTZ M, VEREECKEN H, SIEMENS J, KLUMPP E. Elemental composition of natural nanoparticles and fine colloids in European forest stream waters and their role as phosphorus carriers. Global Biogeochemical Cycles, 2017, 31(10): 1592-1607.

doi: 10.1002/gbc.v31.10
[20]
王沛芳, 包天力, 胡斌, 钱进. 天然胶体的水环境行为. 湖泊科学, 2021, 33(1): 28-48.
WANG P F, BAO T L, HU B, QIAN J. Environmental behaviors of natural colloids in water environment. Journal of Lake Sciences, 2021, 33(1): 28-48. (in Chinese)

doi: 10.18307/2021.0100
[21]
孙小静, 张战平, 朱广伟, 秦伯强. 太湖水体中胶体磷含量初探. 湖泊科学, 2006, 18(3): 231-237.
SUN X J, ZHANG Z P, ZHU G W, QIN B Q. Content of colloidal phosphorus in water of Lake Taihu, China. Journal of Lake Sciences, 2006, 18(3): 231-237. (in Chinese)

doi: 10.18307/2006.0306
[22]
姜双城. 九龙江口水体中不同相态磷的环境化学行为研究. 应用海洋学学报, 2021, 40(3): 511-519.
JIANG S C. Environmental chemical behavior of different phase phosphorus in water of Jiulongjiang Estuary. Journal of Applied Oceanography, 2021, 40(3): 511-519. (in Chinese)
[23]
LEE C P, WEN L S. Colloidal organic phosphorus in the South China Sea. Marine Chemistry, 2022, 246: 104179.

doi: 10.1016/j.marchem.2022.104179
[24]
MISSONG A, BOL R, NISCHWITZ V, KRÜGER J, LANG F, SIEMENS J, KLUMPP E. Phosphorus in water dispersible-colloids of forest soil profiles. Plant and Soil, 2018, 427(1): 71-86.

doi: 10.1007/s11104-017-3430-7
[25]
LI F Y, ZHANG Q A, KLUMPP E, BOL R, NISCHWITZ V, GE Z A, LIANG X Q. Organic carbon linkage with soil colloidal phosphorus at regional and field scales: insights from size fractionation of fine particles. Environmental Science & Technology, 2021, 55(9): 5815-5825.

doi: 10.1021/acs.est.0c07709
[26]
王琼, 展晓莹, 张淑香, 彭畅, 高洪军, 张秀芝, 朱平, GILLES Colinet. 长期不同施肥处理黑土磷的吸附-解吸特征及对土壤性质的响应. 中国农业科学, 2019, 52(21): 3866-3877. doi: 10.3864/j.issn.0578-1752.2019.21.015.
WANG Q, ZHAN X Y, ZHANG S X, PENG C, GAO H J, ZHANG X Z, ZHU P, COLINET G. Phosphorus adsorption and desorption characteristics and its response to soil properties of black soil under long-term different fertilization. Scientia Agricultura Sinica, 2019, 52(21): 3866-3877. doi: 10.3864/j.issn.0578-1752.2019.21.015. (in Chinese)
[27]
HE X L, ZHENG Z C, LI T X, HE S Q, ZHANG X Z, WANG Y D, HUANG H G, YU H Y, LIU T, LIN C W. Transport of colloidal phosphorus in runoff and sediment on sloping farmland in the purple soil area of south-western China. Environmental Science and Pollution Research, 2019, 26(23): 24088-24098.

doi: 10.1007/s11356-019-05735-5
[28]
HE X L, ZHENG Z C, LI T X, HE S Q, LI Z. Effects of phosphorus fertilizer application rates on colloidal phosphorus leaching in purple soil in southwest China. Water, 2022, 14(15): 2391.

doi: 10.3390/w14152391
[29]
LIANG X Q, LIU J, CHEN Y X, LI H, YE Y S, NIE Z Y, SU M M, XU Z H. Effect of pH on the release of soil colloidal phosphorus. Journal of Soils and Sediments, 2010, 10(8): 1548-1556.

doi: 10.1007/s11368-010-0275-6
[30]
ZHANG M K. Effects of soil properties on phosphorus subsurface migration in sandy soils. Pedosphere, 2008, 18(5): 599-610.

doi: 10.1016/S1002-0160(08)60054-5
[31]
KHAN S, LIU C L, MILHAM P J, ELTOHAMY K M, HAMID Y, JIN J W, HE M M, LIANG X Q. Nano and micro manure amendments decrease degree of phosphorus saturation and colloidal phosphorus release from agriculture soils. Science of the Total Environment, 2022, 845: 157278.

doi: 10.1016/j.scitotenv.2022.157278
[32]
KHAN S, MILHAM P J, ELTOHAMY K M, HAMID Y, LI F Y, JIN J W, HE M M, LIANG X Q. Pteris vittata plantation decrease colloidal phosphorus contents by reducing degree of phosphorus saturation in manure amended soils. Journal of Environmental Management, 2022, 304: 114214.

doi: 10.1016/j.jenvman.2021.114214
[33]
NIYUNGEKO C, LIANG X Q, LIU C L, LIU Z W, SHETEIWY M, ZHANG H F, ZHOU J J, TIAN G M. Effect of biogas slurry application rate on colloidal phosphorus leaching in paddy soil: a column study. Geoderma, 2018, 325: 117-124.

doi: 10.1016/j.geoderma.2018.03.036
[34]
ZANG L, TIAN G M, LIANG X Q, HE M M, BAO Q B, YAO J H. Profile distributions of dissolved and colloidal phosphorus as affected by degree of phosphorus saturation in paddy soil. Pedosphere, 2013, 23(1): 128-136.

doi: 10.1016/S1002-0160(12)60088-5
[35]
胡良, 杜伟, 常博焜, 曹钢, 杨学云, 吕家珑. 不同磷水平塿土的表面性质及其对磷素流失特征的影响. 土壤学报, 2023, 60(2): 424-434.
HU L, DU W, CHANG B K, CAO G, YANG X Y, J L. The surface properties of Lou soil with different phosphorus levels and their effects on the loss of phosphorus. Acta Pedologica Sinica, 2023, 60(2): 424-434. (in Chinese)
[36]
BAKEN S, MOENS C, VAN DER GRIFT B, SMOLDERS E. Phosphate binding by natural iron-rich colloids in streams. Water Research, 2016, 98: 326-333.

doi: 10.1016/j.watres.2016.04.032 pmid: 27110889
[37]
崔申申, 杜晓丽, 刘殿威, 刘云逸飞, 赵梦. 降雨入渗对下渗设施土壤胶体-重金属共释放迁移的影响. 环境化学, 2022, 41(9): 2842-2849.
CUI S S, DU X L, LIU D W, LIU Y, ZHAO M. Influence of rainfall infiltration on soil colloids-heavy metals co-release and co-migration in infiltration column. Environmental Chemistry, 2022, 41(9): 2842-2849. (in Chinese)
[38]
李颖, 庾从蓉, 孙钰峰, 段佩怡. 降雨强度对植被过滤带中胶体迁移过程的影响. 水资源保护, 2020, 36(6): 112-116.
LI Y, YU C R, SUN Y F, DUAN P Y. Effect of rainfall intensity on colloid migration in vegetation filter strips. Water Resources Protection, 2020, 36(6): 112-116. (in Chinese)
[39]
张维, 唐翔宇, 鲜青松. 紫色土坡地泥岩裂隙潜流中的胶体迁移. 水科学进展, 2015, 26(4): 543-549.
ZHANG W, TANG X Y, XIAN Q S. Field-scale study of colloid transport in fracture flow from a sloping farmland of purple soil. Advances in Water Science, 2015, 26(4): 543-549. (in Chinese)
[40]
袭培栋, 张鹏程, 何为媛, 唐柄哲, 何丙辉, 李天阳. 模拟降雨下不同农作措施紫色土坡耕地氮磷流失特征. 中国水土保持科学(中英文), 2021, 19(6): 69-76.
XI P D, ZHANG P C, HE W Y, TANG B Z, HE B H, LI T Y. Response of nitrogen and phosphorus losses to different farming treatments in purple sloping farmland under simulated rainfall. Science of Soil and Water Conservation, 2021, 19(6): 69-76. (in Chinese)
[41]
牛耀彬, 高照良, 刘子壮, 张少佳. 工程措施条件下堆积体坡面土壤侵蚀水动力学特性. 中国水土保持科学, 2015, 13(6): 105-111.
NIU Y B, GAO Z L, LIU Z Z, ZHANG S J. Hydrodynamic characteristics of soil erosion on deposit slope under engineering measures. Science of Soil and Water Conservation, 2015, 13(6): 105-111. (in Chinese)
[42]
KRETZSCHMAR R, BORKOVEC M, GROLIMUND D, ELIMELECH M. Mobile subsurface colloids and their role in contaminant transport. Advances in Agronomy, 1999, 66: 121-193.
[43]
肖培青, 姚文艺, 申震洲, 杨春霞. 苜蓿草地侵蚀产沙过程及其水动力学机理试验研究. 水利学报, 2011, 42(2): 232-237.
XIAO P Q, YAO W Y, SHEN Z Z, YANG C X. Experimental study on erosion process and hydrodynamics mechanism of alfalfa grassland. Journal of Hydraulic Engineering, 2011, 42(2): 232-237. (in Chinese)
[44]
李玫, 王莉玮, 何为媛, 周优良, 李真熠, 曾荣. 重庆市农田氮磷流失系数初探. 农业环境与发展, 2013, 30(4): 83-86.
LI M, WANG L W, HE W Y, ZHOU Y L, LI Z Y, ZENG R. An exploration of farmland nitrogen and phosphorus loss coefficient in Chongqing city, China. Agro-Environment & Development, 2013, 30(4): 83-86. (in Chinese)
[45]
HOU X N, ZHANG S H, RUAN Q Y, TANG C H. Synergetic impact of climate and vegetation cover on runoff, sediment, and nitrogen and phosphorus losses in the Jialing River Basin, China. Journal of Cleaner Production, 2022, 361: 132141.

doi: 10.1016/j.jclepro.2022.132141
[46]
李强, 许明祥, 齐治军, 王恒威. 长期施用化肥对黄土丘陵区坡地土壤物理性质的影响. 植物营养与肥料学报, 2011, 17(1): 103-109.
LI Q, XU M X, QI Z J, WANG H W. Effects of long-term chemical fertilization on soil physical properties of slope lands in the Loess Hilly Region. Plant Nutrition and Fertilizer Science, 2011, 17(1): 103-109. (in Chinese)
[47]
马金龙, 许欢欢, 王兵, 张宝琦, 淡彩虹. 黄土高原坡耕地土壤物理结皮对坡面产流产沙过程的影响. 水土保持学报, 2022, 36(1): 45-49.
MA J L, XU H H, WANG B, ZHANG B Q, DAN C H. Effect of soil physical crust on runoff and sediment yield on sloping farmland of the loess plateau. Journal of Soil and Water Conservation, 2022, 36(1): 45-49. (in Chinese)
[48]
郭甜, 何丙辉, 姚军, 黄巍, 谌芸. 紫色土坡耕地施肥水平对土壤侵蚀及氮磷流失影响. 水土保持学报, 2012, 26(4): 59-63.
GUO T, HE B H, YAO J, HUANG W, CHEN Y. Effects of different fertilization level on erosion, nitrogen and phosphorus losses on sloping farmland of purple soil. Journal of Soil and Water Conservation, 2012, 26(4): 59-63. (in Chinese)
[49]
吴小雨, 李天阳, 何丙辉. 长期施肥和耕作下紫色土坡耕地径流TN和TP流失特征. 环境科学, 2021, 42(6): 2810-2816.
WU X Y, LI T Y, HE B H. Characteristics of runoff-related total nitrogen and phosphorus losses under long-term fertilization and cultivation on purple soil sloping croplands. Environmental Science, 2021, 42(6): 2810-2816. (in Chinese)
[50]
SHARMA R, BELL R W, WONG M T F. Dissolved reactive phosphorus played a limited role in phosphorus transport via runoff, throughflow and leaching on contrasting cropping soils from southwest Australia. Science of the Total Environment, 2017, 577: 33-44.

doi: 10.1016/j.scitotenv.2016.09.182
[51]
WENG L, VEGA F A, VAN RIEMSDIJK W V. Competitive and synergistic effects in pH dependent phosphate adsorption in soils: LCD modeling. Environmental Science & Technology, 2011, 45(19): 8420-8428.

doi: 10.1021/es201844d
[1] NI ShuHui, SHI DongMei, PAN LiDong, YE Qing, WU JunHao. Response of Cultivated-Layer Water-Holding and Drought Resistance Performance and Productivity to Erosion Degree in Purple Soil Sloping Farmland [J]. Scientia Agricultura Sinica, 2024, 57(7): 1350-1362.
[2] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[3] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[4] JIANG WenYang, CHEN JunNan, ZAN ZhiMan, WANG JiangTao, ZHENG Bin, LIU Ling, LIU Juan, JIAO NianYuan. Regulation of Single-Seed Sowing and Phosphorus Application on Interspecific Competition and Growth of Intercropping Peanut [J]. Scientia Agricultura Sinica, 2023, 56(23): 4660-4670.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[7] SONG Ge,SHI DongMei,JIANG GuangYi,JIANG Na,YE Qing,ZHANG JianLe. Effects of Different Fertilization Methods on Restoration of Eroded and Degraded Cultivated-Layer in Slope Farmland [J]. Scientia Agricultura Sinica, 2021, 54(8): 1702-1714.
[8] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[9] REN JiaXin,LIU Jing,CHEN XuanJing,ZHANG YueQiang,ZHANG Yong,WANG Jie,SHI XiaoJun. Variation of Available Phosphorus in Purple Soil and Its Effects on Crop Yield of Rice-Wheat Rotation Under Long-Term Fertilizations [J]. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610.
[10] Na JIANG,DongMei SHI,GuangYi JIANG,Ge SONG,ChengJing SI,Qing YE. Effects of Soil Erosion on Physical and Mechanical Properties of Cultivated Layer of Purple Soil Slope Farmland [J]. Scientia Agricultura Sinica, 2020, 53(9): 1845-1859.
[11] Kai LIU,Jia LIU,XiaoFen CHEN,WeiTao LI,ChunYu JIANG,Meng WU,JianBo FAN,ZhongPei LI,Ming LIU. Seasonal Variation and Differences of Microbial Biomass Phosphorus in Paddy Soils Under Long-Term Application of Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(7): 1411-1418.
[12] Ge SONG,DongMei SHI,XiaoYing ZENG,GuangYi JIANG,Na JIANG,Qing YE. Quality Barrier Characteristics of Cultivated Layer for Sloping Farmland in Purple Hilly Region [J]. Scientia Agricultura Sinica, 2020, 53(7): 1397-1410.
[13] CHENG YongYi, LI ZhongYi, BAI YingYan, LIU Li . Acidification Characteristics of Purple Soil, Yellow Soil and Latosol with Electrodialysis Method [J]. Scientia Agricultura Sinica, 2018, 51(7): 1325-1333.
[14] FENG XiaoJie, ZHENG ZiCheng, LI TingXuan, FAN Li. Characteristics of Nitrogen Loss in Sloping Cropland of Purple Soil During Maize Growth Stage Under Rainstorm [J]. Scientia Agricultura Sinica, 2018, 51(4): 738-749.
[15] Rong HUANG,Ming GAO,JiaCheng LI,GuoXin XU,FuHua WANG,Jiao LI,ShiQi CHEN. Effects of Combined Application of Various Organic Materials and Chemical Fertilizer on Soil Nitrogen Formation and Greenhouse Gas Emission Under Equal Nitrogen Rates from Purple Soil [J]. Scientia Agricultura Sinica, 2018, 51(21): 4087-4101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!